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Abstract and static nodes known &mse stations This type of net-
works relies on a fixed backbone infrastructure that inter-
We present a technique to evaluate the approximation ra- connects all base stations by high-speed wired links. On
tio on random instances of the Minimum Energy Broadcast the other hand, the multi-hop model [23] requires neither
Problem in Ad-Hoc Radio Networks which is known to be fixed, wired infrastructure nor predetermined interconnec-
NP-hard and approximable within 12. Our technique relies tivity. Ad-hocnetworking [19] is the most popular type of
on polynomial-time computable lower bound on the optimal multi-hop wireless networks because of its simplicity: In-

cost of any instance. deed, arad hocwireless network is constituted by a homo-
The main result of this paper is that the approximation geneous system of stations connected by wireless links.
ratio hasneverachieved a value greater thaw. Further- In ad-hoc networks, to every station is assigned a trans-

more, the worst values of this ratio are achieved for small mission range: The overall range assignment determines a

network sizes. We also provide a clear geometrical motiva- transmission (directed) graph since one stati@an trans-

tion of such good approximation results. mit to another station if and only if ¢ is within the trans-
mission range of. The range transmission of a station
depends, in turn, on the energy power supplied to the sta-

1. Introduction tion: In particular, the powep(s) required by a statios to
correctly transmit data to another statiomust satisfy the
1.1. Motivations and preliminary definitions. inequality ()
PSS

—_——>1 1

Wireless networking technology will play a key role in dist (s,)" — @
future communications and the choice of the network ar- wheredist (s, t) is the Euclidean distance betweeandt,
chitecture model will strongly impact the effectiveness of anda > 1 is thedistance-power gradienThe most studied
the applications proposed for the mobile networks of the case isx = 2[37, 8, 36] since this corresponds to the empty
future. Broadly speaking, there are two major models for space and, moreover, it is a good approximation of the envi-
wireless networkingsingle-hopandmulti-hop The single- ronment where wireless networks are located (see [27, 31]).
hop model [32], based on the cellular network model, pro-  Energy conservation is a critical issue in an ad-hoc wire-
vides one-hop wireless connectivity between mobile hostsless network: It is important to minimize the energy con-

*This work is partially funded by the Information Society Technologies sumpiion of the network pravided that a conneciivity prop-

programme of the European Commission, Future and Emerging Technolo-€ty on the induce.d transmission graph is gu.aranteed (fora
gies, under the 1ST-2001-33135 project CRESCCO survey on this topic see [9]). Current transceivers and com-




munication protocols are designed for a fixed transmissionbegin
range (e.g. IEEE 802.11 standard [21]). However, a sce- 7 :=DIR-MST (S,dist ,s);
nario in which the transmission range is not fixed is compat- forall v € S do
ible with current technology. In particular, the transmission T (V) 1= maxy:(vuyer{dist (v,u)};
range can be varied dynamically in presence of mobility or end
when the physical node placement is unknown. Distributed
topology control protocols, aimed at dynamically changing
the transmission range assignment in order to guarantee a
certain connectivity property of the network and minimize
energy consumption, have recently presented in [25, 30, 33]
In this paper we address the case in which the connectiv-
ity property is the following: Given a source statienthe
transmission graph induced by the range assignment must
contain a directed spanning tree rooted.afhis is one of ~ heuristics, for the standard case= 2, have been com-
the crucial problems underlying ad-hoc wireless networks pared (one to each other) on random instances, i.e., in-
because any transmission graph satisfying the above propstances in which points are chosen independently and uni-
erty allows the source station to perfotmoadcastoper- formly on a square region. The best heuristic appears to
ations. Broadcast is a task initiated by the source stationbe the one based on the construction of an Euclidéizi
which transmits a message to all stations in the wireless netinum Spanning Tre@ST) routed at the source node. This

Figure 1. The MST-ALG for computing the
MECST. The DIR-MST procedure returns the
directed MST rooted at s (according to the in-
put distance function  dist ).

works: This task constitutes a major part of real life multi-
hop radio networks [3, 4].

A trivial solution for the above problem consists in as-
signing to the source a transmission power that suffices
to directly communicate (within one hop) with all the other

algorithm, denoted aBIST-ALG is sketched in Figure 1.
The MST-ALG heuristic clearly runs in polynomial time
and always returns a feasible solution. It achieves the best
experimental results [37] and it is also easy to implement.
Moreover, in network with dynamic power control (where

stations. However, this solution could be very expensive: In stations are allowed to make small and/or slow movings),
fact, due to Equation (1), the total power (i.e. the sum of the the range assigned to the stations can be modified at any
powers assigned to every stations) required by the networktime: The algorithm can thus take advantage of all known
could be very large with respect to the optimal solution. techniques to dynamically maintaMSTs (see, for exam-
This fact can be better explained by an example: Considerple, [13, 14, 26]).
n nodessy, sa, ..., s, on aline such that(s;,s;+1) = 1 Finally, MST-ALGis the only heuristic for which theo-
(: =1,...,n—1)and lets; be the source node. & = 2, retical results are known: In fact, simultaneously and inde-
an assignment that allovgs to directly communicate to all ~ pendently, in [8] and in [36], it is shown that th&ST-ALG
the other stations requires a total energyatvhereas the  heuristic achieves a constant approximation ratio. More for-
best assignmentijgs;) =1 (i =1,...,n— 1), thus yield- mally, given an instancés, s), define
ing total powem — 1.

Let S be a set of: nodes located on the Euclidean plane. cost ((S,s),r™) =" r™(v)2
A range assignmerfor S is a functionr : S — R*. The veS
transmission (directed) grapty,, = (5, E), induced byr,

is defined as andopt ({5, s)) as the cost of a minimum range assignment

for this instance. Then, they prove that a consjant 0
exists such that, for any instan¢g, s), the approximation

E = ,u) S A dist yu) < . o
U {,u):ue st (v,u) < 7r(v)} ratio is such that

vES

. _cost ((S,s),r™)
RO = =t (5,8 =7

This constant is proved to b in [8], it was then reduced
to 20 by the same authors in [7], and it is shown tol2e
in [36]. On the other hand, [36] provides a “bad” instance

The MINIMUM ENERGY CONSUMPTION BROADCAST
SUBGRAPH (in short, MECB$ problem is then defined as
follows: Given a set of station§S on the Euclidean plane
and asource nodes € S, find a range assignmentsuch
thatG,. contains a directed spanning tree rootes and the

©)

function (i.e., a star of 6 nodes, see Figure 2) in whMBT-ALG
cost (r)=> r(v)” (2)  returns a solution whose cost is almost 6 times the optimal.
ves We emphasize that the use of approximation algorithms

iS minimized. is motivated by the fact that tHdECB $roblem isNP-hard

This problem was introduced in [37] where three greedy even in the Euclidean plane (see [8, 7]). More recently, a
heuristics are proposed. Here, the performances of suctsimpler proof of theNP-hardness for a different version of



[ |S| [ RMSt (5, 5) “ |S] [ RMSt (5, o) “ 1S| [ RMSt (3, 5) ]

5<-<9 6.4 60 2.1 375 1.4
10 4.4 65 2.0 500 1.3
15 3.3 70 2.0 1000 1.2
20 3.0 75 2.0 1500 1.2
25 2.7 80 1.9 2000 1.2
30 2.7 85 1.9 1250 1.2
35 2.5 90 1.9 1750 1.2
40 2.3 95 1.9 2250 1.1
45 2.4 100 1.8 5000 1.1
50 2.2 125 1.7 7000 1.1
55 2.2 250 1.5 9000 1.1

Table 1. The experimental results for the ap-
proximation ratio R™ (S, s) for several dimen-
sions of the set S. We report the largest val-
Figure 2. Albdd instance for MST-ALG. ues from thousands of experiments.

the problem (in which thgeset o{ Egssible node transmission

ranges is fixed and given as input) is presented in [16, 6].random instances. The main result of this paper is that, for
It thus follows that an important open question is to deter- all the random instances, the approximation ratioreser
mine the “real” quality of approximation achieved by the achieved a value greater thént. Notice that this value

MST-ALGheuristic. Ps somewhat implies that the uniform random model “takes
care” of “bad” instances like the one in Figure 2.
1.2. Our results. The above lower bound on the optima establishes a direct

connection between the approximation ratio of M8F

We show that the large approximation ratio achieved based solution and the ratigS) between the costbof the
in [36] is not tight for random instances. Actually, our in- MSTof a set of node$ on the plane and the minimal-area
tuition here is that it might be possible to almost match the disk that containsS. It can in fact be proved that the ap-
lower bound 6 also in the worst case. proximation ratio ofMST-ALGis not larger thant - ¢(S).

In order to support our intuition, we present and dis- Thanks to this connection, we can evaluate M8T-ALG
cuss the results of a new massive experimental analysis ofipproximation ratio by performing experimental results on
the MST-ALGperformances on random instances. Accord- ¢(S). We concentrate and report only the maximal value
ing to most of the experimental analysis of computational achieved by:(.S) (and, thus, by the approximation ratio) as
problems on static ad-hoc radio networks (see for examplefunction of the input parameters. Clearly, the average values
the papers [37, 6, 5, 22]), we consider thd@form random are bounded by the relative maximal values.
mode] in which nodes are chosen uniformly and indepen-  Two input parameters are considered: the numbef
dently at random from a square region of a given size and,nodes and the side lengtiof the square region in which the
then, the (complete) distance graph is considered. Besides nodes are independently placed according to the uniform
having aper setheoretical interest, the use of the uniform distribution. From these two parameters, we can define the
random model is well motivated by theoretical and exper- densityof the radio network as the ratio between the num-
imental results [18, 17, 24] showing that the topology of ber of nodes and the size of the smallest region containing
efficient static ad-hoc radio networks must §garseand all the nodes. Number of nodes and region size characterize
well-spread[10, 11]. We refer here to topologies arising the network topology. For example, in radio networks im-
from applications in emergencies, battlefield, monitoring plemented in buildings of few hundreds of square meters,
remote geographical regions, etc. [15, 20, 28, 29, 34]. Asthe number of nodes can vary from few dozens to some
in [37, 36, 6, 16], we address the case- 2. hundreds, whereas wide area networks, spread over thou-

The main novelty of our contribution consists in com- sands of squared kilometers, may contain few thousands of
paring the cost of th#1ST-ALGsolution to alower bound nodes [12, 2]. However, we perform our experiments over
of the relative optimum. Indeed, from the theoretical anal- larger ranges of the input parameters.
ysis in [7], we first derive an easy-to-compute lower bound  Qur results are summarized in Table 1: the approxima-
(which is not the direct lower bound yielded by the ap- tion ratio R™ (S, s) is shown for different sizes of the node
proximation ratio) on the optimal cost of any instance of setS. The choice of reporting?™ (S, s) as function of
the problem. We then exploit this lower bound in order to
evaluate the approximation ratio over several thousands of INotice that the cost of an edde, v) isdist (u,v)?2: see Section 2.




the (only) parametelS| is motivated by the fact that, from
the experimental dataZ™ (S, s) does not depends on the
region size. In particular, the values 8f*' (S, s) greater
than6 (as the value returned by the “bad” instance in Fig-
ure 2) are all obtained fofS| < 9: This might implies
that this “bad” instance is one of the (absolute) worst in-
stances. More importantly, the worst-case approximation
ratio R™ (S, s) seems to be decreasingunction of|S|: It

seems to tend to a constant slightly greater than one. ThiOPt

trend is consistent to that of tlasymptotical expected value
of ¢(.S) determined in [38] (this asymptotical average-case
analysis gives no information about the “worst-case” in-
stances of reasonable, small size - see Section 3).

of Gren induced byK (v). For anyv € S, let

_ _w(MSTv))

= dam(K (0))2 and ¢;q, = max{c(v) |v € S}.

Then, it holds that

() =Tz = -3 =0T
veES veES
> 4c1 . w(MSTw))
max ES

¢From Table 1 and the above discussion, it thus turns outSince the grapli’ = (S, E) where
that the worst-case instances are likely to have small sizes.

This well-motivates our massive simulation on random net-
works of relatively small sizes.

Finally, we can state that the quality of the approxima-
tion yielded by theMST-ALGheuristic is thus rather good

on random instances, much better than that arising from the

previous theoretical worst-case analysis in [8, 7, 36]. In
Section 2, we will show some specific geometrical proper-
ties of theMST-ALG solutions that motivate the achieved
quality.

1.3. Organization of the paper.

Section 2 shows a simple and efficient method to derive
the lower bound on the optimal from the worst-case anal-
ysis in [7]. We also describe the main geometrical facts
the worst-case analysis relies on, and we then conjecture
more likely worst-case geometrical scenario. In Section 3,
we present our experimental results. Finally, in Section 4,
we discuss the obtained results.

2. Fast-computable lower bound for the optima

Given any set of node$, D(S) denotes the smallest
disk containing all the nodes and its diameter is de-
noted asdiam(S). Given the weighted complete graph
(G(S, E),dist 2), where the weight of every edge, v) is
defined aglist (u, v)2, the weight of a subgrapf’ (S, E’)
of G is defined as

w(@)= Y dist (u,v)2.

(u,v)EE’

Now, letr** be an optimal range assignment for the in-
stance(S, s) of MECBSFor anyv € S, let

K(w)={ue S dist (v,u)<r™(v)}

and letMSTwv) be a minimum spanning tree of the subgraph

E'=|J{ec E:ceMSTv)},

vES
is a spanning subgraph 6y, it follows that

0Pt ((S,5)) > > w(MSTv))
max UES
1
z 1o — wMSTY)
> 4(:1 -cost (MST-ALGS, s)) (4)

From the above inequality, it should be clear that any upper
bound fore,, ., determines a lower bound on the optimum
of any instance of th&1INIMUM ENERGY CONSUMPTION

BROADCAST SUBGRAPH problem.

Notice that, given any set of pointS on the plane,
the ratiow(MST.S))/diam(S)2 can be easily computed in
O(]S]?) time (as we will see later, this is the only computa-
tion made by our experimental tests!).

In [7], the following result is proved

Theorem 1 ([7]) For any setS of points on the plane,

_ w(MSTY))

e(S) = <5.

diam(S)2 — ®)

By replacingcmq.. < 5 in Equation 4, [8] showed that
MST-ALGis a 20-approximation algorithm favl INIMUM
ENERGY CONSUMPTIONBROADCAST SUBGRAPH. HOw-
ever, our opinion is that this upper bound is due to a rough
and pessimistic theoretical analysis. In what follows, we
argument this opinion.

2.1. A more realistic analysis.

In order to determine an upper bound &gy,,.., we need
to compare the area of the digk(S) and the weight of



y [ 10x10 [ 50 x50 [ 100 x 100 |

5% || 1.448513| 0.433417| 0.333548
10% || 0.978396| 0.372507| 0.30637
15% || 0.807885| 0.344493| 0.295351
20% || 0.738916| 0.33153 | 0.293037
50% || 0.543291| 0.290886| 0.270258
70% || 0.507716| 0.289506| 0.268491
90% || 0.457731| 0.28003 | 0.263674

Table 2. The ¢(.5) values for some node densi-
ties and some region sizes.

Conjecture 1 Let S be a set of points on the Euclidean
. o . plane and leMSTbe an Euclidean minimum spanning tree
Figure 3. A minimum spanning tree (and the of S. Then, no more thafi diametral disks of edges @f
relative edge diameter disks) of a set 5 of 75 can overlap on a region of positive area. Furthermore, the
points randomly generated inside a disk of area of the overall region which is covered by more than two
diameter 100. diametral disks is almost negligible with respect to the area
of D(S5).

MST(S) for a generic sef of nodes on the plane (where the
weight of every edgéu, v) is w((u,v)) = dist (u,v)2).
Lete = (u,v) be an edge of a EuclidedfSTS) andD, i i i i i
be thediametraldisk whose center is on the midpoint ©f As mentioned in the previous section, our experimental
and whose diameter iist (u, v). The contribution o to ~ {aSk consists in computing theorstratio c(S5) from sev-
the cost oMSTcan be “represented” as the arealnf (up e_ral tho_usgnds of random node_ shts. In_ particular, the
to the constant factor/4); so, the cost of1STis thereabout ~ Simulation is performed by varying the side lengtbf the
the sum of the areas of the diametral disks associated to alfduare region containin§ and by varying the sizg5| = n
the edge of the tree (see Figure 3). Then, roughly speaking{fom 5 to some thousands. The nodes are independently
Theorem 1 is proved by showing thas more thars of such placed according to the uniform dlst.r|but|on. For egfch
disks can overlap over any point Bf(.S). and|S| < 1000, we run10, 000 experiments from_ which
In this analysis, it is thus assumed that, in the worst case ON!Y the maximum value of(S5) is considered. While, due
every point ofD(S) is covered by 5 overlapping diametral to the high cpmputanonal time and to the _dlscovered trend
disks! In other words, the worst-case scenario in which the °f the éxperiments, few hundreds of experiments have been
MSTsolution “pays’s times the area aP(S) is considered. run for Ia'rger yalues of. The experimental tests consider
Itis easy to convince the reader that this situation never hap-{Nre€ region sizes( x 10, 50 x 50, 100 x 100). The results
pens. Moreover, as for random instances, the total area cov@'® Summarized in Table 2. The table shows #iay is a

ered by the diametral disks appears very small with respectd€creasing function of density. Observe that, fixing the den-
0 the area of the disB(S) (see Figure 3)! We even tried Sty and increasing the region size corresponds to increasing

to draw 4 diametral disks of a minimum spanning tree so the numberofnode;! This might imply that, similarly to the
that they all cover a same region of positive area with no theoreticalasymptotical expected value (see Theorem 2),
success. This really seems a geometrical property of mini-t€ maximum value of(5) only depends om.

mum spanning trees for points of plane: unfortunately, until N order to support the above statement, we have per-
now, we were not able to prove it. We have run experi- formed experiments by varying the number of nodes and
ments devoted to the evaluation of the number of overlap- keeping the region size fixed. Table 3 shows the results for
ping diametral disks that can occur (see the java applet in€veryn € {5,...,100} and for/ e {10,50,100,1000}.
http://mat.uniroma2.it/ ~verhoeve/ ). From The obtained data show that, for the same number of nodes,
these simulations it turns out that never more tRatisks there is no relevant difference among the four considered
overlap and the size of the region covered by more than ond€dions. It seems thus confirmed our claim thi) (and

disk is almost negligible with respect to the arearfs). hencel™ (S, 5)) only depends on the number of nodes and

Our opinion can thus be summarized into the following ~ d0es not depend on the region size. Actually, this claim is
also confirmed by a simple scaling operation.

3. Experimental Results



10 50 100 1000
|S| X X X X max | R™'(S,s)
10 50 100 1000

5 1.448| 1.378| 1.448 1.462 1.462 5.846
6 1.420| 1.387| 1.611 1.412 1.612 6.447
7 1.283| 1.254| 1.261 1.332 1.332 5.330
8 1.209| 1.162| 1.221 1.143 1.221 4.886
9 1.082| 1.155| 1.096 1.103 1.155 4.619
10 0.978| 1.103| 0.981 0.995 1.103 4.413
15 0.808| 0.795| 0.822 0.797 0.822 3.288
20 || 0.739| 0.717| 0.750 | 0.759 || 0.759 3.036
25 || 0.668| 0.679| 0.664 | 0.662 || 0.679 2.716
30 || 0.614| 0.678| 0.653 | 0.647 || 0.678 2.711
35 || 0.594| 0.625| 0.613 | 0.609 || 0.625 2.501
40 || 0.576| 0.568| 0.569 | 0.566 || 0.576 2.304
45 || 0.535| 0.528| 0.568 | 0.599 || 0.599 2.395
50 0.543| 0.553| 0.526 0.554 0.554 2.215
55 0.543| 0.541| 0.523 0.503 0.543 2.174
60 0.506| 0.528 | 0.511 0.498 0.528 2.111
65 0.483| 0.508 | 0.490 0.506 0.508 2.034
70 || 0.508| 0.502| 0.490 | 0.480 || 0.508 2.031
75 || 0.493| 0.461| 0.490 | 0.473 || 0.493 1.971
80 || 0.468| 0.471| 0.468 | 0.469 | 0.471 1.885
85 0.452| 0.454| 0.478 0.475 0.478 1.914
90 || 0.458| 0.473| 0.481 | 0.456 || 0.481 1.924
95 0.464| 0.455| 0.479 0.446 0.479 1.917
100 || 0.441| 0.450| 0.440 0.446 0.450 1.801

Table 3. The values of ¢(S) and R™ (S, s) for
several sizes of S and several network sizes.
For each region size, we have reported the
worst value of ¢(S) obtained from 10 thou-
sands trials. The fourth column reports the
worst value between the first three columns
whereas the last column is the corresponding
approximation ratio.

We emphasize that the maximal values:0§) returned
by our experimental results seem to yield a decreasing func
tion of n (see also Figure 4). This is fully compatible with
the asymptotical behavior of the expected value(6¥). In-
deed, [38] proved the following theoretical result.

Theorem 2 ([38]) Let S be a set of points chosen indepen-
dently and uniformly at random from a square region of
area A. Then, two positive constanisand 0 exist such
that, for anyn > 0, it holds that

P

NG

For this reason, in order to find “bad” instances, we have
considered instance$ of size not too large|§| < 100):
The relative data are reported in Table 3.

We finally remark that determining the exact value of
the constank in Theorem 2 is still an open problem [35, 1].

[w(MSTS)) — k- A] <
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Figure 4. Trend for the worst values for
obtained by the fourth column of Table 3.

()

3.1. Notes on the Implementation

Our claim is that the performance ratio of thST-ALG
algorithm is6 but the worst value found by our experiments
is a little greater than this value. This discrepancy is due
to our implementation choices. Since our experiments run
over thousands of big instances, we have adopted the choice
of computing the ratio

w(MSTS))

' _
ci(s) = max, yeg{dist (u,v)}

(6)

that can be computed faster than the real valug 6§

w(MSTS))
C8) = diam®
Observe thatax, ,es{dist (u,v)} < diam. Then, an
upper bound foiC’(S) is also an upper bound far(.S).
However, this approximation can be too “rough” for small
values of|S|. Indeed, let us consider three stations form-
ing an equilateral triangle: by using Equation (6), we get
C(S) < 2 and a performance ratio 8¢ On the contrary,
the real value of”(S) is 3/2 (see Figure 5) that implies a
performance ratio 06. We also observe that the worst in-
stance leading thé.4 approximation factor found by our
experiments yield a shape similar to Figure 5. This instance
is represented in Figure 6.

4. Conclusion and open questions

We have presented the first experimental results on the
approximation ratio achieved by th®IST-ALG heuris-
tic for the MINIMUM ENERGY CONSUMPTION BROAD-
CAST SUBGRAPH problem on 2-dimensional radio net-
works. Such experiments show that the achieved quality is
good, much better than that derived from the best-known
theoretical worst-case analysis. We strongly believe that
this quality is due to a set of geometrical properties of
the MST-ALG solutions which are not considered by such

However, on the ground of our experimental data, we may worst-case analysis: these properties seem to holdrfgr

conjecture that this constant is widely smaller than 1.

2-dimensional instance of reasonable large size.



C(S) _ ’LU!MZT—ALG S _ %;_ _ %

iam
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Figure 5. The discrepancy between the “real”
performance ratio of the MST-ALG algorithm
and the performance ratio computed in our
experiments.

The main theoretical open question is proving Conjec-
ture 1, thus achieving a better theoretical worst-case approx-

imation ratio for theMIST-ALG

Moreover, another important open problem is whether

(2]

(3]

(4]

(5]

(6]

(7]

other algorithmic techniques can achieve better worst-case [g]

approximation for théINIMUM ENERGY CONSUMPTION
BROADCAST SUBGRAPH problem.
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