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Abstract. We study the competitive ratio of certain online algorithms for a well-studied class of load balancing
problems. These algorithms are obtained and analyzed according to a method by Crescenzi et al (2004). We show
that an exact analysis of their competitive ratio on certain “uniform” instances would resolve a fundamental conjec-
ture by Caccetta and Häggkvist (1978). The conjecture is that any digraph on n nodes and minimum outdegree d
must contain a directed cycle involving at most dn/de nodes. Our results are the first relating this conjecture to the
competitive analysis of certain algorithms, thus suggesting a new approach to the conjecture itself. We also prove
that, on “uniform” instances, the analysis by Crescenzi et al (2004) gives only trivial upper bounds, unless we find a
counterexample to the conjecture. This is in contrast with other (notable) examples where the same analysis yields
optimal (non-trivial) bounds.
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1 Introduction

We consider a combinatorial problem which has applications to the construction of competitive3

algorithms for the well-studied class of online load balancing problems considered in e.g. [4, 3, 2,
5] (see Section 1.2 for a formal definition). Our work is motivated by a technique from Crescenzi et
al. [9] in which the simple greedy algorithm is “tuned” on the problem at hand. A rather informal
description of this technique is as follows (see Section 1.2 for a more formal description):

Each online load balancing problem specifies a set of “feasible modifications” of the greedy
algorithm and an “easy-to-compute” upper bound c(·) on the competitive ratio. In particular,
every such feasible modification M describes a modified version of the greedy algorithm
whose competitive ratio on this problem is at most c(M).

This approach has been applied to the linear and to the hierarchical server topologies studied in
[5] where it is rather easy to find an M such that c(M) results in a dramatic improvement over the
competitive ratio of the greedy algorithm and matches the lower bound for the problem considered
[9]. It is thus natural to try to apply the same technique to more problems.

? Fully supported by the European Union under the Project IST-15964, Algorithmic Principles for Building Efficient Overlay
Computers (AEOLUS).

3 Intuitively speaking, an online algorithm is c-competitive if there exists a constant b such that the algorithm outputs a solution
whose cost is at most c · opt + b where opt is the optimum for the instance considered up to the current time step. In this case, c
is the competitive ratio of the algorithm.



1.1 Our contribution

In this work we consider a natural class of s-uniform online load balancing problems in which every
task can be assigned to some s-subset of the n processors (this subset can vary arbitrarily from task
to task). The resulting combinatorial problem is to determine (exactly) the minimum competitive
bound C(n, s) which is the smallest value that the above function c(·) can assume for s-uniform
instances. Our major contribution is to show that the minimum competitive bound C(n, s) leads to
an equivalent version of one of the most fundamental and intriguing conjectures in graph theory
(which also accounts for dozens of connections to other basic questions in combinatorics and
number theory [14]):

Conjecture 1 (Caccetta-Häggkvist 1978 [7]) Any digraph on n nodes with minimum outdegree
at least d contains a directed cycle of length at most dn/de.

We indeed prove that, if the above conjecture is true, then C(n, s) = n/s. Observe that, there is
a trivial upper bound C(n, s) ≤ n/s (see Section 1.2). Thus any improvement on the trivial bound
would give a counterexample to the conjecture. At the heart of this result is another interesting
number associated to the analysis of s-uniform instances which we call the blind competitive bound
B(n, s). This number is “tightly coupled” with the Caccetta-Häggkvist conjecture since we prove
that, for s ≤ √

n,
B(n, s) = 1 + n− dn/se

if and only if the conjecture holds. The number B(n, s) is the minimum for c(·) when considering
certain modifications M which result in “blind” algorithms that assign tasks without even “looking
at the processors”: tasks which can be potentially allocated to the same subset of processors are all
assigned to a predetermined and fixed processor.

Our results can be seen as the hardness of obtaining any non-trivial bound with the method of
[9] in the case of s-uniform instances (this is in contrast with other instances considered in [9]).
These hardness results are in some sense of a “new type” since they do not rely on computational
assumptions and they are obtained by relating two (apparently) different problems. We feel one of
the main contributions of this work is to connect the analysis of online algorithms to a fundamental
conjecture in graph theory and to show that such an analysis is as difficult as solving the latter.

From another point of view, our results suggest a possible way for proving the conjecture
by showing a lower bound on the competitive ratio of the online algorithms yielded by certain
modifications of greedy. Such bounds have also a practical interest since these algorithms use only
local information (namely, each task can decide its own allocation by considering only the current
load of the processors in its associated subset). Blind algorithms are a notable example since lower
bounds are probably easier to prove, while any tight result on the competitive ratio of the best blind
algorithm for s-uniform instances would either prove or disprove the conjecture. We stress that the
Caccetta-Häggkvist conjecture is considered a central and important problem in combinatorics,
graph, and number theory. Thirty years of significant efforts culminated in a large number of deep
connections among these areas. They have been the main subject of a recent workshop held at
the American Institute of Mathematics dedicated to this conjecture (see Sullivan’s paper surveying
these results [14]).



Roadmap. In Section 1.2 we introduce online load balancing, the technique in [9], and the related
combinatorial problems. In Section 2 we introduce and study blind algorithms, and we relate the
blind competitive bound to the Caccetta-Häggkvist conjecture. We apply these results to the mini-
mum competitive bound in Section 3. Finally, we further discuss our results and their implications
in Section 4.

1.2 Online load balancing, modified greedy algorithms, and their analysis

In this section we go back to our initial application that is online load balancing of temporary
weighted tasks in the case of restricted assignment with no preemption. Here each task t is specified
by a subset St of processors that can execute that task, a weight Wt, and a duration Dt. Tasks arrive
one by one, each task t needs to be allocated upon its arrival to one of the processors in St. No task
can be reallocated. The duration Dt is unknown and the task simply disappears without any prior
notice after Dt time units from its arrival. At every time step, a processor has a load equal to the
sum of the weights of those tasks currently in the system and which have been assigned to it. The
goal is to keep, over time, the maximum processor load as low as possible. We are interested in
designing online algorithms with a small competitive ratio c, that is, the algorithm must guarantee
that the load of each processor never exceeds c · opt + b, where opt is the optimum for the instance
and b is a fixed constant.

In general, online algorithms with a “good” competitive ratio are designed “ad-hoc” for a fam-
ily F containing all possible subsets of processors that can be associated to any task. A notable
example is the hierarchical server topologies by Bar-Noy et al [5] where the “combinatorial struc-
ture” of F impacts significantly on the competitive ratio of the algorithms. Moreover, “general
purpose” algorithms, such as the greedy one, are in general “far” from the optimal [3–5]. The
approach in [9] constructs a “modified” version of the greedy algorithm for the problem ‘F’ as
follows:

– In an offline phase, each S ∈ F is mapped into a non-empty subset M(S) ⊆ S, for some
function M(·).

– In the online phase, each task t is allocated to the currently least-loaded processor in M(St).

Notice that we limit ourselves to a subset of available processors. As shown in [9], by carefully
choosing M, the modified greedy algorithm avoids allocations that are “too far” from the optimum.
The main result in [9] is that the competitive ratio of this algorithm is at most 1 + cF(M), with

cF(M) := max
S∈F

|AdversaryF(S, M)|
|M(S)| , (1)

where AdversaryF(S, M) consists of the union of all subsets S ′ in F such that M(S ′) intersects
M(S). Intuitively, the tasks allocated to M(S) could have been assigned only to processors in
AdversaryF(S, M).

In this work, we focus on s-uniform instances, that is, the case in whichF contains all s-subsets
of the n processors. This is a natural restriction modeling problems where each task is guaranteed
(only) to be assignable to s out of the n processors (though this set can change arbitrarily from
task to task). With the minimum competitive bound C(n, s) we ask how small the bound in (1)



can be depending on n and s (see Definition 2). Notice that the resulting algorithm uses only
local information as it assigns a task t by simply considering the current load of (a subset of)
the processors that can execute that task. When this subset, which is specified by M, consists
of a single processor, the corresponding algorithm requires “no information” on the processors’
loads. The blind competitive bound B(n, s) is defined as the minimum competitive bound, when
restricting to these “blind” algorithms (see Definition 1). This number is a tight bound on the
competitive ratio of these algorithms and its analysis is fundamental for the minimum competitive
bound too. Both numbers initiate the study of online algorithms for load balancing problems which
use only local information. In our view, one of the main contributions of this work is a stringent
connection between the competitive analysis of certain local online load balancing algorithms and
the Caccetta-Häggkvist conjecture.

Preliminaries and notation. We are given a family F of distinct subsets of an n-set (the latter,
representing the processors). We let Feas(F) be the set of all functions M mapping every subset
S ∈ F into a nonempty subset M(S) ⊆ S. We let

AdversaryF(S, M) :=
⋃

S′∈F : M(S′)∩M(S) 6=∅
S ′.

In the sequel, s denotes the cardinality of the sets in F . We will always assume that s and n
are positive integers satisfying 2 ≤ s ≤ n (the case s = 1 is trivial and not interesting for the
application). Observe that AdversaryF(S, M) contains at most n elements (i.e., the n processors).
Thus, the identity function Mtrivial(S) = S yields a trivial upper bound:

cF(Mtrivial) ≤ n/s. (2)

We typically consider families containing all possible s-subsets of an n-set. In this case we
write Feas(n, s) and omit the subscript ‘F’.

2 Blind algorithms and the Caccetta-Häggkvist conjecture

A simple (and somewhat naive) class of (online) algorithms assign tasks in a fixed manner without
“looking” at the current loads of the processors: every task t is allocated to the processor p(St)
for some function p(·) (thus ignoring the allocation of all other tasks). These algorithms and their
analysis via the upper bound in (1) are captured by the following:

Definition 1. A blind algorithm is a function M mapping every s-subset of the n processors into a
1-subset of this s-subset. The blind competitive ratio is

B(n, s) := min
M∈Blind(n,s)

{c(M)},

where Blind(n, s) consists of all blind algorithms.

We stress that a simple argument shows that, for blind algorithms, the upper bound in (1) gives
a tight analysis:



Fact 2 The competitive ratio of any blind algorithm M is exactly c(M). Hence, B(n, s) is the
minimum competitive ratio over all blind algorithms.

In this section, we show that B(n, s) = 1+n−dn/se, where the lower bound holds if and only
if the Caccetta-Häggkvist conjecture (see Conjecture 1) is true. The upper and the lower bounds
will follow from the next two lemmata.

Lemma 1. Let G be any digraph on n nodes with minimum outdegree d and not containing any
directed cycle of length at most s. Then there exists M ∈ Blind(n, s) with c(M) = n − d, that is,
B(n, s) ≤ n− d.

Proof. We construct M ∈ Blind(n, s) as follows. We identify the nodes of G with the n pro-
cessors. For every s-subset S we search for an a ∈ S such that in G there is no edge from a to
another element in S. Observe that such an element must exist since otherwise we have a directed
cycle involving only elements in S, and thus a directed cycle of length at most s. We then set
M(S) := {a}. Observe that, if (a, b) is an edge in G and an s-subset T contains b, then it cannot be
the case M(T ) = {a}. This implies that the set Adversary(S, M) does not contain any node in the
outneighborhood of a. Since node a has outdegree at least d, this set has cardinality at most n− d.
Since |M(S)| = 1 for all S, from (1) we obtain c(M) = maxS |Adversary(S, M)| ≤ n− d. ut
Lemma 2. Let n, s, and d ≥ s be positive integers such that B(n, s) ≤ n − d. Then there exists
a digraph G on at most n nodes with minimum outdegree at least d and not containing a directed
cycle of length at most s.

Proof. Let G = G(M) be the digraph on n nodes containing the edge (a, b) if and only if there
exists no S such that b ∈ S and M(S) = {a}. By construction the outneighborhood of a contains
all but the elements in Adversary(S, M), that is, its outdegree is n − |Adversary(S, M)|. Since
|Adversary(S, M)| ≤ B(n, s), the outdegree of any node a is at least n−B(n, s) ≥ d. Hence, the
graph G has minimum outdegree dG ≥ d.

We observe that the subgraph induced by any subset of s nodes must contain a sink, that is, a
node having outdegree 0 in that subgraph: Indeed, for any S, the element a such that M(S) = {a}
must be a sink. In particular, there is no directed cycle of length s.

Using this fact, we iteratively remove nodes from G and obtain a subgraph G′ with n′ ≤ n
nodes, without directed cycles of length at most s, and minimum outdegree equal to the minimum
outdegree d of G. Towards this end, we proceed as follows. While we can pick a set C of nodes
that form a directed cycle of length at most s − 1 in G′ (recall that there is no directed cycle of
length s), we add to C, one by one, nodes of G′ that have an edge directed to the current set of
nodes. This process must stop when reaching at most s−1 nodes since otherwise, when C reaches
cardinality s, by construction, it does not contain a sink, thus a contradiction. Notice that there is
no edge from a node in G′ −C to a node in C. We can thus remove the nodes in C from the graph
without decreasing its minimum outdegree.

At the end of this process, the graph G′ does not contain any directed cycle of length s or
smaller and its minimum outdegree is at least dG ≥ d. Observe that G′ cannot be empty since
every removed set C as above must have some outgoing edge (because of d ≥ s ≥ |C|) and this
edge cannot be ingoing to the previously removed components. ut



Lemmata 1 and 2 will give us the upper and the lower bound:

Theorem 3. For any n and s ≤ √
n, it holds that

B(n, s) = 1 + n− dn/se
where the lower bound holds unless Conjecture 1 is false.

Proof. Let us set d = max{s, dn/se}. By contradiction, assume B(n, s) ≤ n − d. Lemma 2
implies the existence of a digraph G on n′ ≤ n nodes with minimum outdegree d ≥ dn′/se and not
containing directed cycles of length s or smaller. However, Conjecture 1 implies that G must have
a directed cycle of length at most dn′/de ≤ dn′/dn′/see ≤ dn′/(n′/s)e = s, thus a contradiction.
Since B(n, s) is integer, it must be B(n, s) ≥ 1+n−d. Since s ≤ √

n, we have d = dn/se, which
proves the lower bound. In order to prove the upper bound, we consider the following digraph
G, first described by Behzad, Chartrand and Wall [6]. We let [n] = {0, . . . , n − 1} be the set of
nodes. For every node x ∈ [n], we let its out-neighborhood being the d − 1 nodes in the interval
[(x + 1) mod n, (x + d − 1) mod n]. By construction, the resulting digraph G has minimum
outdegree d− 1 and, since d− 1 = dn/se− 1 < n/s, does not have any directed cycle of length at
most s. Lemma 1 thus implies B(n, s) ≤ n− (d−1) = n−dn/se+1, that is the upper bound. ut
Remark 1. Notice that the Caccetta-Häggkvist conjecture is not “interesting” for d > n/2 since in
this case it is easy to show that a two-cycle must exist, i.e., the conjecture holds. Lemma 2 implies
that B(n, 2) = n/2, for any n. In contrast, proving a tight bound for B(n, 3) is the first hard case:
It corresponds to the case d = n/3 of the conjecture which is one of the most studied [14, Section
2.2].

It is possible to settle (weaker) lower bounds on B(n, s) by using some “approximate” results
for the Caccetta-Häggkvist conjecture. It is known that the conjecture holds if we consider some
“additive” constant α. That is, a minimum outdegree d guarantees that every digraph on n nodes
must have a directed cycle of length at most n/d + α. Currently, the best known bound is α = 73
by Shen [13]. This type of results imply the following:

Theorem 4. For any n and α < s ≤ √
n + α/2, it holds that B(n, s) ≥ 1 + n− dn/(s− α)e.

Proof. Since s > α, we can consider d = dn/(s − α)e. By contradiction, assume B(n, s) ≤
n−dn/(s−α)e = n−d. From s ≤ √

n+α/2, we have d ≥ s and thus Lemma 2 implies that there
exists a digraph on n nodes with minimum outdegree d and not containing any directed cycle of
length s or smaller. Since n/d+α = n/dn/(s−α)e+α ≤ n/(n/(s−α))+α = (s−α)+α = s,
this graph does not contain a directed cycle of length n/d + α or smaller. This contradicts the
definition of α. Since B(n, s) is integer, it must be B(n, s) ≥ 1 + n− d and the theorem follows.

ut
For s = 3, Shen [12] proved another approximate version of the conjecture: if the minimum

outdegree is at least µ · n, then there is a directed triangle, where µ > 1/3 is a “multiplicative”
constant (see also [14, Section 2.3]). This result, combined with Lemma 2, yields the following
lower bound:

Theorem 5. For any n, it holds that B(n, 3) ≥ 1 + n− µ · n, where µ = 3−√7 = 0.3542 · · ·.



3 The minimum competitive bound

In this section, we turn our attention to “less naive” algorithms which can be obtained with the
method described in Section 1.2. In particular, we study the bound in (1), again when F consists
of all s-subsets of the n processors (for the sake of readability, we omit the subscript ‘F’):

Definition 2. The minimum competitive bound is

C(n, s) := min
M∈Feas(n,s)

{c(M)},

where Feas(n, s) consists of all functions M(·) mapping every s-subset of n processors into a
non-empty subset M(S) ⊆ S.

Notice that we have a trivial upper bound C(n, s) ≤ n/s (see Equation 2). We prove that
C(n, s) = n/s, unless we disprove Conjecture 1. That is, the trivial upper bound is likely the
best possible. We will first prove lower bounds for some special cases (these results do not require
Conjecture 1).

Lemma 3. Let M ∈ Feas(n, s) such that |M(S)| ≥ 2, for all s-subset S. Then, there exists an
s-subset T for which |Adversary(T, M)| = n.

Proof. Without loss of generality, we can assume that |M(S)| = 2, for every S. Indeed, if we
shrink all M(S) into a two-set M′(S) ⊆ M(S), we obtain a function M′ ∈ Feas(n, s) satisfying
Adversary(S, M′) ⊆ Adversary(S, M).

We use Adversary(S) as a shorthand for Adversary(S, M) and assume, by way of contra-
diction, that |Adversary(S)| < n, for all S of size s. Using this fact, we give an iterative way
to define a suitable sequence B1 ⊂ B2 ⊂ · · · ⊂ Bk as follows. We start from an arbitrary s-
subset S1 and let B1 := M(S1). At each iteration i, we “expand” the current Bi into a new set
Bi+1 := Bi ∪ {bi} ∪ M(Si+1), where bi and Si+1 are defined as follows. Each Si is an s-subset
and thus the hypothesis |Adversary(Si)| < n implies that we can chose bi 6∈ Adversary(Si). We
then define Si+1 as an s-subset such that bi ∈ M(Si+1), if such a set exists; otherwise, Si+1 is an
arbitrarily chosen s-subset containing Bi and bi. Below we will show that the set Bi+1 adds 2 or 3
elements to the set Bi, thus implying that we can stop when s− 2 ≤ |Bk| ≤ s.

Claim (1). M(S) cannot intersect Bi if S is an s-subset containing Bi ∪ {bi}.

Proof of Claim (1). We proceed by induction on i. For i = 1, if M(S) intersects B1 = M(S1),
then Adversary(S1) contains S. Since b1 ∈ S, this contradicts the definition of b1. Now assume
the claim holds for i − 1 and let S be an s-subset containing Bi ∪ {bi}. Since Bi = Bi−1 ∪
{bi−1} ∪M(Si), S contains Bi−1 ∪ {bi−1}, and the inductive hypothesis implies that M(S) cannot
intersect Bi−1. If M(S) intersects M(Si) then, since bi−1 ∈ S, we have the contradiction bi ∈
Adversary(Si). If M(S) contains bi−1, the definition of Si implies that bi−1 ∈ M(Si). (Recall that
bi−1 6∈ M(S) only in the case there is no s-subset S with bi−1 ∈ M(S).) But then M(S) would
again intersect M(Si), which leads to the same contradiction as above. The inductive step thus
follows from Bi = Bi−1 ∪ {bi−1} ∪M(Si). The claim thus follows. 2



Since |M(S)| = 2, Claim (1) implies that Bi+1 is obtained from Bi by adding at least two
(and at most three) new elements not in Bi. We can thus define k as the first integer such that
s− 2 ≤ |Bk| ≤ s. We next show that in each of the three cases a contradiction arises:

1. For |Bk| = s − 2, we consider any s-subset S(x) := Bk ∪ {bk} ∪ {x}, with x 6∈ Bk ∪ {bk}.
Claim (1) implies M(S(x)) = {bk, x}, and thus Adversary(S(x)) contains also all elements
not in Bk ∪ {bk}, that is, |Adversary(S(x))| = n.

2. For |Bk| = s − 1, we simply observe that for S := Bk−1 ∪ {bk−1} Claim (1) yields M(S) =
{bk−1}, contradicting the hypothesis |M(S)| ≥ 2 for all s-subsets S.

3. For |Bk| = s, Bk−1 ∪ {bk−1} must have size s − 2, since |Bk−1| < s − 2. For every s-subset
S(x, y) := Bk−1 ∪ {bk−1, x, y} Claim (1) implies M(S(x, y)) = {x, y}. If we keep x fixed and
consider all y not in this set, we obtain the contradiction |Adversary(S(x, y))| = n.

This concludes the proof of the lemma. ut
Observe that the above result says that, if C(n, s) < n/s, then the corresponding M must be

such that |M(S)| = 1 for at least one S. In order to prove the lower bound C(n, s) = n/s, we will
make use of the following result showing that, without loss of generality, we can restrict ourselves
to optimal modifications M having a “canonical” structure (the result applies to any family F of
s-subsets):

Lemma 4. For any M ∈ Feas(F), there exists an Mc ∈ Feas(F) such that cF(Mc) ≤ cF(M)
and Mc is canonical, that is, Mc(S) 6⊂ Mc(T ) for all S, T ∈ F .

Proof. Consider two s-subsets S and T such that M(S) ⊂ M(T ). (Otherwise the lemma holds.)
If we shrink M(T ) to M(S), what we obtain is a new M′ ∈ Feas(F) such that M′(T ) = M(S)
and M′(U) = M(U) for U 6= T . This implies AdversaryF(U, M′) ⊆ AdversaryF(U, M) for all
s-subsets U , and that

|AdversaryF(T, M′)|
|M′(T )| ≤ |AdversaryF(S, M)|

|M(S)| ;

max
U 6=T

|AdversaryF(U, M′)|
|M′(U)| ≤max

U 6=T

|AdversaryF(U, M)|
|M(U)| .

This yields cF(M′) ≤ cF(M). To obtain the final family Mc it suffices to iterate the above transfor-
mation at most |F| times. (At every iteration we let M being the family obtained in the previous
iteration and pick S and T as above with M(S) not containing another M(U).) The lemma thus
follows. ut

We first give a tight bound for some special cases for which we do not need the Caccetta-
Häggkvist conjecture:

Theorem 6. For every n, if s ≥ √
n or s = 2, then it holds that C(n, s) = n/s.

Proof. Let M be such that c(M) = C(n, s). We first consider s ≥ √
n. If there exists one S with

|M(S)| = 1, then c(M) ≥ |Adversary(S, M)| ≥ s ≥ n/s, where the two inequalities follow from



S ∈ Adversary(S, M) and from s ≥ √
n, respectively. Otherwise, in the case |M(S)| 6= 1 for

every S, Lemma 3 implies that c(M) ≥ n/s. (Recall that |M(S)| ≤ |S| ≤ s.)
Let us now consider the case s = 2. From Lemma 4 we can assume that M is canonical.

This implies that the n processors are partitioned into two sets N1 and N2 such that the following
holds. For every two-subset S ⊆ Ni, it holds that |M(S)| = i, with i = 1, 2. Let n1 := |N1|
and n2 := |N2|, and let Fi denote the family of all two-subsets of Ni, for i = 1, 2. Let M′ be
the function M restricted F1 and observe that M′ ∈ Blind(n1, 2). Hence, there is one S ⊆ N1

for which |AdversaryF1
(S, M′)| ≥ B(n1, 2) = n1/2 (see Remark 1). That is, Adversary(S, M)

contains at least n1/2 elements from N1. We next show that it must also contain all elements x
in N2. Indeed, for every two-subset S(x) consisting of x ∈ N2 and M(S), Lemma 4 implies that
M(S(x)) = M(S), and thus x ∈ Adversary(S, M). Hence, |Adversary(S, M)| ≥ n1/2 + n2 =
n1/2 + (n− n1) = n− n1/2 ≥ n/2, where the last inequality follows from n1 ≤ n. ut

Finally, from Lemma 3 we obtain the main result of this section:

Theorem 7. For every n and 2 < s <
√

n, it holds that C(n, s) = n/s. The lower bound holds
unless Conjecture 1 is false. Hence, the trivial upper bound C(n, s) ≤ n/s is the best possible one.

Proof. Let M ∈ Feas(n, s) with c(M) = C(n, s). From Lemma 4, we can assume M being
canonical. Because of Lemma 3, the theorem holds if |M(S)| ≥ 2 for all s-subsets S. Otherwise,
we consider the subset N1 of those processors x such that {x} = M(S), for some S. Let N2 be
the complement of N1, that is, the subset of processors not in N1. From the hypothesis, we have
3 ≤ s < n/s. We consider the following two cases for n2 := |N2|:
1. n2 < n/s. In this case n1 := |N1| = n − n2 > n − n/s. Since M is canonical, for ev-

ery s-subset T contained in N1, it must be the case |M(T )| = 1. Let F1 denote the fam-
ily of all s-subsets of N1 and let M′ be the function obtained by restricting M to F1. Ob-
serve that M′ is a function in Blind(n1, s). Hence, there exists S ∈ N1 such that C(n, s) ≥
|Adversary(S, M′)| ≥ B(n1, s). From the proof of Theorem 3, if Conjecture 1 holds, then
B(n1, s) ≥ 1 + n1 − max{s, dn1/se} > 1 + n − n/s − max{s, dn1/se} ≥ 1 + n −
n/s − max{s, dn/se} = 1 + n − n/s − dn/se > n − 2n/s, where the last inequality
follows from dn/se < 1 + n/s. Since s ≥ 3, we have n − 2n/s ≥ n/s, thus implying
C(n, s) ≥ B(n1, s) > n/s.

2. n2 ≥ n/s. By definition of N1 and N2, every s-subset S contained in N2 must satisfy |M(S)| ≥
2. Since s <

√
n, we have n2 ≥ n/s > s and thus N2 contains some s-subset. Let us con-

sider the function M′ obtained by restricting M to the s-subsets of N2. Observe that M′ ∈
Feas(n2, s). Lemma 3 implies that there exists S ⊆ N2 with Adversary(S, M) containing
all the elements in N2. If the set Adversary(S, M) contains also N1, then we clearly have
C(n, s) ≥ n/s. Otherwise, we consider an x ∈ N1 with x 6∈ Adversary(S, M). For {x} =
M(T ), if Adversary(T, M) contains N2, then C(n, s) ≥ n2 > n/s (recall that |M(T )| = 1)
and the theorem holds. Otherwise, we can pick a y ∈ N2 with y 6∈ Adversary(T, M). Ob-
serve that M(S) must contain at least s − 1 elements, unless C(n, s) ≥ n/s. We can thus
construct an s-subset S ′ := {x}∪R′ with R′ containing y and other s−2 elements from M(S).
Observe that M(S ′) cannot contain x since otherwise M(S ′) ∩ M(T ) = {x} 6= ∅ and thus



y ∈ S ′ ⊆ Adversary(T, M), contradicting the definition of y. Similarly, M(S ′) cannot contain
any of the elements in R′ \ {y} since otherwise M(S ′) ∩M(S) 6= ∅ and thus x ∈ S ′ ⊆ M(S),
contradicting the definition of x. Hence, it must be the case M(S ′) = {y}, contradicting y 6∈ N1

(since y ∈ N2).
ut

4 Conclusions and open questions

We have applied the approach by Crescenzi et al [9] to a natural class of s-uniform instances, which
model the problem version in which the only available information is that each task is assignable to
s out of the n processors, for some known constant s. We have shown that this approach is unlikely
to lead to any “satisfactory” upper bound. Namely, the minimum competitive bound C(n, s) is
equal to the trivial n/s upper bound, unless we find a counterexample to the Caccetta-Häggkvist
conjecture [14]. Even for rather limited algorithms, for which the analysis in [9] is tight, an exact
answer is “equivalent” to the conjecture above. That is, the competitive ratio B(n, s) of the best
algorithm in this class can be determined for all s and n if and only if we resolve the conjecture.

We consider the study of these algorithms interesting by itself since they only require local
information. Indeed, the online load balancing problem considered here arises in many practical
situations (e.g., when connecting mobile devices requiring different bandwidth to one of the “ge-
ographically close” base stations). The natural greedy algorithm can have a rather unsatisfactory
competitive ratio in several cases [3, 5], which motivated the development of more sophisticated
“ad-hoc” algorithms [4, 5]. The latter are not local, though their competitive ratio is significantly
better than greedy one. To the best of our knowledge, there is no prior study of local online al-
gorithms for this problem version (apart from the tight bound Θ(n2/3) on the greedy [4]). Online
local algorithms for a different task allocation problem have been studied by Kuhn et al [10]. In
their problem, the goal is to maintain (roughly) the same number of tasks on each processor, and
tasks can be moved only “locally”, i.e., between adjacent processors.

We conclude observing that our results might be used to write a computer program to check the
Caccetta-Häggkvist conjecture. Observe that, if we believe the conjecture is true, then a program
which verifies it for a fixed n and d, will have to go through all possible digraphs on n nodes and
minimum outdegree d. This is because we have to show that there is no way to avoid a directed
cycle with dn/de nodes. Theorem 3 gives an alternative that is to come up with an (efficient)
algorithm to compute B(n, s). Obviously, this algorithm should not rely on the Caccetta-Häggkvist
conjecture, that is, it should be possible to prove its correctness independently from the conjecture
(e.g., the algorithm returns an optimal modification M for any given F containing only s-subsets).
Notice that, once again, the case s = 3 seems to be the “first” difficult one. Indeed, for s = 2
the optimal modification M for any family F reduces to the problem of orienting the edges of
an indirected graph in order to minimize the maximum indegree (see Aichholzer et al [1] and
Nash-Williams [11]). Such optimal orientation can be computed with standard flow techniques,
thus yielding an optimal algorithm for s = 2 (see Appendix A for the details). Unfortunately, the
results do not apply to s = 3, which remains an interesting open question.
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A Why the case s = 2 is easy

When F consists of two-sets (i.e., s = 2), we consider it as an undirected graph (whose edges are
the two-sets of this family) over n nodes. Each modification M ∈ Feas(F) can be seen as an orien-
tation of (some of) the edges of this graph. In particular, for blind algorithms we have |M(S)| = 2,
then we will consider the corresponding edge as undirected; otherwise, that is |M(S)| = 1, the
edge is directed towards the node u ∈ M(S).

In the case of blind algorithms, we require to orient all edges of a given undirected graph so to
minimize the maximum in-degree. Indeed, since |M(S)| = 1, then AdversaryF(S, M) consists of
the node M(S) and all and only the nodes in-neighborhood of node M(S). Hence, cF(M) = δ + 1,
where δ is the maximum in-degree of the directed graph induced by M.

This problem was considered by Aichholzer et al [1]. They observed that it relates to the max-
imum (edge) density of the graph, that is, the smallest integer dG such that any subgraph G′ has m′

edges and n′ nodes with m′/n′ ≤ dG:

Theorem 8 ([1]). A connected graph G has maximum edge density dG if and only if it is possible
to orient the edges of G so that the maximum indegree is at most dG. This orientation is optimal
and can be computed in O(m

√
m log dG) time, with m being the number of edges in G.

Notice that the relationship with the edge density is not needed for the computation of the
optimal edge orientation which can be carried out with a standard flow technique (see [1]). Equiv-
alently, we can consider dG as the arboricity of the graph G, that is, the minimum number τG of
edge-disjoint spanning forests required to cover all edges of G (see Nash-Williams [11]). Indeed,
it is quite simple to show that dG = τG (see e.g. [1]).

Chrobak and Eppstein [8] proved that dG is rather small in the case of planar graphs (the result
derives from Euler’s theorem):

Theorem 9 ([8]). If G is planar then its edges can be oriented so that every node has maximum
indegree at most 3. This orientation can be computed in O(n) time.

Hence, if F corresponds to a planar graph, then we obtain a significantly better competitive
bound from (1). In particular, we have a 4-competitive blind algorithm.


