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Abstract. We provide a new technique to derive group strategyproof
mechanisms for the cost-sharing problem. Our technique is simpler and
provably more powerful than the existing one based on so called cross-
monotonic cost-sharing methods given by Moulin and Shenker [1997].
Indeed, our method yields the first polynomial-time mechanism for the
Steiner tree game which is group strategyproof, budget balance and also
meets other standard requirements (No Positive Transfer, Voluntary Par-
ticipation and Consumer Sovereignty). A known result by Megiddo [1978]
implies that this result cannot be achieved with cross-monotonic cost-
sharing methods, even if using exponential-time mechanisms.

1 Introduction

Consider a service providing company P with a set of possible customers, also
called users, U . For each subset S ⊆ U of users, CP(S) denotes the cost incurred
by the company P to jointly service the users in S. The function CP(·) is usually
termed the cost function. A typical scenario is that of company P broadcasting
some kind of transmission (e.g., movies, sport events, news, etc) over a given
network: in this case, CP(S) is the cost of implementing a multicast tree con-
necting a source node s to all users is S. Each user i valuates the transmission
an amount vi: this value quantifies how much user i likes the transmission (or
how much he/she would pay for it). A key point is that vi is a property of user
i (and not of the network) and, thus, this value is known to i only. If user i
is required to pay pi for receiving the transmission, then her utility is equal to
vi −pi. The utility is naturally what each user i tries to maximize. Users may act
selfishly and, thus, a user i may misreport her valuation at some other number
bi. (Consider a simple mechanism which charges to every user i an amount equal
to her reported valuation bi).
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A cost-sharing mechanism should decide which user S should receive the
transmission and at which price. The mechanism is said strategyproof if, for
each user i, revealing the true value vi is a dominant strategy: that is, reporting
any bi �= vi cannot improve the utility of i (see Sect. 2 for a formal definition).
The mechanism is group strategyproof if this holds also for coalitions of users.
The mechanism is budget balance if the total amount of money payed by the
users equals the servicing cost CP(S). Finally, a mechanism is efficient if it max-
imizes, over all subsets S, the sum of the valuations of users in S minus the cost
CP(S).

A fundamental result by Moulin and Shenker [8, 7] shows that the existence
of a so called cross-monotonic cost-sharing method (see Sect. 2 for a formal
definition) for CP(·) gives rise to a group strategyproof and budget balance
mechanism. Moreover, if CP(·) is submodular (see the definition in Sect. 2.1),
the converse holds as well. These results point all in the direction of cross-
monotonic cost-sharing methods: on the one hand, no other technique is known
to derive such mechanisms; on the other hand, the “converse” part of Moulin and
Shenker’s theorem says that, for submodular functions, these type of mechanisms
capture all possible ones.

Unfortunately, meeting the cross-monotonicity requirement is often far from
trivial: some (optimal) cost functions do not admit such methods [6]; others
require a rather involved use of primal-dual algorithms [3, 9, 5, 1]; for others,
only some sort of approximation of the budget balance condition is guaranteed
(e.g., the mechanism may create some surplus or recover only a fraction of the
cost) [9, 5, 1].

In this work we provide a more powerful method to derive such mechanisms
by introducing the concept of self cross-monotonic cost-sharing method (see
Sect. 3). Our main result is that, given any such cost-sharing method, it is possi-
ble to obtain group strategyproof mechanisms. The resulting technique extends
the one by Moulin and Shenker and is provably more powerful: it indeed applies
to some optimal cost functions for which the method by Moulin and Shenker can-
not be used and/or gives simpler constructions of the mechanisms (see Sect.s 2.1
and 2.2 for a more detailed discussion of previous and our results).

2 Model

We are given a set U of n users. Depending on the problem instance at hand,
for every Q ⊆ U , and for every feasible solution TQ which allows to provide the
service to users in Q (e.g., a multicast tree connecting a source node s to all users
in Q), we denote by COST(TQ) the cost of this solution.1 Hence, for a service
providing company P that decides to service Q by implementing solution TQ, we
have a cost CP(Q) = COST(TQ).

1 A formal definition should be COST(Q, G) since the cost depends on the instance.
However, for the sake of clarity, we will omit ‘G’ whenever this will be clear from
the context.
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Each user is a selfish agent reporting some (not necessarily true) valuation
bi; the true value vi is privately known to agent i. Based on the reported values
b = (b1, b2, . . . , bn) a mechanism M = (A, P ) uses algorithm A to compute the
following:

– A subset Q(b) ⊆ U of users to be serviced;
– A feasible solution TQ(b) to be implemented in order to provide the service

to the set Q(b); solution TQ(b) does not provide the service to any j /∈ Q(b).

For the sake of convenience, one can imagine that an algorithm A(·) is used
by M in order to compute TQ(b) once a set Q(b) has been selected, that is,
TQ(b) = A(Q(b)). (For instance, A(·) may be a multicast algorithm computing a
tree connecting a source node s to a subset Q of the nodes of a network.) In this
case, we let CA(Q(b)) := COST(A(Q(b))).

In addition, for every user i ∈ Q(b), the mechanism computes the cost P i(b)
that user i must pay for getting the service, with P = (P 1, P 2, . . . , Pn). Hence,
the utility of agent i when she reports bi, and the other agents report b−i :=
(b1, . . . , b−i, bi+1, . . . , bn), is equal to

ui(bi, b−i) := vi · σi(Q(bi, b−i)) − P i(bi, b−i),

where (x, b−i) = (b1, . . . , bi−1, x, bi+1, . . . , bn) and σi(X) equals 1 if i ∈ X, and 0
otherwise. In the sequel, for every C ⊆ U and any two vectors x and y of length
n, (xC , y−C) denotes the vector z = (z1, . . . , zn) such that zi = xi if i ∈ C and
zi = yi if i /∈ C.

There is a number of natural constraints/goals that, for every problem in-
stance G, a mechanism M = (A, P ) should satisfy/meet:

1. Cost Optimality (CO). Let Copt(Q) denote the minimum cost required
to service all users in Q, for every Q ⊆ U . We require that the computed
solution TQ(b) is optimal w.r.t. the set Q(b), that is, CA(Q(b)) = Copt(Q(b)).

2. No Positive Transfer (NPT). No user receives money from the mecha-
nism, i.e., P i(·) ≥ 0.

3. Voluntary Participation (VP). We never charge an user an amount of
money grater than her reported valuation, that is, ∀bi,∀b−i bi ≥ P i(bi, b−i).
In particular, a user has always the option to not paying for a service for
which she is not interested. Morever, P i(b) = 0, for all i /∈ Q(b), i.e., only
the users getting the service will pay.

4. Consumer Sovereignty (CS). Every user is guaranteed to get the service
if she reports a high enough valuation.

5. Budget Balance (BB).
(a) Cost recovery.

∑
i∈Q(b) P i(b) ≥ CA(Q(b)), i.e., the cost of the com-

puted solution is recovered from all the users being serviced;
(b) Competitiveness.

∑
i∈Q(b) P i(b) ≤ CA(Q(b)), i.e., no surplus is cre-

ated. If some surplus were created, then a competitor may offer the
same service at a better price.
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6. Group Strategyproofness. We require that a user i ∈ U that misreport
her valuation (i.e., bi �= vi) cannot improve her utility (strategyproofness or
truthfulness) nor improve the utility of other users without worsening her
own utility (otherwise, a coalition C containing i would secede). Consider a
coalition C ⊆ U of users. Let bi = vj for all j /∈ C. The group strategyproof-
ness requires that if the inequality

vi · σi(Q(bC , v−C)) − P i(bC , v−C) ≥ vi · σi(Q(vC , v−C)) − P i(vC , v−C) (1)

holds for all i ∈ C then it must hold with equality for all i ∈ C as well.

A cost-sharing method is a function ξ(·) which distributes the cost CA(·) to
the users that get the service. Intuitively speaking, we will use the function ξ(·)
in order to define the payments P i(·). More formally, ξ(·) takes two arguments:
a set of users Q and a user i and returns a nonnegative real number satisfying
the following:

if i /∈ Q then ξ(Q, i) = 0 and (2)∑
i∈Q

ξ(Q, i) = CA(Q). (3)

Observe that, if we take P i(b) := ξ(Q(b), i), then the payments recover ex-
actly the cost CA(Q(b)) from all and only users in Q(b). Also the NPT condition
holds. The other requirements depend on how the mechanism selects Q(b) and
TQ(b).

In the context of multicast routing, we are given a weighted undirected graph
G = (U ∪ {s}, E, c), where s /∈ U is the source node and ce is the cost of using
link e ∈ E. A feasible solution is a pair TQ = (Q, T ), where T is a tree connecting
s to a subset Q of users contained in T . The corresponding cost is the weight of
T , i.e.,

∑
e∈T ce. The optimal cost function Copt(Q) to service Q is the cost of

an optimal Steiner tree of G connecting s to Q, thus possibly containing some
Steiner nodes in U \ Q. This is the Steiner tree game and we let σi(TQ) = 1 if
and only if i ∈ Q. In the minimum spanning tree game the feasible solution is
any spanning tree TQ containing s and the set Q only.
Approximation Concepts. The use of optimal cost functions Copt(·) for the given
problem may suffer from the following drawbacks: (1) there may not exists a
cross-monotonic cost-sharing method, and (2) computing a solution having that
cost may be NP-hard. Therefore, one considers the effects of using approximation
algorithms on the CO and the BB conditions.

Let M = (A, P ) be a mechanism whose cost function is CA(·). Mechanism M
is α-approximate BB if it is cost recovery for CA(·) and α-competitive, that is,∑

i∈U P i(b) ≤ α · Copt(Q(b)). A β-surplus mechanism M satisfies
∑

i∈U P i(b) ≤
(1 + β) · CA(Q(b)). A ρ-recovery mechanism guarantees that

∑
i∈U P i(b) ≥ ρ ·

CA(Q(b)), for some ρ ≤ 1. Clearly, if A is an α-approximation algorithm and the
mechanism is 0-surplus, then it is also α-approximate BB. The converse does
not always hold as an α-approximate BB mechanism may not be 0-surplus. A
β-cost-sharing method ξ(·) satisfies Eq. 2 and the following relaxation of Eq. 3:
CA(Q) ≤ ∑

i∈Q ξ(Q, i) ≤ β · CA(Q).



More Powerful and Simpler Cost-Sharing Methods 101

2.1 Previous Work

A fundamental result by Moulin and Shenker states that, if a cost-sharing
cross-monotonic method for CA(·) exists, then it is possible to define a group
strategyproof mechanism (see Theorem 3): a cost-sharing method ξ(·) is cross-
monotonic if, for every Q′ ⊂ Q ⊆ U , ξ(Q′, i) ≥ ξ(Q, i), for all i ∈ Q′. The
converse of their result also holds whenever CA(·) is submodular [8, 7], that is,
CA(∅) = 0 and, for any two subsets of users Q1 and Q2, it holds that

CA(Q1) + CA(Q2) ≥ CA(Q1 ∪ Q2) + CA(Q1 ∩ Q2).

The Shapley value for multicast routing [11] and the egalitarian method due
to Dutta and Ray [2] are just two examples of cost-sharing methods which, for
functions that are nondecreasing2 and submodular, are cross monotonic.

The existence of a cross-monotonic method can be related to the core concept
(see e.g. [3] for a definition): if the core of CA(·) is empty, then no cross-monotonic
cost-sharing method ξ(·) for this cost function exists.

Megiddo proved that the optimal cost function Copt(·) for the Euclidean
Steiner tree game has an empty core [6]. Kent and Skorin-Kapov provided the
first cross-monotonic cost-sharing method for the minimum spanning tree game
[4]. A more general approach has been given by Jain and Vazirani that use
primal-dual methods in order to obtain a family of polynomial-time computable
cross-monotonic methods [3]. These results yield, for the case of metric graphs,
a 2-approximate BB, 0-surplus, group strategyproof mechanism for the Steiner
tree and for the TSP games. The mechanism also meets NPT, VP and CS.

Biló et al [1] considered the muticast routing game in wireless networks.
They proved that the resulting optimal cost function has an empty core even
for d-dimensional Euclidean instances, for d ≥ 2. Moreover, upon the results
for the MST game, they build a 2(3d − 1)-approximate BB, group strategyproof
mechanism which also meets NPT, VP and CS. This mechanism, however, is
not 0-surplus.

2.2 Our Contribution

In this work, we first show how to get around the difficulties of dealing with cross-
monotonic cost-sharing methods by providing a new technique for obtaining
group strategyproof cost-sharing mechanisms. In particular, we prove that the
a weaker property (which we call self cross-monotonicity– see Def. 2) suffices
(Theorem 2). We prove the following results showing that our method is simpler
and more powerful than the one by Moulin and Shenker [8, 7]:

– Self cross-monotonic methods for CA(·) can be trivially obtained whenever
the algorithm A is reasonable (see Def. 3).
The resulting mechanism MA satisfies the NPT, VP, CS, cost recovery, is
0-surplus and, if A is an (polynomial-time) α-approximation algorithm, then
MA is (polynomial-time) α-approximate BB (Theorem 2).

2 A function CA(·) is nondecreasing if, for every Q ⊂ Q′ ⊆ U , CA(Q) ≤ CA(Q′).
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– Our method gives the first polynomial-time mechanism for the Steiner tree
game which is group strategyproof, meets NPT, VP, CS and, more impor-
tantly, is BB (Corollary 1). Notice that the latter property implies that we
are able to build a multicast tree which is optimal for the chosen receivers
Q(b), that is, CA(Q(b)) = Copt(Q(b)).

Besides the improvement over the 2-approximate BB mechanism in [3], the
fact that our mechanism is BB is somewhat surprising: indeed, the result of
Megiddo [6] implies that our result cannot be achieved using cross-monotonic
methods; moreover, the NP-hardness of the underlying problem (i.e., given Q ⊂
U , find a minimum cost Steiner tree) seems to require α-approximate BB if
we aim at polynomial-time mechanisms (see e.g. [3]). This intuition is wrong!
Clearly, our result does not imply P = NP since our mechanism is “driven”
through a family of sets Q0, Q1, . . . , Qn for which an optimal Steiner tree does
not use any Steiner node (thus solvable in polynomial-time). We accomplish this
by relating the sets Qj ’s to the execution of Prim’s MST algorithm (Theorem 4).

These results already prove that focusing (only) on cross-monotonic methods
may be the “wrong” thing to do. We continue along this line and consider the
wireless multicast game [1], another problem for which our method is provably
better. We indeed obtain the following results on it:

– A polynomial-time mechanism which is (3d − 1)-approximate BB, 0-surplus,
group strategyproof, and meets NPT, VP, and CS (Theorem 5). This im-
proves over the 2(3d − 1)-approximate BB mechanism in [1] which is not
0-surplus.

– A wide class of mechanisms for this game cannot be 0-surplus. This class
includes the mechanism by Biló et al and, for certain “bad” instances, the
surplus increases exponentially in d (for d = 1 and d = 2 it cannot be smaller
than 1 and 5, respectively).

Mechanism in this class are those which use a multicast algorithm A for
which an A-bad instance G exists (see Def. 4). These algorithms are not opti-
mal (Theorem 8) and the cost function CA(·) is not submodular (Theorem 9).
Hence, the “inverse” of the result by Moulin and Shenker [8] does not apply to
such functions CA(·). Therefore, it is possible to have BB mechanisms which do
not use cross-monotonic cost-sharing methods. Finally, we observe that there is
no equivalence between bad algorithms A and the non submodularity of CA(·):
indeed, there exists an instance G for which CMST(·) is not submodular, while
G is not MST-bad (Theorem 10).

Paper Organization. We briefly recall the result by Moulin and Shenker in
Sect. 3, and provide our extension in Sect.s 3.1-3.2; We apply our result to the
Steiner tree game in Sect. 3.3; Wireless muticast is considered in Sect. 4.

Due to lack of space some proofs are omitted. The interested reader can find
them in [10].
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3 A New Method for Cost Sharing

Moulin and Shenker [8, 7] provide an elegant solution by considering the following
scheme for obtaining mechanisms:

Mechanism M(ξ)

1. Q is initialized to U ;
2. If there exists a user i in Q with vi < ξ(Q, i) then drop i from Q. Keep

repeating this step, in arbitrary order, until for every user i in Q, vi ≥ ξ(Q, i);
3. Set P i(b) := ξ(Q, i), for all i ∈ U .

A sharing method ξ(·) is cross-monotonic if, for every two sets Q and Q′,
with Q′ ⊂ Q ⊆ U , it holds that ξ(Q, i) ≤ ξ(Q′, i), for every i ∈ Q′.

The fundamental result by Moulin and Shenker reduces the problem of de-
signing a mechanism to the problem of finding a cross-monotonic sharing method
ξ(·) for a cost function CA(·). The resulting mechanism MA(ξ) uses the scheme
M(ξ) to compute the set Q = Q(b) and the payments P i(b) = ξ(Q(b), i), and
then simply builds a feasible solution TQ(b) = A(Q(b)). Then the following holds:

Theorem 1. [8, 7] 3 For any optimal (respectively, α-approximation) algorithm
A and any cross-monotonic cost-sharing method ξ(·) for CA(·), the mechanism
MA(ξ) is group strategyproof, BB (respectively, α-approximate BB), 0-surplus
and satisfies NPT, VP and CS.

3.1 Extending Moulin and Shenker pproach

We will show that the cross-monotonicity property can be relaxed so to hold
only for certain sets that mechanism M(ξ) can actually output.

Definition 1. Given any function ξ : 2U × U → R+ ∪ {0}, we define Qξ
0 := U ,

and Qξ
j := {Q \ {i}| Q ∈ Qξ

j−1 ∧ ξ(Q, i) > 0}. Moreover, Qξ := ∪j≥0Qξ
j .

A key point is that mechanisms MA(ξ) can generate only those subsets of
receivers in Qξ:

Lemma 1. At each round of M(ξ), the set Q considered in Step 2 satisfies
Q ∈ Qξ.

Definition 2. A function ξ : 2U ×U → R+ ∪{0} is self cross-monotonic if, for
every Q, Q′ ∈ Qξ with Q′ ⊂ Q, it holds that ξ(Q′, i) ≥ ξ(Q, i), for every i ∈ Q′.

We next prove the main result of this section. Its proof is similar to the one
given in [3].

3 The result presented here is sightly more general then the one in [8, 7]; indeed, as
first observed in [3], their result can also deal with α-approximate BB mechanism.

A
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Theorem 2. For any optimal (respectively, α-approximation) algorithm A and
any self cross-monotonic β-cost-sharing method ξ(·) for CA(·), the mechanism
MA(ξ) is group strategyproof, β-approximate BB (respectively, αβ-approximate
BB), (β − 1)-surplus and satisfies NPT, VP and CS. Moreover, MA(ξ) runs in
polynomial time if A and ξ(·) are polynomial time.

Proof. Condition CS follows from the fact that a user i is dropped in Step 2 only
if bi < ξ(Q, i). The NPT and VP conditions thus follow from the properties of
ξ(·).

We next prove the group strategyproofness. Consider a coalition C ⊆ U such
that

j �∈ C ⇒ bj = vj , (4)
i ∈ C, bi �= vi ⇒ vi · σi(Qfalse) − P i(bC , v−C) ≥

vi · σi(Qtrue) − P i(vC , v−C), (5)

where Qfalse and Qtrue denote the sets of receivers returned by MA(ξ) on input
(bC , v−C) and (vC , v−C), respectively. We have to show that the above inequality
cannot hold with ‘>’. Observe that, if i /∈ Qfalse, then the NPT and the CS
conditions imply that Eq. 5 holds with ‘=’. We thus assume i ∈ Qfalse and we
consider the following two cases:

Qfalse ⊆ Qtrue. From Lemma 1, Qfalse ∈ Qξ and Qtrue ∈ Qξ. Since i ∈ C, by
self cross-monotonicity and by the definition of P i(·) in M(ξ),

P i(bC , v−C) = ξ(Qfalse, i) ≥ ξ(Qtrue, i) = P i(vC , v−C). (6)

Since Qfalse ⊆ Qtrue, σi(Qfalse) ≤ σi(Qtrue). By contradiction, if Eq. 5
holds with ‘>’, then we would obtain

vi · σi(Qtrue) − P i(bC , v−C) > vi · σi(Qtrue) − P i(vC , v−C),

which contradicts Eq. 6.
Qfalse �⊆ Qtrue. We will show that this case cannot arise. Let s1, . . . , sk be the

sequence of users that MA(ξ) drops on input (vC , v−C), i.e., Qtrue = U \
{s1, . . . , sk}. Let sj be the first user in s1, . . . , sk such that sj ∈ Qfalse.
Therefore bsj

≥ ξ(Qfalse, sj). By definition of s1, . . . , sj−1, Qfalse ⊆ Qj−1 :=
U \{s1, . . . , sj−1}. By Lemma 1 and by the self cross-monotonicity of ξ(·), we
have ξ(Qfalse, sj) ≥ ξ(Qj−1, sj). Since sj is dropped in Qtrue, the definition
of MA(ξ) implies that ξ(Qj−1, sj) > vsj

. Putting things together we obtain

bsj ≥ ξ(Qfalse, sj) ≥ ξ(Qj−1, sj) > vsj . (7)

If sj /∈ C, bsj = vsj , thus contradicting the above inequalities. Otherwise,
when sj ∈ C, Eq. 5 yields vsj − P sj (bC , v−C) ≥ 0, thus implying vsj ≥
ξ(Qfalse, sj), which contradicts Eq. 7.

Finally, since, for every Q ⊆ U , CA(Q) ≤ ∑
i∈Q ξ(Q, i) ≤ βCA(Q) ≤ αβ ·

Copt(Q), where α is the approximation ratio of A, MA(ξ) is αβ-approximate and
(β − 1)-surplus.
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3.2 Reasonable Algorithms Is All We Need

In the remaining of this work, given an instance G and a feasible solution TQ for
it, the corresponding set of users that are serviced is denoted to as Serv(TQ, G).

Definition 3. An algorithm A is reasonable if, for every instance G, there exists
a sequence i1, i2, . . . , in of users such that, denoted by Qj := U \ {i1, i2, . . . , ij},
for 1 ≤ j ≤ n, it holds that Serv(A(Qj), G) = Qj, i.e., algorithm A is able to
compute a solution which serves all and only the users in Qj, for 0 ≤ j ≤ n.
(We let Q0 := U .)

Theorem 3. If A is reasonable then there exists a self cross-monotonic cost-
sharing method ξ(·) for CA(·).
Proof. Let Qj be the set defined as in Def. 3. To ensure self cross-monotonicity,
we define

ξ(Qj , i) =
{

CA(Qj) if i = j + 1,
0 otherwise. (8)

We first show that Qξ
j = Qj . Indeed, at round j of MA(ξ), the only user which

can be dropped is j + 1, for 0 ≤ j ≤ n. Consider Q, Q′ ∈ Qξ with Q ⊂ Q′.
Then it must be the case Q = Qa and Q′ = Qb, for some a > b. Let i ∈ Q,
with ξ(Q, i) > 0 (otherwise the theorem holds). Then i = ia, thus implying
ξ(Qb, i) = 0 = ξ(Q′, i) < ξ(Q, i). Finally, ξ(·) can be easily extended outside Qξ

so to enforce Eq.s 2-3 for every Q ⊆ U .

3.3 Steiner Tree Game

Consider a graph G = (U∪{s}, E, c) where the set of terminals coincides with the
set of users U . Consider the execution of Prim’s algorithm on graph G, starting
from node a0 := s. Let aj be the j-th node added it the j-th iteration: aj is the
closest, among all nodes in U \{a1, . . . , aj−1}, to the connected component built
so far, i.e., Sj−1 := {s}∪{a1, . . . , aj−1}. Let Tj be the tree containing Sj . Then,
for every j ≥ 0, COST(Tj) = COST(MST(Sj)).

We next strengthen this result and prove that COST(Tj) is also the optimal
cost for the Steiner tree of Sj :

Theorem 4. For every j ≥ 0, let ST ∗(Sj) be an optimal Steiner tree in G with
terminal set Sj and possibly using Steiner points in U \ Sj. Then, it holds that
COST(ST ∗(Sj)) = COST(Tj).

Proof. The proof is by induction on r := n − j, i.e., Sj = Sn−r and 0 ≤ r ≤ n.

Base step (r = 0). For Sn = U there are no Steiner points, thus implying that
ST ∗(Sn) must be a MST of G.

Inductive step (from r = n − j − 1 to r + 1 = n − j). Let j +1 = n− r and
let (ak, aj+1) be the edge added at step j +1 to connect aj+1 to Sj . By con-
tradiction, assume COST(Tj) �= COST(ST ∗(Sj)). Since ST ∗(Sj) is optimal
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for Sj , it must hold that COST(Tj) > COST(ST ∗(Sj)). If aj+1 is not a node
of ST ∗(Sj), then we let T ′(Sj+1) := ST ∗(Sj) ∪ (ak, aj+1); otherwise, we let
T ′(Sj+1) := ST ∗(Sj). Since ak ∈ Sj , then T ′(Sj+1) is a tree spanning Sj+1.
By definition, Tj+1 = Tj ∪ (ak, aj+1), thus implying

COST(T ′(Sj+1)) ≤ COST(ST ∗(Sj)) + c(ak,aj+1)

< COST(Tj) + c(ak,aj+1) = COST(Tj+1).

By the inductive hypothesis COST(ST ∗(Sj+1)) = COST(Tj+1), and the
above inequality contradicts the optimality of ST ∗(Sj+1).

This completes the proof.

Theorem 4 implies that MST is reasonable and optimal for all sets Qj :=
Sn−j , 0 ≤ j ≤ n. Theorems 2 and 3 thus yield the following:

Corollary 1. The Steiner tree game admits a mechanism MMST(ξ) running in
polynomial time which is group strategyproof, budget balance and satisfies NPT,
VP and CS.

4 Wireless Multicast and Limits of Cross-Monotonic
Methods

Wireless multicast game. In wireless multicast routing, a feasible solution is
a directed tree T containing a path from s to all of its nodes (i.e., T must
be rooted at s and directed downwards). The cost of T is the total energy
consumption required to implement all of its edges, which is equal to COST(T ) :=∑

i∈U max(i,j)∈T c(i,j). In the d-dimensional Euclidean version, c(i,j) = d(i, j)γ ,
for some γ > 1 and d(i, j) being the Euclidean distance between i and j, and
the instance G is a complete graph with nodes U . We assume γ ≥ d as in [1].
Fig. 1 shows a 2-dimensional Euclidean instance G:4 the cost of the tree T =
{(s, x1), (s, x2), (x1, q1), (x2, q2)} is equal to ε + 2. Interestingly, T = MST(G),
which is not the optimal one:5 the tree T ∗ connecting s directly to every other
node has cost (1 + ε)γ , which is better for sufficiently small ε. Observe that,
COST(T ) = CMST(U) <

∑
(i,j)∈T c(i,j).

(1 + ε)α(1 + ε)α

sq1 x1 q2x2

1 1ε ε

Fig. 1. The “bad” graph B2

4 For the sake of readability we do not draw all edges of the complete weighted graph G.
5 For this problem, algorithm MST builds a MST of G and then orients it downwards s.
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Theorem 5. There exists a polynomial-time mechanism for the wireless multi-
cast game which, for d-dimensional Euclidean networks, is group strategyproof,
(3d − 1)-approximate BB, 0-surplus and meets NPT, VP and CS.

We next argue that graph B2 in Fig. 1 constitutes an example of a “bad”
graph for the MST algorithm in that, under certain hypothesis, it forces certain
mechanisms MMST(ξ) (the one by Biló et al [1] being one of them) to generate
some surplus.

The two main ideas can be summarized as follows: (i) the two users {q1, q2}
must always pay at least the marginal cost CMST(U) − CMST(U \ {q1, q2}) =
(ε + 2) − ε = 2; (ii) the MST algorithm, on input U \ {x1, x2} = {q1, q2} yields a
solution of cost (1+ε)γ which is less than the above mentioned payment provided
by {q1, q2}. Hence, some surplus is created if Q(b) = {q1, q2}.

Instead of proving the result for the graph B2, we first generalized the above
example to a wide class of graphs for which it is possible to prove that certain
algorithms must create some surplus. Towards this end we first introduce some
notation.

Notation. For any tree T , let c(i, T ) := max(i,j)∈T c(i,j). Also let pay(T, i) be true
if and only if i = arg max{l| (j, l) ∈ T ∧ c(j,l) = c(j, T )}. Given an algorithm A,
we let A(Q) denote the tree returned by A on input the set of receivers Q.6 For
every Q ⊆ U , we define the following two quantities:

CA(Q, i) :=
{

c(j,i) if (j, i) ∈ A(Q) ∧ pay(A(Q), i),
0 otherwise. (9)

∀X ⊆ U, CA(Q, X) :=
∑
i∈X

CA(Q, i). (10)

In particular, CA(Q) = CA(Q, Q).
For every i ∈ Q, let QA

i be the subset of nodes that are reachable through
i in A(Q) (i.e., those nodes that have i as an ancestor in A(Q)). Let Ai(Q) be
set of edges connecting i to QA

i in A(Q) (i.e., the edges in the subtree of A(Q)
rooted at i). Notice that Ai(Q) does not contain i.

Definition 4. A communication graph G = (U ∪ {s}, E, w) is A-bad if there
exist Q ⊆ U , X ⊂ Q and Y ⊂ Q such that the following hold:

A(Q \ QX) = A(Q) \
⋃
i∈X

Ai(Q) (11)

CA(Q \ Y ) < CA(Q, QX) (12)

with Y ∩ QX = ∅.

6 We assume the algorithm A to return a tree connecting the source s to all and only
the nodes in Q.
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Theorem 6. If G is A-bad, then there is no cross-monotonic cost-sharing method
ξ(·) for CA(·).

The mechanism by Biló et al [1] employs the cross-monotonic methods ξF (·)
for the MST game by Jain and Vazirani [3]: given a family F = {f1, . . . , fn} of
functions fi : R+ → R+, the function ξF (·) is a β-cost-sharing method for the
wireless multicast cost function yielded by algorithm MST.

In the sequel, we will show that this kind of approach must always create
some surplus. Intuitively, their mechanism MMST(ξF ) can potentially output
every subset Q ⊆ U , which requires the method ξF (·) to be cross-monotonic.
Theorem 6 thus implies that β > 1.

Definition 5. A function ξ : 2U × U → R+ ∪ {0} is Y -critical if, for all j ∈ Y ,
ξ(U, j) > 0, where Y ⊆ U .

Theorem 7. Let G = (U ∪ {s}, E, c) be a A-bad graph. If ξ(·) is a cross-
monotonic β-cost-sharing method for CA(·) which is Y -critical, where Y is the
set in Def. 4, then the mechanism MA(ξ) is not 0-surplus (on the instance G).

The above result can be applied to a family of graphs Bk generalizing graph
B2 in Fig. 1:

Definition 6. For every integer k ≥ 2, the graph Bk = (Uk ∪ s, Ek, c) is defined
as follows: Uk := {ql}1≤l≤k ∪ {xl}1≤l≤k, Ek := {(s, i)|i ∈ Uk} ∪ {(ql, xl)}1≤l≤k.
Moreover, c(s,xl) = ε, c(xl,ql) = 1 and c(s,ql) = (1 + ε)γ .

For Bk graphs, we can strengthen Theorem 7 and provide a lower bound
on the surplus that all mechanisms using a U -critical function ξ(·) must gener-
ate. It is easy to verify that, for every F , ξF (·) is U -critical for every weighted
graph G with non-zero edge weights. We thus obtain the following result on the
mechanism MMST(ξF ) proposed by Biló et al [1]:

Corollary 2. Let ξ(·) be cross-monotonic and U -critical. Then, for every graph
Bk, mechanism MMST(ξ) cannot be β-surplus, for any β < k − 1. Moreover,
for d-dimensional Euclidean instances, MMST(ξF ) cannot be less than (τd − 1)-
surplus, with τ1 = 2, τ2 = 6, and τd increasing exponentially in d. These results
apply to MMST(ξF ), for every F .

The next result states that no A-bad graph exists if A is an optimal algorithm.

Theorem 8. If G = (U ∪ {s}, E, c) is A-bad, then A is not optimal.

Proof. Let Q ⊆ U and X, Y ⊆ Q be the sets as in Def. 4. Then Eq.s 11-12 imply
respectively

CA(Q) = CA(Q \ QX) + CA(Q, QX) > CA(Q \ QX) + CA(Q \ Y ). (13)

Since Y ∩ QX = ∅, {Q \ QX} ∪ {Q \ Y } = Q. Hence, the tree T := A(Q \ QX) ∪
A(Q \ Y ) reaches all nodes in Q and its cost satisfies

COST(T ) ≤ CA(Q \ QX) + CA(Q \ Y ) < CA(Q),

thus implying that A was not optimal on input Q.
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One could try to prove that no BB mechanism employing algorithm A exists
by showing that (i) there exists an A-bad instance and (ii) the function CA(·) is
submodular. Unfortunately, this never happens:

Theorem 9. If G = (U ∪ {s}, E, c) is A-bad, then CA is not submodular.

Notice that, the above theorem also implies that, if A-bad instances exist, it
is still possible to have BB mechanisms which are not based on cross-monotonic
cost-sharing functions for CA(·). In order to prove Theorem 9, we first need the
following two intermediate results.

Lemma 2. For every A-bad graph it holds that

CA(Q \ QX) = CA(Q) − CA(Q, QX),

where X is the same as in Def. 4.

Proof. Eq. 11 implies that A(Q \ QX) = A(Q) \ {(i, j)| (i, j) ∈ A(Q) ∧ j ∈ QX}.
Hence, since A(Q) is a tree, we have

CA(Q \ QX) =
∑
i∈Q

CA(Q, i) −
∑

i∈QX

CA(Q, i) = CA(Q) − CA(Q, QX).

Lemma 3. If CA(·) is submodular, then for any Q′, Q, A ⊆ U , with Q′ ⊂ Q and
A ∩ Q′ = ∅, it holds that

CA(Q′ ∪ A) − CA(Q′) ≥ CA(Q ∪ A) − CA(Q). (14)

Proof. Since CA(·) is submodular, then for any Q′, Q, A ⊆ U , with Q′ ⊂ Q, and
any a /∈ Q′, it holds that

CA(Q) − CA(Q′) ≥ CA(Q ∪ {a}) − CA(Q′ ∪ {a}). (15)

By contradiction, assume that there exists A = {a1, . . . .ak}, with A ∩ Q′ = ∅
such that CA(Q) − CA(Q′) < CA(Q ∪ A) − CA(Q′ ∪ A). By repeatedly applying
Eq. 15, with a = a1, a = a2, . . . , a = ak, we obtain

CA(Q ∪ A) − CA(Q′ ∪ A) > CA(Q) − CA(Q′)
≥ CA(Q ∪ {a1}) − CA(Q′ ∪ {a1})
≥ CA(Q ∪ {a1, a2}) − CA(Q′ ∪ {a1, a2})
...
≥ CA(Q ∪ A) − CA(Q′ ∪ A),

thus a contradiction.



110 P. Penna and C. Ventre

We are now in a position to prove Theorem 9.

Proof of Theorem 9. From Def. 4 and Lemma 2 there exist Q ⊆ U and X, Y ⊆ Q
such that

CA(Q, QX) = CA(Q) − CA(Q \ QX) > CA(Q \ Y ). (16)

By contradiction, assume that CA(·) is submodular. The fact that CA(·) ≥ 0,
Lemma 3 (with A = QX) and Eq. 16 imply the following inequalities, respec-
tively:

CA(Q\Y ) ≥ CA(Q\Y )−CA(Q\{Y ∪QX} ≥ CA(Q)−CA(Q\QX) > CA(Q\Y ).

The above contradiction implies that CA(·) is not submodular.

The following result states that the converse of the above theorem does not
hold. Hence, there is no equivalence between “non submodularity” and “badness”
of cost functions.

Theorem 10. There exists a two-dimensional Euclidean instance G = (U ∪
{s}, E, c) for which G is not MST-bad and CMST(·), restricted to G, is not sub-
modular.
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