
DOI: 10.1007/s00224-004-1183-1

Theory Comput. Systems 38, 481–501 (2005) Theory of
Computing

Systems
© 2005 Springer Science+Business Media, Inc.

XOR-Based Schemes for Fast Parallel IP Lookups∗

Giancarlo Bongiovanni1 and Paolo Penna2

1Dipartimento di Scienze dell’Informazione, Università di Roma “La Sapienza”,
via Salaria 113, I-00133 Roma, Italy
bongio@dsi.uniroma1.it

2Dipartimento di Informatica ed Applicazioni “R.M. Capocelli”, Università di Salerno,
via S. Allende 2, I-84081 Baronissi (SA), Italy
penna@dia.unisa.it

Abstract. An IP router must forward packets at gigabit speed in order to guaran-
tee a good quality of service. Two important factors make this task a challenging
problem: (i) for each packet, the longest matching prefix in the forwarding table
must be quickly computed; (ii) the routing tables contain several thousands of en-
tries and their size grows significantly every year. Because of this, parallel routers
have been developed which use several processors to forward packets. In this work
we present a novel algorithmic technique which, for the first time, exploits the
parallelism of the router also to reduce the size of the routing table. Our method
is scalable and requires only minimal additional hardware. Indeed, we prove that
any IP routing table T can be split into two subtables T1 and T2 such that: (a) |T1|
can be any positive integer k ≤ |T | and |T2| ≤ |T | − k + 1; (b) the two rout-
ing tables can be used separately by two processors so that the IP lookup on T
is obtained by simply XOR-ing the IP lookup on the two tables. Our method is
independent of the data structure used to implement the lookup search and it al-
lows for a better use of the processors L2 cache. For real routers routing tables,
we also show how to achieve simultaneously: (a) |T1| is roughly 7% of the orig-
inal table T ; (b) the lookup on table T2 does not require the best matching prefix
computation.

∗ The research by the second author was supported by the European Project IST-2001-33135, Critical
Resource Sharing for Cooperation in Complex Systems (CRESCCO). Part of this work has been done while
he was at the Mathematics Department, University of Rome “Tor Vergata”.

482 G. Bongiovanni and P. Penna

1. Introduction

We consider the problem of forwarding packets in an Internet router (or backbone router):
the router must decide the next hop of the packets based on their destinations and on
its routing table. With the current technology which allows us to move a packet from
the input interface to the output interface of a router [20], [18] at gigabit speed and the
availability of high speed links based on optic fibers, the bottleneck in forwarding packets
is the IP lookup operation, that is, the task of deciding the output interface corresponding
to the next hop.

In the past this operation was performed by data link bridges [6]. Currently, In-
ternet routers require the computation of the longest matching prefix of the destination
address a. Indeed, in the early 1990s, because of the enormous increase of the number
of endpoints, and the consequent increase of the routing tables, Classless Inter-Domain
Routing (CIDR) and address aggregation had been introduced [7]. The basic idea is to
aggregate all IP addresses corresponding to endpoints whose next hop is the same: it
might be the case that all machines whose IP address starts by 255.128 have output inter-
face I 1; therefore we only need to keep, in the routing table, a single pair prefix/output
255.128. ∗ . ∗ /I 1: this is the conceptual format, as the actual format is something like
255.128.0.0/ 16 I 1, plus additional information. Unfortunately, not all addresses with
a common prefix correspond to the same “geographical” area: there might be so-called
exceptions, like a subnet whose hosts have IP address starting by 255.128.128 and whose
output interface is different, say I 2. In this case we have both pairs in the routing ta-
ble and the rule to forward a packet with address a is the following: if a is in the set1

255.128. ∗ .∗, but not in 255.128.128.∗, then its next hop is I 1; otherwise, if a is in the
set 255.128.128.∗, then its next hop is I 2. In general, the correct output interface is the
one associated to the so-called best matching prefix BMP(a, T), that is, the longest prefix
in T that is a prefix of a.

Even though other operations must be performed in order to forward a packet, the
computation of the best matching prefix turns out to be the major and most computation-
ally expensive task. Indeed, performing this task on low-cost workstations is considered
a challenging problem which requires rather sophisticated algorithmic solutions [3], [5],
[8], [11], [16], [22], [24]. Partially because of these difficulties, parallel routers have
been developed which are equipped with several processors to process packets faster
[20], [18], [15].

We first illustrate two simple algorithmic approaches to the problem and discuss
why they are not feasible for IP lookup:

1. Brute-force search on the table T . We compare each entry of T and store the
longest that is a prefix of the given address a.

2. Prefix (re-) expansion. We write down a new table containing all possible IP
addresses of length 32 and the corresponding output interfaces.

Both approaches fail for different reasons. Typically, a routing table may contain sev-
eral thousands of prefixes (e.g., the MaeEast router contains about 33,000 entries [13]),

1 We consider a prefix x∗ as the set of all possible string of length 32 whose prefix is x .

XOR-Based Schemes for Fast Parallel IP Lookups 483

which makes the first approach too slow. On the other hand, the second approach would
ensure that a single memory access is enough. Unfortunately, 232 is a too large a number
to fit in the memory cache, while access time in RAM is considered too large for high
performances routers. Also, even a table with only IP addresses corresponding to end-
points would suffer from the same problem: this is exactly a major reason why prefix
aggregation is used!

In order to obtain a good tradeoff between memory size and number of memory
accesses, a data structure named the forwarding table is constructed on the basis of the
routing table T and then used for the IP lookup. For example, the forwarding table may
consist of suitable hash functions. This approach, that works well in the case of searching
for a key a in a dictionary T (i.e., the exact matching problem), has several drawbacks
when applied to the IP lookup problem:

1. We do not know the length of the BMP. Therefore, we should try all possible
lengths up to 32 for IPv4 [21] (128 for IPv6 [4]) and, for each length, apply a
suitable hash function.

2. Even when an entry of T is a prefix of the packet address a, we are not sure that
this one is the correct answer (i.e., the BMP). Indeed, the so-called exceptions
require that the above approach must be performed for all lengths even when a
prefix of a is found.

1.1. Previous Solutions

The above simple solution turns out to be inefficient for performing the IP lookup fast
enough to guarantee millions of packets per second [15]. More sophisticated and efficient
approaches have been introduced in several works in which a suitable data structure,
named the forwarding table, is constructed from the routing table T [3], [5], [8], [11],
[16], [22], [24]. For instance, in [24] a method ensuring O(log W) memory accesses
has been presented, where W denotes the number of different prefix lengths occurring
in the routing table T . This method has been improved in [22] using a technique called
the controlled prefix expansion: prefixes of certain lengths are expanded thus reducing
the value W to some W ′. For instance, each prefix x of length 8 is replaced by x · 0 and
x · 1 (both new prefixes have the same output interface of x). On one hand, the prefix
expansion improves the number of memory accesses of the algorithm in [24]. On the
other hand, its major drawback is the increase of the number of entries in the new table.
This may lead to a forwarding table too large to fit in the L2 memory cache, thus resulting
in a worse performance. Indeed, the main result of [22] is a method to pick a suitable
set of prefix lengths so that (a) the overall data structure is not too big, and (b) the value
of W ′ is as small as possible. Notice that an extreme solution would be to re-expand all
prefixes up to its maximum length 32 and then construct one hash function for this new
routing table. However, its size would be simply unfeasible even for a DRAM memory.

Actually, many existing works pursue a similar goal of obtaining an efficient data
structure whose size fits into the L2 memory cache of a processor (i.e., about 1 Mb). This
goal can be achieved only by considering real routing tables. For example, the solutions
in [3], [5], [8], and [16] guarantee a constant number of memory accesses, while the size
of the data structure is experimentally evaluated on real data; the latter affects the time
efficiency of the solution.

484 G. Bongiovanni and P. Penna

These methods are designed to be implemented on a single processor of a router.
Some routers exploit several processors by assigning different packets to different pro-
cessors which perform the IP lookup operation using a suitable forwarding table. It is
worth observing that:

1. All such methods suffer from the continuous growth of the routing tables [9],
[2], [1]; if the size of the available L2 memory cache will not grow accordingly,
the performance of such methods is destined to degrade.2

2. Other hardware-based solutions to the problem have been proposed (see [12],
[19]), but they do not scale, thus becoming obsolete after a short time, and/or
they turn out to be too expensive.

3. The solution adopted in [20] and [18] (see also [15]) exploits the parallelism in
a rather simple way: many packets can be processed in parallel, but the time a
single packet takes to be processed depends on the above solutions, which are
still the bottleneck.

Finally, the issue of efficiently updating the forwarding table is also addressed
in [11], [17], and [22]. Indeed, due to Internet routing instability [10], changes in the
routing table occur every millisecond, thus requiring a very efficient method for updating
the routing/forwarding table. Similar problems are considered in [14] for the task of
constructing/updating the hash functions, which are a key ingredient used by several
solutions.

1.2. Our Contribution

In this work we aim at exploiting the parallelism of routers in order to reduce the size
of the routing tables. Indeed, a very first (inefficient) idea would be to take a routing
table T and split it into two tables T1 and T2, each containing half of the entries of
T . Then a packet is processed in parallel by two processors having in their memory
(the forwarding table of) T1 and T2, respectively (see Figure 1). The final result is then
obtained by combining via hardware the results of the IP lookup in T1 and T2.

CPU2

table T1

table T2

BMP(a; T1)

CPU 1

BMP(a; T2)

prexif
longest BMP(a; T)IP address a

Fig. 1. A simple splitting of T into two tables T1 and T2 requires an additional hardware component to select
the longest prefix.

2 In our experiments we observed that the number of entries of a router can vary significantly from one
day to the next one: for instance, the Paix router had about 87,000 entries on 1st November 2000, and about
22,000 only the day after.

XOR-Based Schemes for Fast Parallel IP Lookups 485

The main benefit of this scheme relies on the fact that access operations on the L2
cache of the processor are much faster (up to seven times) than accesses on the RAM
memory. Thus, working on smaller tables allows us to obtain much more efficient data
structures and to face the problem of the continuous increase of the size of the tables [9].
Notice that this will not just increase the time a single packet takes to be processed once
assigned to the processors, but also the throughput of the router: while our solution uses
two processors to process one packet in one unit of time, a “classical” solution using
two processors for two packets may take seven time units because of the size of the
forwarding table.

Unfortunately, the use of the hardware for computing the final result may turn
out to be infeasible or too expensive: this circuit should take in input BMP(a, T1) and
BMP(a, T2) and return the longest string between these two (see Figure 1). An alternative
would be to split T according to the leftmost bit: T1 contains addresses starting by 0
(i.e., so-called CLASS A addresses) and T2 those starting by 1. This, however, does
not necessarily yield an even splitting of the original table, even when real data are
considered [13].

The main contribution of this work is to provide a suitable way of splitting T into
two tables T1 and T2 such that the two partial results can be combined in the simplest
way: the XOR of the two sequences. This result is obtained via an efficient algorithm
which, given a table T , for any positive integer k ≤ |T |, finds a suitable subtable T1 of
size k with the property that

LOOKUP(a, T) = LOOKUP(a, T1)⊕ LOOKUP(a, (T \T1) ∪ {ε}),
where ε is the empty string and LOOKUP(a, T) denotes the output interface corresponding
to BMP(a, T), for any IP addresses a. Therefore, for every k ≤ |T |, we can find two
subtables of size k and |T | − k + 1, respectively.

The construction of T1 is rather simple and the method yields different strategies
which might be used to optimize other parameters of the two resulting routing tables.
These, together with the guarantee that the size is smaller than the original one, might be
used to enhance the performance of the forwarding table. Additionally, our approach is
scalable in that T can be split into more than two subtables. Therefore, our method may
yield a scalable solution alternative to the simple increase of the number of processors
and/or the size of their L2 memory cache; for instance, rather than implementing a
memory cache circuit of double size, we could simply double the number of processors
and add a simple XOR circuit combined with our method. Notice that increasing the
number of processors might be much simpler than implementing a memory cache of
larger size and (approximatively) the same access time (e.g., the parallel routers in [20]
and [18] use a rather large number of processors but each with memory cache of about
1–2 Mb). We believe that our novel technique may lead to a new family of parallel routers
whose performance and costs are potentially better than those of the current solutions
[20], [15], [17], [23].

We have tested our method with real data available at [13] for five routers: MaeEast,
MaeWest, AADS, Paix, and PacBell. We present a further strategy yielding the following
interesting performances:

1. A very small routing table T1 whose size is very close to 7% of |T |. Indeed, in all
our experiments it is always smaller but in one case (the Paix router) in which it

486 G. Bongiovanni and P. Penna

equals (i) 7.3% of |T |when T contains over 87,000 entries, and (ii) 10.2% when
|T | is only about 6500 entries.

2. A “simple” routing table T2 = T \T1 with the interesting feature that no excep-
tions occur, that is, every possible IP address a has at most one matching prefix
in T2.

So, for real data, we are able to circumscribe the problem of computing the best
matching prefix to a very small set of prefixes. On one hand, we can apply one of the
existing methods, like controlled prefix expansion [22], to table T1: because of the very
small size we could do this much more aggressively and get a significant speed-up. On
the other hand, the way table T2 should be used opens new research directions in that, to
the best of our knowledge, the IP lookup problem with the restriction that no exceptions
occur has never been considered before. Observe that table T2 can be further split into
subtables without using our method, since at most one of them contains a matching
prefix.

Finally, we consider the issue of updating the routing/forwarding table, which any
feasible solution for the IP lookup must take into account. We show that updates can
be performed without introducing a significant overhead. Additionally, for the strategy
presented in Section 3, all type of updates can be done with a constant number of
operations, while keeping the structure optimality.

Roadmap. We describe our method and the main analytic results in Section 2. In
Section 3 we present our experimental results on real routing tables. In Section 4 we
conclude and describe the main open problems.

2. The General Method

In this section we describe our approach to obtain two subtables from a routing table T
so that the computation of LOOKUP(a, T) can be performed in parallel with a minimal
amount of additional hardware: the XOR of the two partial results.

Throughout the paper we make use of an equivalent representation of a routing table
by means of trees. First consider the case in which the router has only two output inter-
faces, namely 0 and 1. In Figures 2 and 3 we show a routing table and the corresponding
tree defined as follows:

1. Each vertex of the tree corresponds to a prefix in the routing table.
2. Each vertex has a label corresponding to the output value of the routing table,

i.e., either 0 or 1.
3. Because of the best matching prefix rule, the labels of any two adjacent vertices

are different, i.e., every path from a vertex to the root contains an alternated
sequence of 0s and 1s.

In general, we consider a routing table T = {(s1, o1), . . . , (sn, on)}, where each pair
(si , oi) represents a prefix/output pair. Given two binary strings s1 and s2, we denote by
s1 ≺ s2 the fact that s1 is a prefix of s2. We can represent T as a forest (S, E) where the

XOR-Based Schemes for Fast Parallel IP Lookups 487

Prefix Output
100 0
1001 1
10001 1
100101 0
1001100 0
1001111 0
1001110 0

Fig. 2. A routing table.

set of vertices is S = {s1, . . . , sn} and for any two s1, s2 ∈ S, (s1, s2) ∈ E if and only if

1. s1 ≺ s2;
2. no s ∈ S exists such that s1 ≺ s ≺ s2.

Finally, to every vertex si , we attach a label 0/1 according to the corresponding output
value of si in T .

In what follows we make use of this representation to derive a method to split T
into subtables containing fewer elements than the original one. Moreover, to simplify the
presentation, we assume that T always contains the empty string ε, thus making (S, E)
a tree rooted at ε. Observe that this tree is not directly used to perform IP lookups. So, it
will not be stored in the memory cache which will contain the forwarding tables derived
from the subtables.

2.1. The Main Idea

Our method is based on the following idea: whenever a node u ∈ T has the same label
as its parent p(u), then removing u from T and connecting its children to p(u) does not
change the result of LOOKUP(a, T). Intuitively, BMP(a, T) is the lowest node u ∈ T that
matches with a. When we remove u from T the best matching prefix of a becomes node
p(u). So, if u and p(u) have the same label, then LOOKUP(a, T) = LOOKUP(a, T̂).

Now suppose that, in the tree T in Figure 3, we flip the label of vertex “1001” from
1 to 0 (this corresponds to changing the output value in the routing table). Then, using
the above idea, it would be possible to simplify the tree (and hence the routing table)
and obtain a tree T̂ with only two entries: “100” and “10001” with labels equal to 0 and
1, respectively. Indeed, if u = BMP(a, T) is one of the nodes removed from T , then

0

100101

0 0 0 0

1 1

1001100 1001111 1001110

1001 10001

100

Fig. 3. An equivalent representation of the routing table in Figure 2.

488 G. Bongiovanni and P. Penna

0=0

1001110

0=0

1=0

1001

0=0

1=1 1=1

0=1

10001

100

100101 1001100 1001111

Fig. 4. The tree in Figure 3 with two new labels per vertex.

(i) node “100” also matches with a and (ii) the label of u and “100” are both equal to 0.
Therefore, the value of LOOKUP(a, T) and LOOKUP(a, T̂) is the same.

Unfortunately, we cannot simply flip some bits of the labels, since this would result
in a loss of information and in an uncorrect lookup operation (e.g., according to routing
table in Figures 2 and 3, all addresses “1001100 · · ·” must be routed through output
interface 1). However, we use the above idea to “spread” the vertices of the tree T into
two different trees T1 and T2, each of them corresponding to a smaller routing table.
Then the two routing tables can be used separately by two processors to compute the
output interface value. Each packet is processed in parallel by two processors and the
results are combined through a very simple Boolean circuit: the XOR of two bits.

We consider the example in Figure 4: the tree contains the same vertices (i.e.,
prefixes) as the tree in Figure 3, but each label (i.e., output interface) is replaced by a pair
of labels with the property that their XOR equals the old label (see Figure 3). Intuitively,
the two new labels represent the label of the vertex in the trees T1 and T2, respectively.
We can then use the idea that a vertex having the same label as its parent can be removed
to obtain the trees T1 and T2 in Figure 5.

2.2. How to Split and Compact the Tables

In what follows we describe in more detail our approach in the case of routers with any
number of output interfaces.

2.2.1. The split phase. Given a routing table T , let T up denote any subtree of T having
the same root. Also, for any node u ∈ T , let l(u) and l ′(u) = l1(u)/ l2(u) denote its old

0

1 1

100101

1

1001110

10001

100

1001111

T1 T2

0

0 0

1

1001100

1001

100

Fig. 5. The resulting two subtrees.

XOR-Based Schemes for Fast Parallel IP Lookups 489

x

v

T n Tup

l(x)=0

l(x)=(l(x) � l(v))

v

T2

�

l(x)� l(v)

�

u

x

T1

l(x)

l(u)

�

u
Tup l(u)=0

com
pa
ct

com
pact

NEW LABELS
(table T1/table T2)

Fig. 6. An overview of our method: the subtree T up corresponds to table T1 after a compact operation is
performed; similarly, T \T up yields the table T2.

and new labels, respectively. We assign the new labels as follows (see Figure 6):

• For any u ∈ T up, l ′(u) = l(u)/0̄, where 0̄ denotes the bit sequence (0, . . . , 0).
• For any v ∈ T \T up, l ′(v) = l(x)/(l(x)⊕ l(v)), where x is the lowest ancestor of
v in T up.

Let T ′ (respectively, T ′′) be the routing table obtained from T by replacing, for
each u ∈ T , the label l(u) with the label l1(u) (respectively, l2(u)). It clearly holds that
l1(u)⊕ l2(u) = l(u). Hence,

LOOKUP(a, T ′)⊕ LOOKUP(a, T ′′) = LOOKUP(a, T).

2.2.2. The compact phase. The main idea behind the way we assign the labels is the
following (see Figure 6):

1. All nodes in T up have the second label equal to 0̄.
2. T \T up contains upward paths where the first labels of each node are all the same.

Because of this, T1 and T2 contain redundant information and some entries (vertices)
can be removed as follows. Given a table T , let COMPACT(T) denote the table obtained
by repeatedly performing the following transformation: for every node u with a child v
having the same label, remove v and connect u to all the children of v. Then the following
result holds:

Lemma 1. Let T1 = COMPACT(T ′) and T2 = COMPACT(T ′′). Then |T1| = |T up| and
|T2| = |T | − |T up| + 1.

Proof. We will show that no node in T up, other than ε, will occur in T2; similarly, no
node in T \T up will occur in T1. Indeed, every node u ∈ T up has a label equal to 0̄ in T ′′

(see Figure 6). Since ε also has a label 0̄, COMPACT(T ′′) = T2 will not contain any such
u. Similarly, any node v ∈ T \T up has its label in T ′ equal to some l(x), where x is the

490 G. Bongiovanni and P. Penna

lowest ancestor of v in T up (see Figure 6). Therefore, all nodes in the path from x to v
have the same label l(x) and thus will not occur in COMPACT(T ′) = T1. This completes
the proof.

Lemma 2. For any table T and for any address a, it holds that

LOOKUP(a, T) = LOOKUP(a,COMPACT(T)).

Proof. Let ua = BMP(a, T) and va = BMP(a,COMPACT(T)). If ua = va , then the
lemma clearly follows. Otherwise, we first show that, in the tree T , either ua is an ancestor
of va or the other way around. By contradiction, let us assume that ua and va are not
an ancestor of one another, and let x be their lowest common ancestor. By definition,
x ≺ ua ≺ a and x ≺ va ≺ a. Let u′a and v′a be the two children in the path from x down
to ua and va , respectively. By definition of T , it must hold that u′a �≺ v′a and v′a �≺ u′a .
Since ua ≺ a and va ≺ a, it holds that ua ≺ va or va ≺ ua . We thus have two cases:

(u′a ≺ ua ≺ va). By definition of v′a , we also have v′a ≺ va , thus implying that either
u′a ≺ v′a or v′a ≺ u′a .

(v′a ≺ va ≺ ua). By definition of u′a , we also have u′a ≺ ua , thus implying that either
u′a ≺ v′a or v′a ≺ u′a .

In both cases we have a contradiction with the fact that u′a �≺ v′a and v′a �≺ u′a .
If ua was an ancestor of va (i.e., ua ≺ va), then we would obtain ua = BMP(a, T) ≺

va ∈ T . Since va ≺ a, this would contradict the definition of BMP. We thus have that va is
an ancestor of ua in T (i.e., va ≺ ua). Since BMP(a,COMPACT(T)) = va �= ua , it must
then hold that ua /∈ COMPACT(T). Moreover, in constructing COMPACT(T), we have
removed from T the node ua and all of its ancestors up to va . This implies l(ua) = l(va),
i.e., LOOKUP(a, T) = LOOKUP(a,COMPACT(T)).

We have thus proved the following result:

Theorem 1. For any routing table T and for any integer 1 ≤ k ≤ |T |, there exist two
routing tables T1 and T2 such that

• |T1| ≤ k and |T2| ≤ |T | − k + 1;
• LOOKUP(a, T) = LOOKUP(a, T1)⊕ LOOKUP(a, T2), for any address a.

The above theorem guarantees that any table T can be divided into two tables T1

and T2 of size roughly |T |/2. By applying the above construction iteratively, the result
generalizes to more than two subtables:

Corollary 1. For any routing table T and for any integers k1, k2, . . . , kl , there exist
l + 1 routing tables T1, T2, . . . , Tl+1 such that

• |Ti | ≤ ki , for 1 ≤ i ≤ l;
• |Tl+1| ≤ |T | − k + l, where k = k1 + k2 + · · · + kl ;
• LOOKUP(a, T) =⊕l+1

i=1 LOOKUP(a, Ti), for any address a.

XOR-Based Schemes for Fast Parallel IP Lookups 491

Remark 1. We mention that the bound on the overall size corresponding to all subtables
is tight. Indeed, if the original table T does not contain any redundant information (i.e.,
COMPACT(T) = T), then every entry in |T |must appear in one subtable. In other words,
splitting T into T1, T2, . . . , Tl+1 does not reduce the total number of entries.

Finally, we observe that the running time required for the construction of the two
subtables depends on two factors: (a) the time needed to construct the tree corresponding
to T ; (b) the time required to compute T up, given that tree.

While the latter depends on the strategy we adopt for T up (see Section 3), the first
step can always be performed efficiently. Indeed, by simply extending the partial order
“≺”, a simple sorting algorithm yields the nodes of the tree in the same order as if we
performed a BFS on the tree. Thus, the following result holds:

Theorem 2. Let t (|T |) denote the time needed for computing T up, given the tree cor-
responding to a routing table T . Then the subtables T1 and T2 can be constructed in
O(|T | log|T | + t (|T |)) time.

Also notice that if we want to obtain two subtables of roughly the same size, then
a simple traversal (BFS or DFS) suffices, thus allowing us to construct the subtables
in O(|T | log|T |) time. The same efficiency can also be achieved for a rather different
strategy which we describe in Section 3.

2.3. Updates

In this section we show that, in several cases, our method does not introduce an overhead
in the process of updating the forwarding table. We consider three types of updates:
(a) label changes, (b) entry insertion, and (c) entry deletion. In particular, we assume
that we have already computed the position, inside the tree T , of the newly added node
or of the node to update. We describe a method to keep the two subtables T1 and T2

updated according to the change performed on the original table T . When performing
these changes, we have to ensure that the following three properties are preserved by
the new label pairs (see Figure 6): (P1) all nodes u ∈ T up agree on their second label
(i.e., l2(u) = 0̄), (P2) all nodes v ∈ T \T up, whose lowest ancestor in T up is some node
x , agree on their first label (i.e., l1(v) = l1(x) = l(x)), and (P3) for every node p ∈ T ,
l1(p)⊕ l2(p) = l(p). Notice that, Properties (P1)–(P1) are defined as in Section 2.2.1
and are used in Section 2.2.2 to show that, by applying COMPACT to the two tables T ′ and
T ′′, we obtain subtables T up and (T \T up)∪{ε}, respectively (see Figure 6 and Lemma 1).
Our goal, however, is to avoid the recomputation of the subtables from scratch and to
keep them updated.

In the remainder of this section, we make use of the following definition:

Definition 1. A node x ∈ T up is a border node if either (i) it is a leaf node in T or
(ii) one of its children is in T \T up. A node u ∈ T up is an internal node if it is not a border
node.

Informally speaking, border nodes are the “hard” case for the updates. In the example
shown in Figure 7, we have {u, x} ⊆ T up and node x is a border node: every child vi ,

492 G. Bongiovanni and P. Penna

v2 vav1 x2 xbx1

x

u

� � � � � �

label pair l(x)=(l(x) � l(vi)) label pair l(xi)=�0

l(x)=�0

l(u)=�0

Fig. 7. The hard case for updates: if a border node x changes its label, then the label pairs of several of its
children must also be updated.

with i = 1, 2, . . . , a, is in T \T up and has the label pair l ′(vi) = (l(x)/ l(x)⊕ l(vi)). If
the label of x changes from l(x) to l̂(x) and we want to keep x in the set T up, then its new
label pair becomes l̂ ′(x) = (l̂(x)/0̄). Unfortunately, this change implies that we should
also change the label pair of every vi into l̂ ′(vi) = (l̂(x)/l̂(x)⊕ l(vi)). On the contrary,
if we insist on keeping the first label of x equal to its old value l(x), then its second
label must be equal to l(x)⊕ l̂(x), so that the XOR of the two labels yields l̂(x). In this
case every node xi , for i = 1, 2, . . . , b, will appear in both subtables T1 and T2. For b
sufficiently large with respect to |T |, this results in a significant loss of the efficiency
yielded by Theorem 1.

Since we do not want to recompute T1 and T2 from scratch, we make use of the
following representation of table T . We consider T as a tree (as specified in Section 2)
and, for each node u in T , we add the following fields: the label pair l ′(u) = (l1(u)/ l2(u)),
as defined in Section 2.2.1 and a pointer subtable(u) to the entry of u in subtable Ti

containing u, with i ∈ {1, 2}. We implement the tree by means of a list of children so
that removing a node u ∈ T and connecting all of its children to the parent p of u can
be done in constant time.

Our goal is also to count how many updates we have to perform on each subtable.
We thus assume that, for every update of a node u ∈ T , we also perform the anal-
ogous operation in the subtable Ti containing u. In particular, for every label change
performed on label pair l ′(u), the corresponding update in Ti can be done in constant
time using pointer subtable(u). Similarly, whenever we remove/add an entry from/to
T up (respectively, T \T up), we can also remove/add that entry from the list representing
T1 (respectively, T2) in constant time using pointer subtable(u).

In what follows we describe in more detail the updating procedures and their perfor-
mances depending on the specific update to be performed. Notice that the time complexity
is also an upper bound on the number of updates required on each subtable.

2.3.1. Label changes. Consider the situation in which the label of a prefix p ∈ T
changes from value l(p) to a value l̂(p). We let l̂ ′(p) = (l̂1(p)/l̂2(p)) denote the update
of the pair l ′(p) = (l1(p)/ l2(p)) corresponding to this label change of p.

We distinguish three cases according to the left tree in Figure 6:

• p is an internal node of T up, i.e., p = u in Figure 6. This is the easy case,
since it suffices to update the first label from l(u) to l̂(u), that is, we set l̂ ′(u) =

XOR-Based Schemes for Fast Parallel IP Lookups 493

(l̂1(u)/ l2(u)) = (l̂1(u)/0̄). Clearly, Properties (P1) and (P3) still hold. Moreover,
Property (P2) is preserved since p is not a leaf node in T up, thus implying that p
cannot be the lowest ancestor, in T up, of a node in T \T up.
• p is a border node of T up, i.e., p = x in Figure 6. As in the previous case,

we have to change the first label from l(u) to l ′(u); however, in this case p
may be an ancestor of several other nodes in T \T up (see Figure 7). For each
node v ∈ T \T up, such that v is a descendant of x , we perform the following
change: set l̂ ′(v) = (l̂(x)/l̂(x) ⊕ l(v)). By definition, after performing all these
changes, the new labels of x and its descendants satisfy Property (P2). Moreover,
Properties (P1) and (P3) clearly hold. This requires O(|Tx |) steps, with Tx being
the subtree of T rooted at x .
• p is a node in T \T up, i.e., p = v in Figure 6. This is another simple case, since

we only have to change the second label of v from l(x)⊕ l(v) to l(x)⊕ l ′(v), that
is, we set l̂ ′(v) = (l1(x)/ l1(x)⊕ l ′(v)) = (l(x)/ l(x)⊕ l ′(v)). Properties (P1) and
(P3) are clearly preserved. As for Property (P2), we observe that l1(v) = l(x)
and any change of l ′(v) does not affect any node w ∈ T \T up: indeed, whether
node w satisfies Property (P2) depends only on l ′(w) and on the labels of nodes
in T up. So, Property (P2) is also maintained.

It worth observing that in the first and in third cases, one label change in T translates
into one label change in either T1 or T2.

Theorem 3. Let LABEL-CHANGE(p, T, l̂(p)) denote the label change procedure de-
scribed above. The following results hold: (i) the resulting subtables T̂1 and T̂2 cor-
responding to the new label pairs satisfy T̂1 = T1 and T̂2 = T2; (ii) if p is not a
border node, then LABEL-CHANGE runs in O(1) time; otherwise, i.e., p is a border node,
(iii) LABEL-CHANGE runs in O(|Tp|) time, where Tp denotes the subtree of T rooted
at p.

Finally, we mention that every label change could also imply some node deletion
whenever the labels of two adjacent nodes become the same. This requires only an
amount of time linear in the number of children of the updated node, and keeps the two
subtables “simplified”, without computing COMPACT(T ′) and/or COMPACT(T ′′) from
scratch. Indeed, whenever a node u ∈ T changes its label pair from l ′(u) to l̂ ′(u) =
(l̂1(u)/l̂2(u)), the following may happen:

1. l̂1(u) = l1(p) or l̂2(u) = l2(p), where p(u) is the parent of u.
2. l̂1(u) = l1(v

′), for some child v′ of u.
3. l̂2(u) = l2(v

′′), for some child v′′ of u.

Notice that the above three cases are the only possible ones in which, because of the
new label pair l̂ ′(u), two adjacent nodes in T ′ or in T ′′ have the same label. Therefore,
in the worst case, we have to remove every v′ (respectively, v′′) of u from subtable T ′

(respectively, T ′′). Moreover, we may also have to remove node u from either T ′ or T ′′,
if the first condition is met. Clearly, this can be done in time linear in the number of
children of u.

494 G. Bongiovanni and P. Penna

2.3.2. Insertion/deletion

Insertion. Consider the situation in which a new node p must be inserted as a child
of some existing node p′ of T . In addition, adding entry p to table T may result in
reconnecting some of the children of p′. In particular, let ET denote the set of edges
in T . Then all nodes in the set children(T, p) := {u ∈ T | (p′, u) ∈ ET ∧ p ≺ u}
must be connected to p and their labels may be also changed according to the labels of
p. In the example shown in Figure 3, if p is the prefix ‘10011’, then p′ = 1001 and
children(T, p) = {1001100, 1001111, 1001110}.

In what follows we assume that we have inserted the new node p in the proper
position in T and we have also reconnected all nodes in children(T, p). We next show how
to update the labels in order to preserve Properties (P1)–(P3). Towards this end, we let
l̂ ′(u) = (l̂1(u)/l̂2(u))denote the new label pair of a node u ∈ T depending on the insertion
of a new node p in T . We also let l̂ ′(p) denote the label pair of the newly added node.

We next show how to update the label pairs according to the following three cases
(see Figure 6):

• p′ is an internal node in T up, i.e., p′ = u in Figure 6. We include p in T up

and we set l̂ ′(p) = (l(p)/0̄). Notice that since p′ is an internal node, then all
children of p′ (if any) are in T up. Therefore, any node v ∈ children(T, p) (if
any) has the label l ′(v) = (l(v)/0̄), thus implying that Property (P1) is preserved.
This also implies that p is not a border node and, thus, Property (P2) also holds
(all labels of existing nodes in T are unchanged). Finally, Property (P3) clearly
holds.
• p′ is a border node in T up, i.e., p′ = x in Figure 6. We perform this operation in

two steps:
1. We first insert node p assuming that its label is equal to the label l(p′) of its

parent, that is, we define l ′(p) = (l(p′)/0̄). Let T̂ denote the resulting tree
containing p with the label pair l ′(p).

2. Then, in the tree T̂ , we update the label of p from l(p′) to l(p) by invoking
procedure LABEL-CHANGE(p, T̂ , l(p)) described in Section 2.3.1.

Notice that, since in Step 2.3.2 we set l ′(p) = (l(p′)/0̄), we have inserted p in
T up. Therefore, it might be the case that p becomes a border node. In this case,
by Theorem 3, the running time of Step 2.3.2 is O(Tp). Otherwise, i.e., p is not
a border node, Theorem 3 implies that Step 2.3.2 requires O(1) time.
• p′ is a node in T \T up, i.e., p′ = v in Figure 6. This is another easy case since

we only have to set l̂ ′(p) = (l(x)/ l(x) ⊕ l(p)), where x is the lowest ancestor
of p′ (and thus of p) in T up. For every node w ∈ children(T, p) it holds that
l ′(w) = (l1(p′)/ l1(p′) ⊕ l(w)), where l ′(p′) = (l(x)/ l(x) ⊕ l(p′)), thus im-
plying that Property (P2) is preserved. Finally, Properties (P1) and (P3) clearly
hold.

Theorem 4. Let INSERT(p, T, l̂(p)) denote the insertion procedure described above,
and let T̂1 and T̂2 denote the resulting subtables corresponding to the new label pairs.
Then the following results hold: (i) |T̂1| + |T̂2| ≤ |T | + 1; (ii) T̂1 ⊆ T1 ∪ {p}; (iii) T̂2 ⊆
T2 ∪ {p}; (iv) if p is not a border node, then INSERT runs in O(1) time; otherwise, i.e.,

XOR-Based Schemes for Fast Parallel IP Lookups 495

p is a border node, (v) INSERT runs in O(|Tp|) time, where Tp denotes the subtree of T
rooted at p.

Deletion. Let p ∈ T be the node to be removed from T , and let p′ denote its parent.
Removing node p causes the rearrangement of its children which, in the tree without T ,
become children of node p′. We define the new label pairs l̂ ′(u) in the same way as for
the insertion.

We distinguish the following three cases:

• p is an internal node in T up, i.e., p = u in Figure 6. In this case, every child v
of p is also in T up, thus implying that l ′(v) = (l(v)/0̄)). Therefore, leaving all
labels unchanged does not violate Property (P1). Also, Property (P2) holds since
we did not change any label and we did not move any node from T up into T \T up,
or vice versa. Finally, Property (P3) follows from the fact that we did not change
any label.
• p is a border node in T up, i.e., p = x in Figure 6. We perform this update in two

steps:
1. We first change the label of p from l(p) to l(p′) by running

LABEL-CHANGE(p, T, l(p′)). Let T̂ denote the resulting tree containing p
with the new label pairs.

2. Remove node p from T̂ and reconnect its children to the parent p′ of p. Let
T\{P} denote the resulting tree.

Notice that, since LABEL-CHANGE preserves Property (P2), in the tree T̂ , every
descendant v of p belonging to T \T up has the first label equal to l(p′). Therefore,
after the removal of p from T̂ , Property (P2) holds. Also notice that Step 2.3.2
preserves Property (P1) since we do not change any label. Since Property (P1)
is also preserved in Step 2.3.2, this property holds for the tree T\{P}. Similarly,
Property (P3) is also maintained.
• p is a node in T \T up, i.e., p = v in Figure 6. This is another easy case since we do

not need any label change. Indeed, we have that l ′(p) = l ′((l(x)/ l(x)⊕ l(p)) =
l ′(p′), where x is the lowest ancestor of p′ (and thus of p) in T up. For every
node w ∈ children(T, p) it holds that l ′(w) = (l1(p′)/ l1(p′) ⊕ l(w)), where
l ′(p′) = (l(x)/ l(x) ⊕ l(p′)), thus implying that Property (P2) is preserved.
Finally, Properties (P1) and (P3) clearly hold.

Theorem 5. Let DELETE(p, T) denote the delete procedure described above, and let
T̂1 and T̂2 denote the resulting subtables corresponding to the new label pairs. Then the
following results hold: (i) |T̂1| + |T̂2| ≤ |T | − 1; (ii) T̂1 ⊆ T1; (iii) T̂2 ⊆ T2; (iv) if p is
not a border node, then DELETE runs in O(1) time; otherwise, i.e., p is a border node,
(v) DELETE runs in O(|Tp|) time, where Tp denotes the subtree of T rooted at p.

2.4. Extensions of Our Method

In this section we provide a more general view of our approach and motivate the use
of XOR-based schemes (as opposed to other extensions/modifications of our approach
using, e.g., the Boolean OR/AND operators).

496 G. Bongiovanni and P. Penna

Our choice of using the XOR operator “⊕” is motivated by practical and theoretical
considerations. From the practical point of view, as mentioned in Section 1, this operator
determines the circuit complexity of the hardware that must combine the results of the
two lookup operations (see Figure 1). Therefore, with “⊕” we only need a few XOR
gates. From a theoretical point of view, “⊕” posses all the mathematical properties that
are needed in order to achieve our main result (see Theorem 1). Indeed, we next provide
a more general approach which uses a generic operator “�” with the following three
properties: (i) associativity, (ii) identity element i�, and (iii) inverse. We then show that
these properties are necessary, since for both the OR “+” and the AND “·” Boolean
operators, we cannot achieve the same flexibility (notice that these operators do not have
an inverse).

For the generalization of our approach, we refer to the description in Figure 6. In
particular, the two new labels of each node are defined according to the following rules.
Every node x ∈ T up has labels l(x)/ i�; a node v ∈ T \T up has labels l(x)/L[l(x), l(v)],
with x being the lowest ancestor of v in T up (see Figure 6) and with L[α, β] = α−1�β.
Doing so, we preserve the following properties used to achieve our results: (P1′) all
nodes in T up agree on their second label (i.e., i�), (P2′) all nodes v ∈ T \T up, whose
lowest ancestor in T up is some node x , agree on their first label (i.e., l(x)), and (P3′) for
every node, the “combination” of its two new labels gives the original one. In particular,
let us observe that l(x)� i� = l(x) and

l(x)� L[l(x), l(v)] = l(x)� (l(x)−1 � l(v)) = (l(x)� l(x)−1)� l(v)

= i� � l(v) = l(v). (1)

Properties (P1′) and (P2′) imply that Lemma 1 still holds when replacing “⊕” by “�”,
while Property (P1′) implies Lemma 2 with “�” in place of “⊕”. Putting things to-
gether, we can obtain the same as Theorem 1 and Corollary 1 for our generalized
method.

Though the generalized approach does not give any improvement with respect to to
the one with “⊕”, it provides a more abstract view of our method. We next show that
properties (P1′)–(P3′) are somewhat necessary in order to obtain such a general result
(namely, Theorem 1). Consider the case in which “⊕” is replaced by the Boolean OR
“+”, and consider the example in Figure 3. We next show that it is impossible to have
the splitting in Figure 5. Indeed, observe that, according to our approach, if the label
is 1, then the new pair of labels must be 0/1, 1/0, or 1/1, while a label 0 is always
replaced by the pair 0/0. In particular, all children of node “1001” in Figure 3 will
have new labels 0/0, thus implying that they must all appear in the same subtable (T up

or T \T up).3 When considering the cases in which node “1001” has many children, it is
impossible to obtain an even splitting of the original table using “+”. A similar argument
also applies to the AND operator “·” simply by exchanging, in Figure 3, label values 0s
and 1s.

3 Things can be even worse if node “1001” gets the pair 1/1, in which case all of its children appear in
both subtables.

XOR-Based Schemes for Fast Parallel IP Lookups 497

3. Experimental Results

These experiments have been performed on real routing tables of five routers: MaeEast,
MaeWest, AADS, Paix, and PacBell. (Data available at [13].) In particular, we first ob-
serve that the tree T of the original table is a shallow tree, that is, its depth is always
at most 6 (including the dummy node ε corresponding to the empty string). More im-
portantly, the table contains many leaf nodes, i.e., nodes with no children. These nodes
correspond to the entries u such that, for every v ∈ T , u �≺ v. Therefore, if we restrict to
this set of entries, we know that, for every IP address a, there is at most one matching
prefix u ≺ a, with u being a leaf node. In other words, in this case we do not need to
find the best matching prefix. Based on this observation, we have tested the following
strategy:

• The tree T up contains all nonleaf nodes of T .

The idea is that of obtaining a table T2 with no exceptions (i.e., all leaf nodes in T)
and a table T1 significantly smaller than |T |. Clearly, the smaller the size of T1 the better:

• The small size of T1 (with respect to the size of T) basically resolves the issue of
the memory size of the data structure for the IP lookup in T1.
• The particular structure of T2 (i.e., no exceptions) may simplify significantly the

problem and yield a data structure of smaller size (with respect to those solving
the BMP problem).

It turns out that in all our experiments the size of T up (and thus T1) is always roughly
7% of |T |. Indeed, the only case in which it is larger than 7% is for the Paix router of
00/10/01: in this case, |T1| is about 7.3% of |T | (see Table 1). Interestingly, the routing
table of this router, for this day, has over 87, 000 entries, thus showing that our method
is “robust” to size fluctuations (compare the same router of other days in Table 2).

We also emphasize that, very similar results have been obtained over both a period
of one week (see Table 2) and over a sample consisting of snapshots of the same server
for several months (see Table 1).

Table 1. Percentage of leaf nodes over one month (leaves/total entries, percentage).

Day
(yy/mm/dd) MaeEast MaeWest AADS Paix PacBell

00/10/01 22,462/24,018 30,195/32,259 27,112/28,820 80,812/87,125 34,266/36,313
93.5% 93.6% 94% 92.7% 94.3%

00/11/01 21,935/23,507 31,115/33,249 28,239/30,002 9,922/10,620 21,900/23,273
93.3% 93.5% 94.1% 93.4% 94.1%

00/12/01 23,575/25,187 29,862/31,927 27,158/28,852 9,851/10,522 20,763/22,093
93.5% 93.5% 94.1% 93.6% 93.9%

01/01/01 23,140/24,760 29,680/31,752 26,906/28,562 10,421/11,092 36,788/39,088
93.4% 93.4% 94.2% 93.9% 94.1%

01/02/01 23,152/24,753 29,019/30,993 26,255/27,833 10,776/11,454 37,925/40,320
93.5% 93.6% 94.3% 94% 94%

498 G. Bongiovanni and P. Penna

Table 2. Percentage of leaf nodes over one week (leaves/total entries, percentage).

Day
(yy/mm/dd) MaeEast MaeWest AADS Paix PacBell

00/10/01 22,462/24,018 30,195/32,259 27,112/28,820 80,812/87,125 34,266/36,313
93.5% 93.6% 94% 92.7% 94.3%

00/10/02 22,380/23,932 30,124/32,178 27,066/28,755 21,325/22,887 34,446/36,511
93.5% 93.6% 94% 93% 94.3%

00/10/03 22,361/23,922 30,038/32,094 27,016/28,730 80,776/87,100 34,505/36,557
93.4% 93.5% 94% 92.7% 94.3%

00/10/04 22,426/23,991 30,170/32,239 27,121/28,832 81,025/87,372 34,315/36,387
93.4% 93.5% 94% 92.7% 94.3%

00/10/05 22,276/23,820 30,249/32,320 27,200/28,912 81,030/87,374 39,460/42,142
93.5% 93.5% 94% 92.7% 93.6%

00/10/06 22,252/23,800 30,620/32,701 27,945/29,763 81,283/87,638 34,465/36,535
93.4% 93.6% 93.8% 92.7% 94.3%

00/10/07 22,323/23,876 30,414/32,488 27,942/29,672 81,179/87,542 34,240/36,308
93.4% 93.6% 94.1% 92.7% 94.3%

00/10/08 22,339/23,902 76,55/8,140 28,000/29,734 5,939/6,536 7,824/8,275
93.4% 94% 94.1% 90.8% 94.5%

These two things together give strong evidence that this method guarantees the same
performance over a long period of time (see also Table 3).

Justification. We next provide some evidence of the following two facts. First, with
our method, the size of the table T1 that contains the exceptions (i.e., two entries u and
v with u ≺ v) is quite small in spite of the fact that the original table T contains a larger
percentage of exceptions. Moreover, the naive strategy of removing from T all suffixes
and collecting them into table T1 cannot achieve the same performances as our method.

Indeed, in Table 4 we report on two different measures: (i) the number of entries at
a given height in the tree T : a node is at hight i if its distance from the root ε is i ; (ii) the
number of entries u whose subtree Tu has hight i . Observe that:

1. The height of an entry in the tree corresponds to the number of prefixes of such
an entry. So, without considering node ε, the total number of entries of hight
i ≥ 2 yields the number of suffixes of other entries.

2. The number of entries u whose subtree Tu has hight 0 is equal to the number
leaves in T .

Table 3. More results on the MaeWest for March 2002.

Day

9th 10th 11th 12th 13th 14th 15th

Leaves 27,654 27,670 27,660 27,697 27,575 27,527 27,620
Total entries 29,635 29,648 29,633 29,686 29,542 29,485 29,585
Percentage 93.3% 93.3% 93.3% 93.2% 93.3% 93.3% 93.3%

XOR-Based Schemes for Fast Parallel IP Lookups 499

Table 4. Number of entries with a given height vs number of entries whose
subtree has a given height (MaeEast 00/10/01).

Height

0 1 2 3 4 5 6

Entry 1 16917 6041 928 123 7 1
Subtree 22462 1362 162 27 3 1 1

Consider now the naive approach of defining subtable T1 as the set of entries that
are the prefix of other entries in T , that is, T1 := {v ∈ T | ∃u ∈ T \{ε} : u ≺ v} and
T2 := T \T2. By definition, table T1 contains all entries at hight i ≥ 2, while table T2

those at height 1 or 0. This property ensures that no two entries u and u′ in T2, with
u �= ε �= u′, satisfy u ≺ u′. In other words, table T2 contains no exceptions, while table
T1 does. Again, table T1 represents the “hard” case as it requires the computation of the
best matching prefix. Therefore, we would like its size to be as small as possible.

Unfortunately, for the real data in Table 4, the naive approach would give |T1| = 7100
and |T2| = 16,918, thus implying that T1 contains roughly 29.5% of the total entries.
With our method, instead, we obtain |T1| = 1556+ 1 = 1557 and |T2| = 22,462, with
table T1 containing only 6.5% of all entries in T . This justifies our approach as opposed
to the naive one.

Updates. We briefly go back to the updating issue. Inserting a new node p as a child
of some v ∈ T \T up can be done by moving v in T up and placing p in T \T up, without
changing the labels of any other node. Every update involving a leaf node, i.e., a node
v ∈ T \T up, can be performed with procedures INSERT and DELETE described in Section
2.3.2. Since v is not a border node, Theorems 3 and 5 imply that, in both cases, the
running time is O(1).

A label change of a border node node x (i.e., a leaf of T up with at least one child
in T \T up) can be performed by updating the labels of all children of x in T . Indeed,
procedure LABEL-CHANGE requires changing the label pairs of all descendants of x that
are in T \T up (see Section 2.3.1). By definition of T up, all descendants of a border node
x must be children of x : indeed, every node in T \T up is a leaf of T . Therefore, this
operation requires an amount of time linear in the number of children of x .

We also mention that our approach may have a further benefit: assume that changes
occur in the routing table with roughly a uniform distribution over all entries. Then we
would expect many more changes in the “easy” subtable T2 containing all leaf nodes.
Therefore, the forwarding table corresponding to subtable T1 can be more optimal for
the lookup operation, rather than for the efficient update.

At the present state of our research we do not know whether the assumption on
the uniform distribution of changes is realistic. We conjecture that a large fraction of
all updates occur in the leaf nodes. Indeed, in Table 5 we show that the number of
entries whose subtree has height 2 or more is almost the same over a period of one week
(MaeEast router). This seems to denote the fact that changes occur more frequently for
leaf nodes of T .

500 G. Bongiovanni and P. Penna

Table 5. The distribution of entries having a subtree of a given height
(MaeEast router over one week).

Height

Day
(yy/mm/dd) 0 1 2 3 4 5 6

00/10/01 22462 1362 162 27 3 1 1
00/10/02 22380 1359 162 26 3 1 1
00/10/03 22361 1366 163 27 3 1 1
00/10/04 22426 1370 162 28 3 1 1
00/10/05 22276 1352 162 25 3 1 1
00/10/06 22252 1356 161 26 3 1 1
00/10/07 22323 1362 161 25 3 1 1
00/10/08 22339 1369 163 26 3 1 1

4. Conclusion, Future Work, and Open Problems

We have introduced a general scheme which allows us to split a routing table into two
(or more) routing tables T1 and T2, which can be used in parallel without introducing a
significant hardware overhead. The method yields a family of possible ways to construct
T1: basically, all possible subtrees T up as in Figure 6.

This will allow for a lot of flexibility. In particular, it might be interesting to investi-
gate whether, for real data, it is possible to optimize other parameters. For instance, the
worst-case time complexity of some solutions for the IP lookup [24], [22] depends on
the number of different lengths occurring in the table. Is it possible to obtain two tables
of roughly the same size and such that the set of prefix lengths is also spread between
them?

Do strategies which split T into more than two tables have significant advantages
in practice?

Finally, the main problem left open is that of designing an efficient forwarding table
for the case of routing tables with no exceptions. Do any of the existing solutions get
simpler or more efficient because of this?

Acknowledgments

We are grateful to Andrea Clementi, Pilu Crescenzi, and Giorgio Gambosi for several useful discussions. We
also thank Pilu for providing us with part of the software used in [3] which is also used here to extract the
information from the routing tables available at [13]. Our acknowledgments also go to Corrado Bellucci for
implementing the strategy described in Section 3 and for performing some preliminary experiments. Finally,
we thank the anonymous referees for suggesting we investigate the extensions of our method in Section 2.4,
for reporting on a mistake on the statement of Lemma 1, and for several other insightful comments that greatly
improved the paper.

References

[1] S. Bellovin, R. Bush, T.G. Griffin, and J. Rexford. Slowing Routing Table Growth by Filtering Based on
Address Allocation Policies. Preprint available from http://www.research.att.com/∼jrex/, June 2001.

[2] T. Bu, L. Gao, and D. Towsley. On Routing Table Growth. In Proceedings of Globe Internet, pages
2185–2189, 2002.

XOR-Based Schemes for Fast Parallel IP Lookups 501

[3] P. Crescenzi, L. Dardini, and R. Grossi. IP Address Lookup Made Fast and Simple. In Proc. of the
7th Annual European Symposium on Algorithms (ESA), pages 65–76. Volume 1643 of LNCS. Springer,
Berlin, 1999.

[4] S. Deering and R. Hinden. Internet protocol, version 6 (IPv6). RFC 1883, 1995.
[5] M. Degernark, A. Brodnik, S. Carlesson, and S. Pink. Small Forwarding Tables for Fast Routing

Lookups. ACM Computer Communication Review, 27(4):3–14, 1997.
[6] DIGITAL. GIGAswitch/FDDI networking switch. http://www.networks.europe.digital.com/html/

products guide/hp-swch3.html, 1995.
[7] V. Fuller, T. Li, J. Yu, and K. Varadhan. Classless Inter-Domain Routing (CIDR) and Address Assignment

and Aggregation Strategy. RFC 1519, September 1993.
[8] N. Huang, S. Zhao, and J. Pan C. Su. A Fast IP Routing Lookup Scheme for Gigabit Switching

Routers. In Proc. of the Annual Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM), pages 1429–1436, 1999.

[9] G. Huston. Analyzing the Internet’s BGP Routing Table. The Internet Protocol Journal, 4(1):2–15,
2001.

[10] C. Labovitz, G.R. Malan, and F. Jahanian. Origins of Internet Routing Instability. In Proc. of the Annual
Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), pages 218–226,
1999.

[11] B. Lampson, V. Srinivasan, and G. Varghese. IP Lookups Using Multi-Way and Multicolumn Search.
IEEE/ACM Transactions on Networking, 7(3):324–334, 1998. Conference version in Proc. IEEE
INFOCOM ’98, pages 1188-1196.

[12] A. McAuley, P. Tsuchiya, and D. Wilson. Fast Multilevel Hierarchical Routing Table Using Content-
Addressable Memory. US Patent Serial Number 034444, 1995.

[13] MERIT. IPMA statistics. ftp://ftp.merit.edu/ipma/routing table, 2002.
[14] M. Mitzenmacher and A. Broder. Using Multiple Hash Functions to Improve IP Lookups . In Proc. of

the Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), pages
1454–1463, 2001.

[15] P. Newman, G. Minshall, T. Lyon, and L. Huston. IP Switching and Gigabit Routers. IEEE Communi-
cations Magazine, 35(1):64–69, January 1997.

[16] S. Nilsson and G. Karlsson. Fast Address Look-Up for Internet Routers. In Proc. of IEEE Broadband
Communications, pages 42–50, April 1998.

[17] D. Pao, C. Liu, A. Wu, L. Yeung, and K.S. Chan. Efficient Hardware Architecture for Fast IP Address
Lookup. In Proc. of the Annual Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM), 2002.

[18] C. Partridge, P. Carvey, E. Burgess, I. Castineyra, T. Clarke, L. Graham, M. Hathaway, P. Herman,
A. King, S. Kohalmi, T. Ma, J. Mcallen, T. Mendez, W.C. Miller, R. Pettyjohn, J. Rokosz, J. Seeger,
M. Sollins, S. Storch, B. Tober, G.D. Troxel, and S. Winterble. A 50-Gb/s IP Router. IEEE/ACM
Transactions on Networking, 6(3):237–247, 1998.

[19] T.-B. Pei and C. Zukowski. Putting routing tables into silicon. IEEE Network, 6(1):42–50, January
1992.

[20] Pluris Inc. Pluris Massively Parallel Routing. White Paper. http://www.pluris.com.
[21] J. Postel. Internet Protocol. RFC 791, 1981.
[22] V. Srinivasan and G. Varghese. Faster IP Lookups Using Controlled Prefix Expansion. ACM Transactions

on Computer Systems, 17(1):1–40, 1999. Conference version in Proc. ACM SIGMETRICS ’98, pages
1-10.

[23] D.E. Taylor, J.W. Lockwood, T.S. Sroull, J.S. Turner, and D.B. Parlour. Scalable IP Lookup for Pro-
grammable Routers. In Proc. of the Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM), 2002.

[24] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable High Speed IP Routing Lookups. In Proc.
of the ACM Annual Conference of the Special Interest Group on Data Communication (SIGCOMM),
pages 25–36, September 1997.

Received June 24, 2003, and in revised form December 9, 2003, and in final form January 26, 2004.
Online publication February 24, 2005.

