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Abstract. We present a game-theoretic approach to the study of scheduling com-
munications in wireless networks and introduce and study a class of games that
we call Interference Games. In our setting, a player can successfully transmit
if it “shouts strongly enough”; that is, if her transmission power is sufficiently
higher than all other (simultaneous) transmissions plus the environmental noise.
This physical phenomenon is commonly known as the Signal-to-Interference-
plus-Noise-Ratio (SINR).

1 Introduction

We study Interference Games which arise in the context of wireless communications
where multiple transmissions create interference and thus unnecessary energy loss for
the nodes. Each node can be regarded as a player who has her own “profit” from suc-
cessfully transmitting data, and a cost proportional to the energy spent for transmitting.

The scenario in which each player of the network acts independently so to optimize
her own payoff (the “net profit” given by the energy loss and the success/unsuccess
in transmitting) gives rise to an interesting class of games which we call Interference
Games. Unlike the classical congestion games [14], in Interference Games there is a
single resource (the physical media) but each player has a number of strategies available
(the transmitting power). Players essentially compete for the media and, in a single slot,
at most one player can transmit successfully. Indeed, a player transmits successfully if
her signal strength at the receiver is larger than the sum of the signals of all other players
plus the environmental noise (see Section 2). Though transmitting with higher power
is more expensive, players may strategically decide to do so because they care more
about successfully transmitting. This creates a mutual interference which may result
in suboptimal performance like unnecessary energy consumption and/or transmissions
failures (it may be well be the case that all players transmit with high power and thus
they all fail).

1.1 Our Contribution

It is natural to ask how well does the system work if players optimize their own payoff,
that is, if they only care about the success of their own transmission and the energy they
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spent for it. To this aim, we study several notions of equilibria and their global effi-
ciency. In particular, we consider Nash equilibria [12] where no player has an incentive
to unilaterally change her strategy, correlated equilibria [2,3] where players have no
incentive to deviate from a “suggested” strategy, and sink equilibria where players peri-
odically perform best response and the whole system cycles through a “sink” consisting
of a set of states of the game [6]. For all of these notions, it is possible to quantify the
“system” performance in terms of social welfare and fairness. The former measures the
overall “happyness” of the players, while the second one concerns how “equally” play-
ers have been treated. Finally, we consider repeated games [13], in which the “basic”
Interference Game is played (possibly infinitely) many times. In such a context, we con-
sider subgame perfect equilibria which provide a stronger solution concept compared
to Nash equilibria (intuitively, the underlying “protocol” is also robust to deviations that
occur for a finite amount of iterations).

We prove the following results on the existence and performance of the considered
notions of equilibria for the case of a “perfectly symmetric” game in which all players
valuate a successful transmission the same amount v, and they have the same set of
strategies (see Section 2). We show that pure Nash equilibria do not exist if there are at
least two transmission powers. Since mixed Nash equilibria and sink equilibria always
exist [12,6], we consider these two notions. For two players, there exist sink equilibria
with social welfare v − k, with k being the number of possible transmission powers,
and these equilibria are also fair for odd k.

We show that every mixed Nash equilibrium has either bad social welfare or bad
fairness (i.e., one of the two is equal zero). In contrast, we prove that correlated equi-
libria can be fair and attain a positive social welfare greater than v − 2k (this improves
to v − k in the case of odd k). We also show optimal fair correlated equilibria for some
specific games (namely, for k ≤ 3).

Finally, we consider the case of infinitely repeated games with discount factor [13].
We prove that for the two-player scenario it is possible to obtain fair subgame perfect
equilibria with optimal social welfare (i.e., v−1). The result holds for the case in which
every player knows only if her previous transmissions were successful or not.

1.2 Related Work

Fiat et al. [4] study contention resolution protocols for selfish agents aiming at accessing
a broadcast channel. They focus on the scenario in which each player has one packet
to transmit and she can choose either to transmit or not to transmit at each time slot
(that is, each player has two possible strategies). They analyze the well known Aloha
protocol and provide a new protocol being a Nash equilibrium for the game and having
better performances (in terms to transmission delays) with respect to Aloha.

Adlakha et al. [1] study Bayesian Interference Games in a wireless scenario in which
players select a power profile over the available bandwidth to maximize their own data
rate (measured via Shannon capacity). They analyze Nash equilibria of the incomplete
information game in which players are unaware of the interference they cause to the
other ones.

In Timing Games [8,9,10] two players must decide when to make a single move
at some time between 0 and T . The payoffs of the players usually depend on which
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player moves first and/or the time that she moves. Though Timing Games can be seen
as special Interference Games, in Timing Games the payoffs are always positive which
is not true for Interference Games. This determines a different structure of equilibria.

Scheduling wireless communications under the Signal-to-Interference-plus-Noise-
Ratio (SINR) model have been studied in [7,11].

2 Model and Definitions

In the Signal-to-Interference-plus-Noise-Ratio (SINR) model (see for instance [7,11]),
a node α is successful in transmitting if and only if

pα/da
α

Noise +
∑

β �=α(pβ/da
β)

≥ B, (1)

where dα is the distance of node α from the receiver and pα is the power of node α’s
transmission.

We study the SINR model from a game theoretical point of view and introduce a class
of games which we call Interference Games. There are n players corresponding to the
nodes aiming to communicate. A strategy of a player α is an integral power transmission
level in {0, 1, . . . , k} and all players have the same set of strategies. Moreover, we
denote by v how much a successful transmission is worth to a player (we assume this
value to be the same for all players).

Given a strategy profile or state s = (s1, . . . , sα, . . . , sn) of the game, player α is
successful if sα is larger than the sum of all other si’s. Notice that sα is the power of
α and the condition for being successful corresponds to the case in which all nodes
are at the same distance from the receiver, Noise > 0, and B = 1 (see Equation 1).
The utility or payoff uα(s) of player α depends on her power consumption and the fact
that her transmission is successful or not. Namely, if in s player α is successful and
has used power pα, then her payoff is uα(s) = v − pα. Otherwise, if in s player α
is not successful and has used power pα, then her payoff is uα(s) = −pα. If we deal
with probabilistic choices, we are interested in the expected utility. Each players aims
to maximize her own (expected) utility.

We consider the social welfare function SW (s) =
∑

α∈N uα(s) that is the sum
of the payoff’s of all players. The fairness of a state s is defined as the ratio between
the minimum and the maximum (expected) utility of players; i.e., minα∈N uα(s)

maxα∈N uα(s) ; if the
utilities of all the players are 0, the fairness is defined equal to 1. Moreover, we call fair
a state with fairness equal to 1, and unfair a state with fairness equal to 0.

We now review the equilibrium notions that we use in this paper. A pure Nash equi-
librium is a state in which no player can obtain a higher utility by changing her strategy,
given the strategies of the other players. In a mixed Nash equilibrium we consider play-
ers picking a strategy independently according to some probability distribution (each
player decides her own distribution). In a mixed Nash equilibrium no player can im-
prove her expected payoff by changing her probability distribution, given the probabil-
ity distributions of the other players. In correlated equilibria a “mediator” picks a state s
according to some probability distribution and “suggests” strategy sα to each player α.
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Each player α is only aware of her suggested strategy and of the probability distribution
used to pick the state. A probability distribution over the set S of all states is a correlated
equilibrium if no player can improve her expected payoff by replacing her suggested
strategy with a different one, given that the other players follow the suggested strategy
(note that the expected payoff of α is conditional to the fact that player α has been sug-
gested some strategy sα). In sink equilibria we consider a so called state graph in which
every node corresponds to a state of the game and there is a directed edge from s to s′ if
there is a player α such that uα(s) < uα(s′) and state s′ is obtained from s by changing
strategy sα with some other strategy s′α. Intuitively, edges corresponds to best response
of some player and, in a sink equilibrium, players moves will “cycle” through some
connected component (when the component has only one node we have a pure Nash
equilibrium). More formally, sink equilibria are the strongly connected components of
the state graph. Let Q be a sink equilibria and let π : Q → R

+ ∪ {0} be the steady
state distribution of the random walk over states q ∈ Q of the sink equilibrium. The
(expected) social welfare of Q is the expected social value of states given by the steady
distribution of the random walk over its states; i.e. SW (Q) =

∑
q∈Q π(q)SW (q).

3 A Simple Interference Game

In this section we analyze a simple Interference Game characterized by n = 2 players
and k = 2. The game is perfectly symmetric and a player α is successful if and only
if pα > pβ , where β is the other player. Despite its simplicity, we can already derive
some indications from this simple game. The utility matrix is

0 1 2
0 0, 0 0, v − 1 0, v − 2
1 v − 1, 0 −1,−1 −1, v − 2
2 v − 2, 0 v − 2,−1 −2,−2

We start by proving that this simple game has no pure Nash equilibrium.

Theorem 1. For any k ≥ 2, the Interference Game has no pure Nash equilibrium, even
for two players.

Proof. Observe that the best response for a player to strategy x < k of the other player
is strategy x + 1 and the best response to strategy k is strategy 0. Therefore, the only
possible pure equilibria are (0, k) or (k, 0). Since the best response to strategy 0 is
strategy 1, such states are Nash equilibria only if k = 1. Similar arguments apply for
the case of n > 2 players.

We now turn our attention to sink equilibria.

Theorem 2. The Interference Game with n = 2 and k = 2 has a unique sink equilib-
rium with social welfare v − 2 and fairness 1.

Proof. By recalling the above considerations on the best response moves, there exists a
unique sink equilibrium given by the cycle:

(0, 1), (2, 1), (2, 0), (1, 0), (1, 2), (0, 2), (0, 1).
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Since the equilibrium is a cycle, the steady distribution of the random walk is the uni-
form one, and it is easy to check that its social value is v − 2. Moreover, since for each
state in the sink also its symmetric state is present, the fairness of the equilibrium is 1.

We continue our study by analyzing mixed Nash equilibria.

Theorem 3. The Interference Game with n = 2 and k = 2 has a mixed Nash equilib-
rium with social welfare 0 and fairness 1.

Proof. The equilibrium corresponds to the probability distribution q = (q0, q1, q2) with

q0 = q1 = 1/v. To see that this is a Nash equilibrium, let u
(q)
α (i) be the payoff of

player α when it plays strategy i, given that the other one plays according to probability
distribution q. Clearly u

(q)
α (0) = 0, while

u(q)
α (1) = q0(v − 1) − q1 − q2 = q0v − 1 = 0.

Similarly

u(q)
α (2) = q0(v − 2) − q1(v − 2) − 2q2 = (q0 + q1)v − 2 = 0.

Since the payoff is constant for all three strategies, when both players play according to
the probability distribution q, none has an incentive in unilaterally deviating. That is, q
is a Nash equilibrium and the payoff of each node is 0; thus, also the social welfare is 0
and the equilibrium is fair.

We conclude the study of the case n = 2 and k = 2 by showing the best possible
correlated equilibrium X , and proving that its social welfare is very close to the opti-
mum. Each player receives a suggestion on the power to use for the transmission. We
denote by x(i, j) the probability that the first and the second players are suggested to
transmit at power i and j, respectively. We will consider only symmetric distributions,
that is, distributions for which x(i, j) = x(j, i) that thus give fair correlated equilibria.
We denote by qij the probability that player 2 receives suggestion j given that player

1 has received suggestion i, that is qij = x(i,j)�
h x(i,h) . Since transmission of player 1 at

power i is successful if and only if player 2 transmits at a power j < i, we have that the
probability Pr[j|i] that player 1 is successful at power j given that he was suggested to
transmit at power i is equal to

Pr[j|i] =
∑

h<j

qih

and the expected payoff uα[j|i] of player α when transmitting at power j, given that he
was suggested to transmit at power i, is equal to vPi[j|i]−j. The definition of correlated
equilibrium is that uα[i|i] ≥ uα[j|i].

Theorem 4. For the Interference Game with n = 2 and k = 2, the optimal symmetric
correlated equilibria has social welfare v − 2 + v

v2−2 .
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Sketch of proof. The following matrix turns out to be an optimal correlated equilibrium:

X :=

⎡

⎢
⎢
⎢
⎣

0 v−1
v2−2

v2−3v+2
2v2−4

v−1
v2−2 0 v−2

2v2−4

v2−3v+2
2v2−4

v−2
2v2−4 0

⎤

⎥
⎥
⎥
⎦

thus proving the theorem.

4 Two Players and Arbitrarily Many Strategies

While for k = 2 the only Nash equilibrium has social welfare 0, it turns out that when
k is odd there are Nash equilibria whose social welfare is strictly positive.

Theorem 5. For every odd k, there exists a mixed Nash equilibrium with social welfare
v − k.

Sketch of proof. The following matrix is a mixed Nash equilibrium:

CF :=
[

0 2
v 0 2

v 0 · · · 2
v 0 1 − k−1

v

1 − k−1
v 0 2

v 0 2
v · · · 0 2

v 0

]

.

Since CF is an unfair Nash equilibrium, we next investigate the existence of fair equi-
libria.

Theorem 6. For any Interference Game, there exists a unique (fair) fully mixed Nash
equilibrium, that is, a Nash equilibrium in which every player assigns nonzero proba-
bility to every strategy. Moreover, every fair Nash equilibrium has social welfare 0.

Sketch of proof. In a fully mixed equilibrium, strategy 0 is in the support of every player
which implies that the expected payoff of every player must be 0. Calculations show that
the condition for having a Nash equilibrium impose that the probability distribution of
each player is q = ( 1

v , 1
v , . . . , 1

v , 1 − k
v ).

At Nash equilibrium, at least one player must have 0 in her support. Thus, in every
fair Nash equilibrium 0 is in the support of all players and therefore the social welfare
must be 0.

Correlated equilibria can be both fair and achieve good social welfare:

Theorem 7. For any Interference Game there exists a fair correlated equilibrium with
social welfare greater than max (0, v − 2k + 1).

Sketch of proof. We modify the joint probability distribution of the Nash equilibrium
given in the proof of Theorem 6 and obtain a correlated equilibrium given by the fol-
lowing matrix:

C =

⎡

⎢
⎢
⎢
⎢
⎣

0 c2λ2 · · · cλ2 cλ(1 − kλ)
2cλ2 0 · · · cλ2 cλ(1 − kλ)
· · · · · · · · · · · · · · ·
cλ2 cλ2 · · · 0 c(λ(1 − kλ) + λ2)

cλ(1 − kλ) cλ(1 − kλ) · · · c(λ(1 − kλ) + λ2) 0

⎤

⎥
⎥
⎥
⎥
⎦

where λ = 1/v and c is a suitable constant such that C is a probability distribution.
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The social welfare can be further improved for even k:

Theorem 8. For any Interference Game with k even there exists a fair correlated equi-
librium with social welfare at least v − k. Moreover, for k = 3 there exists an optimal
symmetric Correlated Equilibrium with social welfare v − 3 + 4v2−11v+7

v3−v2−4v−5 .

We next generalize the sink equilibria described in Section 3. The main difference is
that for odd k there exist two sink equilibria both with fairness less than 1.

Theorem 9. The Interference Games with n = 2 and k even have a unique sink equi-
librium with social welfare v−k and fairness 1. The Interference Games with n = 2 and

k odd have two sink equilibria with social welfare v−k and fairness (2k−2)v−2k2+2
(2k+6)v−k2−2k−1 .

Sketch of proof. For k = 3, there are two sink equilibria:

(0, 1), (2, 1), (2, 3), (0, 3), (0, 1) and (1, 0), (1, 2), (3, 2), (3, 0), (1, 0).

In each of them, one player has expected utility v
4 − 1, and the other one 3

4v − 2.
Therefore, the fairness is v−4

3v−8 . A similar argument generalizes to any even k.

5 Arbitrarily Many Players

The following theorem extends the results on Nash equilibria for two players given in
Section 5.

Theorem 10. There exists a fair Nash equilibrium with n ≥ 3 players with social
welfare equal to 0. Moreover, if k is odd, there exists an unfair Nash equilibrium with
n ≥ 3 players with social welfare equal to v − k.

Sketch of proof. It is possible to show that, given a Nash equilibrium for the case of two
players and in which at least one player having expected utility 0, it is possible to obtain
a Nash equilibrium for n ≥ 3 players by adding n − 2 players playing strategy 0 with
probability 1. The theorem thus follows from the results on two players (Theorems 5-6).

Correlated equilibria achieve both fairness and good social welfare:

Theorem 11. For any n and for odd k there exists a fair Correlated Equilibrium with
social welfare v − k.

6 Repeated Interference Games

In the repeated interference game, the same interference game is played (infinitely)
many times and, at each repetition i, player α accumulates a new payoff δi · uα(s(i)),
where s(i) are the strategies played at repetition i and δ < 1 is the discount factor. A
simple protocol for two players consists in alternating transmissions, with the transmit-
ting player using power 1; Every deviation from this results in a “punishment” phase in
which both players transmit with maximal power for prescribed amount of time steps;
Deviations from the punishment phase will “restart” of the punishment phase itself.
This results in an optimal subgame perfect equilibrium:
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Theorem 12. For every v and k there exists δ < 1 such that the following holds. For
any δ > δ, the repeated Interference Game with v and k and discount factor δ has a
fair subgame perfect equilibrium with expected payoff profile ((v − 1)/2, (v − 1)/2).1

The main idea is that if a player deviates from this punishment phase, this can be de-
tected by the other player who sees that her transmission is successful (deviations from
the “non-punishment” phase are detected because of transmission failure). This is suf-
ficient for applying the result in [5].
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