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Abstract. One of the main challenges in algorithmic mechanism design
is to turn (existing) efficient algorithmic solutions into efficient truthful
mechanisms. Building a truthful mechanism is indeed a difficult process
since the underlying algorithm must obey certain “monotonicity” prop-
erties and suitable payment functions need to be computed (this task
usually represents the bottleneck in the overall time complexity).

We provide a general technique for building truthful mechanisms that
provide optimal solutions in strongly polynomial time. We show that
the entire mechanism can be obtained if one is able to express/write
a strongly polynomial-time algorithm (for the corresponding optimiza-
tion problem) as a “suitable combination” of simpler algorithms. This
approach applies to a wide class of mechanism design graph problems,
where each selfish agent corresponds to a weighted edge in a graph (the
weight of the edge is the cost of using that edge). Our technique can
be applied to several optimization problems which prior results cannot
handle (e.g., MIN-MAX optimization problems).

As an application, we design the first (strongly polynomial-time)
truthful mechanism for the minimum diameter spanning tree problem,
by obtaining it directly from an existing algorithm for solving this prob-
lem. For this non-utilitarian MIN-MAX problem, no truthful mechanism
was known, even considering those running in exponential time (indeed,
exact algorithms do not necessarily yield truthful mechanisms). Also,
standard techniques for payment computations may result in a running
time which is not polynomial in the size of the input graph. The overall
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running time of our mechanism, instead, is polynomial in the number n
of nodes and m of edges, and it is only a factor O(n α(n, n)) away from
the best known canonical centralized algorithm.

1 Introduction

The emergence of the Internet as the platform for distributed computing has
posed interesting questions on how to design efficient solutions which account
for the lack of a “central authority” [11,15,16]. This aspect is certainly a key
ingredient for the success of the Internet and, probably, of any “popular” system
that one can envision (peer-to-peer systems are a notable example of this type
of anarchic systems). In their seminal works, Koutsoupias and Papadimitriou
[11] and Nisan and Ronen [15], suggest a game-theoretic approach in which the
various “components” of the system are modeled as selfish agents: each agent
performs a “strategy” which results in the highest utility for him/her-self. For
instance, each agent may control a link of a communication network and each link
has a cost for transmitting (i.e., for using it). A protocol that wishes to establish
a minimum-cost path between two nodes would have to ask the agents for the
cost of the corresponding link [15,2]. An agent may thus find it to be in his/her
interest to lie about his/her costs (e.g., an agent might untruthfully report a very
high cost in order to induce the protocol to use an alternative link, and thus no
cost for the agent). Nisan and Ronen [15] propose a mechanism design approach
that combines an underlying algorithm (e.g., a shortest-path algorithm) with a
suitable payment function (e.g., how much we pay an agent for using his/her
link). The idea is to come up with a so called truthful mechanism, that is, a
combination of an algorithm with payments which guarantee that no agent can
improve his/her own utility by misreporting his/her piece of private information
(e.g., the cost of his/her link). Unfortunately, the design of truthful mechanisms
is far from trivial and known results, originally developed in the microeconomics
field [21,3,5,13], pose new algorithmic challenges which are the main subject of
algorithmic mechanism design (see e.g. [4]).

Some interesting classes of problems (including a family of mechanism design
graph problems considered here and in a number of works [15,7,6,10]) require the
underlying algorithm to be monotone (e.g., if the algorithm selects an edge then
it cannot drop this edge if its cost gets smaller and everything else remains the
same). Though this condition suffices for the existence of a truthful mechanism
[13,2], it is not clear how to guarantee this property nor how the corresponding
payment functions can be efficiently computed (see e.g. [9,14]).

Mu’Alem and Nisan [12] were the first to propose a general method for con-
structing monotone algorithms (and thus truthful mechanisms). Basically, their
approach consists of a set of “rules” to combine monotone algorithms so that the
final combination results in a monotone algorithm as well. As observed by Kao
et al. [10], the method in [12] does not provide an efficient way of computing
the payments. Kao et al. [10] then extend some of the techniques in [12] and
provide an efficient way for computing the corresponding payment functions.
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Kao et al.’s approach [10] represents a significant progress towards a general
technique which accounts for computational issues, though it cannot be applied
to some very basic graph problems (e.g., a problem recently tackled in [19] – we
discuss this issue more in detail below).

1.1 Our Contribution

In this work, we turn one of the main results in [12] into a general technique
for building optimal truthful mechanisms running in strongly polynomial time
(optimality refers to the quality of the computed solution). We show that the
entire mechanism can be obtained if one is able to express/write an algorithm
(for the corresponding optimization problem) as a “suitable combination” of
simpler ones (see Section 2 and Theorem 1 therein). Obviously, the resulting
mechanism is optimal and/or runs in strongly polynomial time if the algorithm
does. However, neither of these conditions is required by our technique to guar-
antee truthfulness. This approach applies to a wide class of mechanism design
graph problems, where each selfish agent corresponds to a weighted edge in a
graph (the weight of the edge is the cost of using that edge). Our technique can
deal with problems in which the cost function “underlying” the algorithm(s) is
any monotonically non-decreasing function in the edge weights of the graph (i.e.,
in the costs of the agents). Since this includes several non-utilitarian1 problems
(e.g., MIN-MAX optimization functions), the results in [12] extend “only par-
tially”, that is, truthfulness can be guaranteed but the payments computation
cannot be done “directly” by computing the “alternative” solution in which an
agent is removed from the input (see e.g. [15,9]). We indeed observe that, for
the problems considered in this work (see the discussion in Example 1), the pay-
ments computation is more complex than the case of monotonically increasing
optimization functions, which are assumed in both [12] (where the problem is
utilitarian) and in [10] (this assumption precedes Theorem 10 in [10] and the
applications therein consist exclusively of utilitarian graph problems).

In Section 3, we apply our technique to the minimum diameter spanning tree
problem and obtain the first (strongly polynomial-time) mechanism for it. For
this non-utilitarian MIN-MAX problem, no truthful mechanism was known, even
considering those running in exponential time (indeed, exact algorithms do not
necessarily yield truthful mechanisms – see [17]). Also, standard techniques for
payment computations may result in a running time which is not polynomial
in the size of the input graph (see discussion in Example 1). The overall run-
ning time of our mechanism is instead O(mn2 α(n, n)), and thus is only a factor
O(n α(n, n)) away from the best known algorithm for this problem [8], where
α(·, ·) is the classic inverse of the Ackermann’s function. For two-edge connected
graphs we also guarantee the voluntary participation condition, that is, no truth-
ful agent runs into a loss (see next section for a formal definition). The minimum

1 An optimization problem is called utilitarian if the goal is to minimize the sum
of all agents costs or, equivalently, to maximize the sum of all agents valuations.
Utilitarian graph problems have been studied in [15,9,10].
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diameter spanning tree has both theoretical and practical relevance (e.g., in a
peer-to-peer system we may want to set up a loop-free logical network using the
resources – links – of a physical network so that any two peers can communicate
efficiently).

The results for the minimum diameter spanning tree are paradigmatic of what
happens when considering certain non-utilitarian mechanism design problems
(another case is the minimum radius spanning tree problem [19] described in
Example 1). First, one has to determine whether an existing algorithm can be
turned into a truthful mechanism, whether a new one is needed, or if none can
serve for this purpose [15,2,19]. In case a suitable algorithm exists, one has to
find out how to compute the corresponding payments efficiently, possibly without
burdening the complexity of the chosen algorithm [9,19]. Our technique can be
used to give a positive answer to both questions, and thus to obtain the efficient
mechanism in “one shot” (see Theorem 1).

We discuss other possible extensions and applications of our technique in
Section 4 (these include a mechanism for the p-center graph problem and an im-
provement in the running time of the mechanism for the minimum radius in [19]).

1.2 Mechanism Design Graph Problems

Consider problems in which we are given a graph G = (V, E) and the set of
feasible outcomes consists of a suitable set O = O(G) which depends only on
the combinatorial structure of the graph (e.g., it consists of certain subgraphs of
G). We have one agent per edge and the type te ∈ �

+ of agent e is noth-
ing but the weight of edge e ∈ E. Each solution Y ∈ O uses a subset of
the edges of G; in particular, if Y uses edge e, then agent e has a cost (for
implementing this outcome) equal to te. This scenario is common to several
problems considered in the algorithmic mechanism design community: shortest-
path [15], minimum spanning tree [15], shortest-paths tree [7], minimum-radius
spanning tree [19]. Consider an agent e and let r−e denote the values reported
by the other agents, that is, r−e = (r1, . . . , re−1, re+1, . . . , rm). When agent e
reports x and the other agents report r−e, algorithm A computes a feasible out-
come A(x, r−e). (That is, the algorithm returns a solution on input the vector
(x, r−e) := (r1, . . . , re−1, x, re+1, . . . , rm).) We say that declaration x is a win-
ning declaration if solution A(x, r−e) uses edge e. A mechanism M = (A, P )
associates a payment Pe(x, r−e) with every agent e whose declaration x is a
winning declaration (given the other agents’ declarations r−e). This determines
the utility of agent e:

uM
e (x, r−e) :=

{
Pe(x, r−e) − te if A(x, r−e) uses e,
0 otherwise.

Mechanism M is a truthful mechanism (with dominant strategies) if every func-
tion uM

e (x, r−e) is maximized for x = te, for all r−e. We are interested in truth-
ful mechanisms which optimize some objective function μ(Y, t) depending on
the agents types t = (t1, . . . , tm). Notice that the mechanism will work on the
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reported types r. Hence, truthfulness guarantees that, if the algorithm returns
an optimal solution for the given input, then the mechanism outputs an optimal
solution w.r.t. the true types. We will also consider mechanisms which satisfy
the voluntary participation, that is, a truthful agent is guaranteed to have a non-
negative utility (i.e., uM

e (te, r−e) ≥ 0). This property will be achieved whenever
there exists an “alternative” solution that does not use edge e, i.e., O(G−e) �= ∅.

2 A Technique for Efficient Truthful Mechanisms

Our approach consists in defining an optimal algorithm A as a “suitable com-
bination” of simpler ones. For minimization problems, we combine algorithms
by means of the following ‘MIN’ operator, which is essentially the same as the
‘MAX’ operator by Mu’Alem and Nisan [12]:

MINμ(A1,A2) operator
• compute Y1 = A1(r) and Y2 = A2(r);
• if μ(Y1, r) ≤ μ(Y2, r) then return Y1 else return Y2.

We can recursively apply this operator to several algorithms and obtain a new
one:

MINμ(A1, . . . , Ak):=MINμ(MINμ(A1, . . . , Ak−1),Ak).

Notice that the ordering among the algorithms specifies how the new algorithm
breaks ties. Our main concern is to have a general technique for building truthful
mechanisms which optimize μ(·) and that are computationally efficient.

To this end, we will assume that each algorithm Ai satisfies a property (called
plateau-like) which is slightly stronger than the one (called bitonic) used in [12]:

Definition 1 (plateau-like algorithm). An algorithm A for a mechanism
design graph problem is monotone if, for all agents e, and for all r−e there
exists a threshold θe(r−e) ∈ (�+ ∪ ∞) such that (i) every x ≤ θe(r−e) is a
winning declaration and (ii) every x > θe(r−e) is not a winning declaration. A
monotone algorithm A is plateau-like w.r.t. μ(·) if, for all e, for all r−e, the
function gA(x) := μ(A(x, r−e), (x, r−e)) is non-decreasing in x and constant for
x > θe(r−e).

It is well known that an algorithm A can be turned into a truthful mechanism
(A, P ) if and only if A is monotone [13,2], in which case the payments are
uniquely2 determined by the thresholds:

Pe(x, r−e) =
{

θe(r−e) if A(x, r−e) uses e,
0 otherwise. (1)

2 If θe(r−e) = ∞, then we can set the payment of e to be any constant value and
guarantee truthfulness. This case arises if edge e will be always included by A, e.g.
for O(G−e) = ∅, in which case voluntary participation cannot be guaranteed (unless
we assume an upper bound on te). Otherwise, i.e. θe(r−e) < ∞, the only payments
which guarantee truthfulness are those in (1) [12] which then satisfy the voluntary
participation condition.
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Mu’Alem and Nisan [12] proved that, if all algorithms Ai are bitonic, then the al-
gorithm A = MINμ(A1, . . . , Ak) is monotone, and thus truthfulness can be guar-
anteed. Our main contribution here is a method for computing these payments
efficiently if we assume that the algorithms are plateau-like. This task is non-
trivial since the computation of the thresholds of a ‘MIN’ combination of algo-
rithms can be rather involved if μ(·) is not monotone increasing in x as in [12,10]:

Example 1 (Minimum Radius Spanning Tree (MRST)). Consider the problem
of computing the minimum radius spanning tree, that is, a tree rooted at some
node of the graph whose height is minimal. Consider the following simple graph
(left):

3

1 1

x

1 A2

A1

2

1

gAir = (x, r−e)

1 2
x

If Ai outputs a shortest paths tree rooted at node i and h(·) denotes the height
of any rooted tree, then both A := MINh(A1, A2) and A′ := MINh(A2, A1)
compute a MRST for this graph. However, the thresholds θe(r−e) and θ′e(r−e)
of the two algorithms are different. This is due to a different tie-breaking rule:
For 0 ≤ x ≤ 1, algorithms A1 and A2 have the same cost, i.e., gA1(x) = gA2(x);
hence,

A(x, r−e) =
{

A1(x, r−e) if x ≤ 1
A2(x, r−e) otherwise

while A′(x, r−e) = A2(x, r−e). Since A2 never uses edge e, while A1 uses this
edge for x ≤ 2, it turns out that θe(r−e) = 1 and θ′e(r−e) = 0.

Observe that, the threshold of algorithm MINh(A1, A2) is different from the
thresholds of the two algorithms. Its computation depends on the way the func-
tions gAi cross with each other, which in general can be quite involved (we have
to consider how n “stairway” functions intersect pairwise [19] and the order in
which we break ties). Finally, a binary search of this threshold may require a
time which depends on the edge weights (namely, the logarithm of the largest
reported type) and thus not strongly polynomial time, i.e., not polynomial in
the number of nodes and edges. �

We reduce the computation of the payment Pe(x, r−e) to the task of comput-
ing, for every algorithm Ai, three thresholds θi = θi

e(r−e), θ̂i = θ̂i
e(r−e) and

θ̆i = θ̆i
e(r−e). The value θi is the threshold in Def. 1 relative to algorithm

Ai. The other two thresholds are defined as follows. Since Ai is plateau-like,
gAi(x) = μ(Ai(x, r−e), (x, r−e)) is constant for all x > θi, where it also reaches its
maximum. Let gi be this maximum and let gmin := mini{gi}. We let inf{∅} = ∞
and define θ̂i, θ̆i ∈ (�+ ∪∞) as follows:

θ̂i := inf{x| gAi(x) ≥ gmin}; (2)

θ̆i := inf{x| gAi(x) > gmin}. (3)
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Notice that the maximum gi can be easily computed knowing θi. This is the
main “additional” feature of plateau-like algorithms over bitonic ones. Intuitively
speaking, gmin is the minimum cost if we do not use edge e. Thus, the solution of
algorithm Ai will be selected only if its cost is better/not worse than this value
(depending on the used tie-breaking rule). The two thresholds in (2-3) say what
is the largest x for which this happens.

Our general approach for constructing computational efficient mechanisms
consists in rewriting algorithms as suggested by the following:

Definition 2 (MIN-reducible algorithm). An algorithm A is MIN-reducible
if it can be written as the ‘MIN’ of plateau-like algorithms. That is, there exist k
algorithms A1, . . . , Ak such that A = MINμ(A1, . . . , Ak) and each algorithm Ai

is plateau-like w.r.t. μ(·). Such an algorithm A is MIN-reducible in τ time if,
for every input r, it is possible to compute all thresholds θi

e(r−e), θ̂i
e(r−e) and

θ̆i
e(r−e) in at most τ time steps, for all 1 ≤ i ≤ k and for all edges e used by A(r).

The following result provides a powerful tool for designing efficient truthful mech-
anisms:

Theorem 1. If algorithm A is MIN-reducible in O(τ) time, then there exist
payment functions P such that (A, P ) is a truthful mechanism and all payments
Pe(x, r−e) can be computed in O(τ + k(τμ + N)) time, where τμ is the time to
compute μ(·) and N is the number of used agents/edges.

Proof Sketch. The first part of the theorem follows from a result by Mu’Alem
and Nisan [12]. In order to prove the second part, we simply show that, given
the values θi, θ̂i and θ̆i, it is possible to compute θe(r−e) in O(k) time after the
following preprocessing requiring O(k·τμ) time. First of all, we compute the index
imin of the first algorithm Ai such that gi = gmin. This requires O(k · τμ) time
for computing all gi, and from that the computation of gmin and imin requires
O(k) time. (Recall that gi = gAi(x) for any x > θi.) Then we prove the following
identity (see the full version [17] for the proof):

θe(r−e) = max{θimin , max{θ̂i| i > imin}, max{θ̆i| i < imin}}. (4)

Obviously, if we know θ̂i, θ̆i and imin, then the above equality says that a single
θe(r−e) can be computed in time linear in k. From (1) we need to compute the
payments only for the N edges used in A(r). In this way, by Definition 2, the
overall computation of all such Pe(x, r−e) takes O(τ + k · τμ + k · N) time.

3 The Minimum Diameter Spanning Tree Problem

In the minimum diameter spanning tree (MDST) problem we are given a
weighted undirected graph and the goal is to find a spanning tree which mini-
mizes the longest path between any two nodes in that tree (the length of a path
is the sum of the weights of its edges). In this section we study the corresponding
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mechanism design graph problem. Formally, given a graph G = (V, E), the set
O(G) of feasible solutions consists of all spanning trees; the set of used edges
naturally consists of all edges in the tree, and the goal is to find a tree T of
minimum diameter, that is, a tree such that the length of a maximum-length
simple path in T is minimum. We denote this value by d(G, t). Consider the
following graph:

2 3

1

1 1

te

4 5
10 10

For all te ≤ 9, any spanning tree is a MDST since, according to the edge weights
t in the picture, the maximum-length simple path is the upper one and this path
appears in any spanning tree. Unfortunately, the fact that an algorithm is exact
for the MDST problem is not sufficient for obtaining a truthful mechanism. A
well-known result by Myerson [13] (see also Archer and Tardos [2]) states that,
for our problem, truthfulness can be achieved only if the algorithm is monotone
(see Def. 1). It is possible to show that exact algorithms need not lead to truthful
mechanisms (see [17] for the details).

In the sequel we will show that there exists an efficient polynomial-time al-
gorithm for the MDST problem which is monotone and such that the payments
can be computed efficiently. Both results follow from our main technique (The-
orem 1).

3.1 A MIN-Reducible Algorithm for the MDST Problem

The computation of a MDST of a given graph can be reduced to the computation
of a shortest paths tree rooted at the absolute 1-center (simply center, in the
following) of G [8]. Loosely speaking, the center of a graph is a point c located
on an edge (or on one of its endpoints) such that the distance from c to the
farthest node is minimized. In particular, all edges are rectifiable, meaning that
any point c on edge f = (u, v) can be specified as a pair c = (f, λ) with λ ∈ [0, 1];
in this case, we obtain a new graph Gc where edge (u, v) is replaced by two edges
(u, c) and (v, c); their weights are uc := λte and vc := (1 − λ)te, respectively.
(Notice that we consider each edge as an ordered pair of vertices.) Given a point
c on f , one can build a spanning tree Tc of G by computing a shortest paths
tree of Gc rooted at c, and then by replacing edges incident to c with the edge
(u, v). Trivially, the tree Tc has diameter at most 2hλ

f (t).3 We let h∗
f (t) be the

minimum height among all shortest paths trees rooted at some point on f , that
is, h∗

f (t) := minλ∈[0,1] h
λ
f (t). Our building block is the following algorithm which

computes the relative center of edge f for the reported input r, namely, a point
c = (f, λ) minimizing hλ

f (r):

3 Formally, the tree Tc is obtained by removing c from the shortest paths tree and by
adding back edge (u, v), unless c is sitting on one of the endpoints of (u, v) and is
not connected to the other endpoint.
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Algorithm CENTERf

• compute the minimum λ ∈ [0, 1] such that hλ
f (r) = h∗

f (r);
• compute the tree Tc for c = (f, λ) and edge weights r;
• return Y = (Tc, c). /* return the tree Tc associated with the SPT and the
center */

Since it holds that d(G, r)/2 = h∗(r) := minf∈E h∗
f (r) [8], we can compute a

MDST by searching through all relative centers of G for a best possible position
of the center:

AMDST := MINh(CENTERe1 , . . . , CENTERem),

where e1, . . . , em denote the edges of G in some arbitrary order (independent
of the agents’ bids). We stress that a MDST cannot be obtained by restricting
the computation of the relative center to one of the endpoints of edge f , that is,
by considering only the vertices as possible center locations. This will produce a
minimum radius spanning tree, instead, and thus the mechanism in [19] cannot
be used here.

The following result, combined with Theorem 1, implies the existence of a
truthful mechanism for the MDST (see the full version [17] for the proof).

Theorem 2. Algorithm AMDST is MIN-reducible and, on input a graph G with
edge weights r, it returns a MDST and an absolute center for this input. This
computation requires O(mn α(n, n)) time.

We need one more step to guarantee that payments can be computed in strongly
polynomial time. One of our major technical contributions is to show that the
“MIN-reduction” can be done efficiently:

Theorem 3. Algorithm AMDST is MIN-reducible in O(mn2 α(n, n)) time.

Efficient Computations via Upper/Lower Envelopes (Proof Idea of Theorem 3).
Let δu,v(G, r) be the (shortest path) distance from node u to node v in a graph
G with weights r. We compute the distances δu,v(G, r) and δu,v(G− e, r−e), for
all nodes u and v, and for all edges e used by the computed solution. Using
the O(mn log α(m, n))-time all-pairs shortest paths algorithm by Pettie and Ra-
machandran [18], this step takes O(mn2 log α(m, n)) time. (We have n graphs
in total since the computed solution uses n − 1 edges.) This term is dominated
by O(mn2α(n, n)).

In the remaining of this section, we fix an edge e, and r−e, and an algorithm
Ai = CENTERf , and we show how to compute the thresholds θi

e(r−e), θ̂i
e(r−e)

and θ̆i
e(r−e) in O(n α(n, n)) time. This implies Theorem 3 since there are m

algorithms and n − 1 agents/edges e used by the computed solution.
At the heart of the proof is an efficient method for computing, for any edge

f = (u, v), the following function in O(n α(n, n)) time:

F̂ (�) := inf{x| h∗
f (x, r−e) ≥ �}. (5)
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This value can be computed by considering the lower envelope of n functions
f̂z(�, λ), one for each node z, defined as follows. The value f̂z(�, λ) is the infimum
value x for re such that the distance from a fixed center c = (f, λ) to node z is
at least �. (Recall that x is the weight of edge e.) Such distance is the minimum
of the following two functions, one for the path through u and one for the path
through v:

upathλ(x) := λrf + min{x + δu,z(G, (0, r−e)), δu,z(G − e, r−e)}; (6)
vpathλ(x) := (1 − λ)rf + min{x + δv,z(G, (0, r−e)), δv,z(G − e, r−e)}. (7)

These two functions are of the form λrf +min{x+a, b} and (1−λ)rf +min{x+
a′, b′}, respectively (see Fig. 1(left)).

f̂z(�, λ)

∞

λ
λrf + a

x

(1 − λ)rf + a′

�

vpathλ

upathλ

f̂z(�, λ)

Fig. 1. From shortest paths distances to upper envelopes

We let f̂z(�, λ) = ∞ (respectively f̂z(�, λ) = 0) if, for all x, one function is
below � (respectively, both functions are not below �). Otherwise, f̂z(�, λ) is the x
coordinate of the point where the lowest (i.e., smaller for x = 0) of the functions
in (6-7) intersects with the limit �. Notice that, when increasing λ by one unit,
the two functions (6-7) move by rf units as shown in Fig. 1(left). Hence, the
point moves accordingly and thus the function f̂z(�, λ) can be fully specified
by two slanted segments as in Fig. 1(right). Each slanted segment is obtained
by considering the intersection of each function in Fig. 1(left) with the limit �.
Hence, f̂z(�, λ) is the dotted curve in Fig. 1(right) which is given by the upper
envelope of the two solid curves in Fig. 1(right) (see [17] for the details).

In order to compute F̂ (�), we consider f̂(�, λ) := minz{f̂z(�, λ)} and observe
that F̂ (�) = supλ∈[0,1] f̂(�, λ). The actual computation of F̂ (�) consists in deter-
mining the lower envelope of all functions f̂z(�, ·) and then finding its maximum
for λ ∈ [0, 1]. Since the functions f̂z(�, ·) intersect pairwise in at most one point,
this requires O(n α(n, n)) time using Agarwal and Sharir [1] approach, once the
segments of each function have been computed. The latter can be obtained from
the pre-computed distances using (6-7). Moreover, these distances allow us to
compute the solution of algorithm Ai = CENTERf and the values gi and gmin,
still in O(n α(n, n)) time. From the first step of CENTERf and from (2) we ob-
tain the following two identities, respectively: (i) θi

e(r−e) = inf{x| h∗
f (x, r−e) ≥

gi} = F̂ (gi); (ii) θ̂i
e(r−e) = inf{x| h∗

f (x, r−e) ≥ gmin} = F̂ (gmin). Since the



Strongly Polynomial-Time Truthful Mechanisms in One Shot 387

threshold θ̆i
e(r−e) can be computed with a very similar approach, each of the

O(mn) thresholds can be computed in O(n α(n, n)) time (see [17] for the de-
tails). Hence, Theorem 3 follows.

From Theorems 1, 2, and 3 we obtain the following:

Corollary 1. There exists an O(mn2 α(n, n))-time truthful mechanism for the
MDST problem.

4 Conclusions

We have described a general approach for building truthful mechanisms running
in strongly polynomial time based on the ‘MIN’ operator defined by Mu’Alem and
Nisan [12]. This is similar to what Kao et al. [10] propose, though their method
for computing the payments assumes that each function gAi(x) is monotonically
increasing in x < θe(r−e) (see the assumptions preceding Theorem 10 in [10]).
This is too restrictive as the optimization functions used in the MRST and
MDST do not fulfill this requirement and payments obtained from [10] do not
guarantee truthfulness in these cases (in Example 1, their approach would ignore
the tie-breaking rule among the algorithms).

Our technique has a very natural application to the MDST problem where
the underlying algorithm in [8] optimizing the diameter d(·) can be rewritten
as a ‘MIN’ combination of m algorithms optimizing a different function h(·),
i.e., the height of a SPT rooted at the relative center of an edge. Although the
results have been presented for mechanism design graph problems, they apply
to a more general framework in which the agent valuations are either 0 or te,
that is, to the known single minded bidders in [12] or, equivalently, to the binary
demand games in [10]. The fact that we require plateau-like algorithms (instead
of bitonic ones in [12]) does not directly prevent from optimal solutions (any
bitonic algorithm minimizing the function μ(·) is automatically plateau-like).
Voluntary participation is guaranteed if optimal algorithms must drop an agent
when its cost becomes too high. We can also obtain a strongly polynomial time
truthful mechanism for the p-center graph problem [20] (in addition to the loca-
tion of the p centers, we want to compute the associated trees), for any constant
p. Notice that the problem is NP-hard for arbitrary p [20]. For the MRST, our
method yields a mechanism which improves slightly the running time in [19].
(Details on both these problems are given in the full version [17].)

An interesting future direction is to apply our technique to NP-hard prob-
lems to obtain truthful approximation mechanisms (this was done in [10] for
problems maximizing the welfare, i.e., the sum of all agents costs which obvi-
ously meet the “monotone increasing” requirement). According to Theorem 1,
it suffices to show that an approximation algorithm is MIN-reducible in polyno-
mial time. An interesting question here is whether the approximation ratio of
the “best” approximation polynomial-time algorithm can be attained by some
truthful polynomial-time mechanism.

Notice that our positive results cannot be extended to the case in which an
agent owns several edges of a graph (these problems can model certain scheduling
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problems for which no exact truthful mechanism exists [15,2], while an extension
of Theorem 1 would imply such an exact mechanism).
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