
Routing Selfish Unsplittable Traffic∗

Vincenzo Auletta Roberto De Prisco Paolo Penna Giuseppe Persiano

August 23, 2006

Abstract

We consider general resource assignment games involving selfish users/agents in which users
compete for resources and try to be assigned to resources which maximize their own benefits
(e.g., try to route their traffic through links which minimize the latency of their own traffic).
We propose and study a mechanism design approach in which an allocation mechanism assigns
users to resources and charges the users for using the resources so to induce each user to truth-
fully report a private piece of information he/she holds (e.g., how much traffic he/she needs to
transmit). This information is crucial for computing optimal (or close to the optimal) alloca-
tions and an agent could misreport his/her information so to induce the underlying allocation
algorithm to output a solution which he/she likes more (e.g., which assigns better resources to
him/her).

For our resource allocation problems, we give an algorithmic characterization of the solutions
for which truth-telling is a Nash equilibrium. A natural application of these results is to a
scheduling/routing problem which is the mechanism design “counterpart” of the selfish routing
game of Koutsoupias and Papadimitriou [1999]: Each selfish user wants to route a piece of
unsplittable traffic using one of m links of different speeds so to minimize his/her own latency.
Our mechanism design counterpart can be seen as the problem of scheduling selfish jobs on
parallel related machines and is the dual of the problem of scheduling (unselfish) jobs on parallel
selfish machines studied by Archer and Tardos [2001].

Koutsoupias and Papadimitriou studied an “anarchic” scenario in which each user chooses
his/her own link and this may produce Nash equilibria of cost Ω(log m/ log log m) times the
optimum. Our mechanism design counterpart is a possible way of reducing the effect of selfish
behaviour via suitable incentives to the agents (namely, taxes for using the links). We indeed
show that, in the resulting game, it is possible to guarantee an approximation factor of 8 for
any number of links/machines (this solution also works for online settings). However, it remains
impossible to guarantee arbitrarily good approximate solutions even for two links/machines and
even if the allocation algorithm is allowed super polynomial time. This result shows that our
scheduling problem with selfish jobs is more difficult than the scheduling problem with selfish
machines by Archer and Tardos (which admits exact solutions).

We study several generalizations of this basic problem, including (i) routing over arbitrary
networks, (ii) cost functions other than the maximum link congestion, (iii) the case in which
both machines and jobs are owned by selfish agents, (iv) agents owning more than one job, and
(v) machines with different internal scheduling policies. These variants account for basic aspects
of resource allocation problems and the corresponding results show how these aspects affect the
quality of the solution that one can compute when selfish agents are involved.

Keywords: Scheduling, Selfish Routing, Nash Equilibrium, Algorithmic Mechanism Design.
∗A preliminary version of this work appeared in the Proceedings of SPAA 2004. Work supported by the European

Project IST-15964, Algorithmic Principles for Building Efficient Overlay Computers (AEOLUS).

1

Contents

1 Introduction 3
1.1 Our contribution . 4
1.2 Related work . 7

2 Resource assignment games 8
2.1 A mechanism design approach . 10

3 A characterization of NE-truthful mechanisms 11

4 Mechanisms for the MKP game 13
4.1 Upper bounds for the MKP game . 14
4.2 Lower bounds . 15

5 Extensions of the MKP game 18
5.1 Selfish machines . 18
5.2 More games with quasi one-parameter agents . 20

6 Agents owning more than one job 20
6.1 Lower bounds . 21
6.2 Upper bounds . 22

7 Conclusions and open problems 29

2

1 Introduction

Selfish routing games have been the subject of several studies because of their applications to
situations, typical in the Internet, where different entities compete for shared resources and may
act selfishly trying to increase their own benefits. The simplest example of such a game has been
studied in the seminal paper by Koutsoupias and Papadimitriou [19]. Here, we have m parallel
communication links and a set of n selfish agents, with agent i owning a piece of unsplittable traffic of
weight ti. Links can have different speeds and each agent chooses the link to use for routing his/her
traffic so to minimize his/her expected latency even though this may lead to a globally inefficient
solution. The Koutsoupias-Papadimitriou (KP) model does not assume central coordination (in the
sense of a manager that centrally decides routes for the agents) nor agents are assumed to coordinate
their routing strategies. A natural approach for analyzing this scenario comes from Microeconomics
and Game Theory and it uses the well-known concept of Nash equilibrium (see e.g. [24]). Roughly
speaking, in a Nash equilibrium an agent cannot benefit by unilaterally changing his/her “strategy”
(in the KP model, to pick a different link). Koutsoupias and Papadimitriou [19] propose to study
the coordination ratio as the measure of the loss of performance due to the lack of cooperation
among the selfish agents: given a global optimization function (like minimizing the maximum link
congestion), how bad is the worst-case Nash equilibria? In other words, the coordination ratio
measures the “price of the anarchy.” For this simple game it is possible to have a Nash equilibrium
that costs Θ(log m/ log log log m) times the optimum (see [8]). This result suggests to consider
alternatives to the “anarchic policy” so to induce the agents to perform strategies which result
in a better (possibly optimal) system performance. In this work, we propose a mechanism design
approach in order to obtain a better resource allocation. We first consider the very same network of
the KP model in which a scheduler assigns traffic to the links. The main difficulty is the fact that
the scheduler must compute an allocation based on the amount of traffic that each agent declares to
be willing to route; this value may be different from the true one and an agent could misreport this
piece of information to “manipulate” the scheduler and reduce his/her latency. We thus augment
the algorithm with suitable payment functions which charge users for using the links and whose
purpose is to make convenient for the agents to be truthful (see Sect. 2 for formal definitions).
The resulting problem is a mechanism design problem in which we want to schedule selfish jobs
(i.e., traffic) on parallel related machines (i.e., links), as opposed to to the problem of scheduling
(non-selfish) jobs on selfish machines investigated by Archer and Tardos [1]. In both cases, the
objective is to minimize the makespan, i.e., the maximum link congestion.

The study of this simple setting (i.e., the networks in the KP model) allows for a direct compar-
ison with other approaches to cope with selfish agents (e.g., allowing selfish routing [19], suggesting
a good Nash equilibrium [10], inducing good Nash equilibria via scheduling policies “internal” to
the machines [4]). Nevertheless, the relative simplicity of this model makes it possible to isolate
fundamental aspects of resource allocation problems involving selfish users. We indeed derive a
general technique for designing mechanisms for generalizations of this basic problem, including (i)
routing over arbitrary networks, (ii) cost functions other than the maximum link congestion, (iii)
the case in which both machines and jobs are owned by selfish agents, (iv) agents owning more
than one job, and (v) machines with different internal scheduling policies.

3

1.1 Our contribution

In this paper we investigate a general Resource Assignment (RA) game (which includes the no-
table example of the selfish routing game of Koutsoupias and Papadimitriou) from the following
prospective based on mechanism design. In the Mechanism Resource Assignment (MRA) game we
consider an allocation algorithm A which computes an allocation of requests to resources. Agents
cannot directly choose the resources nor refuse the allocation chosen by the allocation algorithm.
However, they may still manipulate the system by reporting false information about their requests
(see Section 2 for a formal description of our model). The allocation algorithm is also allowed to
charge each agent for the use of the resources. We are interested in allocation algorithms for which
there exists a payment function P such that the strategies of reporting the truth about their own
requests constitute a Nash equilibrium for all the agents. In this case the pair (A,P) is called a
NE-truthful mechanism (see Definition 1). Allocations computed by A are associated with a cost
and we would like A to output an allocation of minimum cost. Since in most cases, computing
the minimum cost allocation is computationally hard, we consider approximate mechanisms and
measure the quality of a mechanism (A,P) by its approximation ratio; that is, the ratio between
the cost of the allocation computed by A and the cost of an optimal allocation.

In Section 3, we start by characterizing the class of allocation algorithms that induce a NE-
truthful mechanism for quasi one-parameter agents (see Definition 5). The class of quasi one-
parameter agents is a generalization of the well-studied class of one-parameter agents [21, 1]. In-
terestingly, agents of MRA games are quasi one-parameter (see Definition 3), though not one-
parameter. We show that monotone algorithms, that characterize truthful mechanisms for one-
parameter agents [21, 1], also characterize NE-truthful mechanisms for quasi one-parameter agents.
This result represents the “kernel” of several interesting problems which can be formulated in terms
of MRA games: For these problems, the existence of (optimal/polynomial-time) NE-truthful mech-
anisms reduces to the existence of (optimal/polynomial-time) monotone algorithms. We also show
that rather simple MRA games do not admit exact mechanisms with dominant strategies.

Mechanism design for the KP model (Section 4). We focus on a particular MRA game,
which we call MKP game, that is a mechanism design version of the routing problem in the KP
model [19]: In our game, agents are not allowed to pick the link where to route their traffic;
a scheduler allocates the traffic (i.e., jobs) on the links (i.e., parallel related machines) and the
agents cannot refuse the allocation chosen by the scheduler. However, they may still manipulate
the system by reporting false information on the size of their own jobs (see Section 2 for a formal
description of our model). We investigate the benefits of replacing the “anarchic” policy of having
agents choosing their own route with a scheduling algorithm which, combined with a suitable
payment function, yields a mechanism inducing the agents to report the correct information (see
Section 2 for a formal definition of these concepts). We measure such benefits by considering
how good the makespan of the solution computed by the mechanism can be with respect to the
optimal one. That is, we investigate the approximation ratio that a mechanism for our game(s)
can achieve. Since the problem is NP-hard even for two machines with identical speeds, we focus
on both exponential-time and polynomial-time mechanisms. In particular, the negative results
on exponential-time mechanisms show that the inapproximability of the problem does not arise
because of its computational intractability but it comes from the “lack of altruism” of the selfish
agents.

We characterize the existence of approximation mechanisms depending on (the combination of)

4

the following factors:

• The ratio r between the largest and the smallest machine speeds. In more general settings, r
quantifies how much resources can differ (e.g., in the problem of routing in general networks,
r is the ratio between the longest and the shortest path towards the destination).

• Whether we consider mechanism inducing Nash equilibria or stronger ones with dominant
strategies (i.e., NE-truthful or truthful mechanisms, formally defined in Sect. 2.1).

• The number m of machines.

We characterize the class of NE-truthful mechanisms in terms of job-monotone algorithms:
Roughly speaking, these algorithms assign jobs “monotonically”, that is, if we increase the size of
one job then this job cannot be moved to a slower machine (see Definition 3). This condition is
also necessary for mechanisms of the stronger type (i.e., truthful with dominant strategies), though
some of our results imply that it is not sufficient. Moreover, this requirement can be considered
as the “dual” of the monotonicity for scheduling problems involving selfish machines [1]: there,
slowing down one machine causes the increase of its assigned work.

From our characterization we derive upper and lower bounds showing that a crucial factor is
the ratio r between the machine speeds. For r = 1, every algorithm is job-monotone and thus exact
solutions can be implemented in general, that is, for any cost function (see Corollary 12). If we
consider our setting where the makespan is the cost function, (1 + ε)-approximate solutions can
be obtained in polynomial time. By contrast, it is impossible to obtain truthful mechanisms (i.e.,
mechanism for which truth-telling is a dominant strategy) that achieve approximation better than
5/4 even if we allow exponential running time and consider two machines with the same speed (see
Theorem 19).

For every r > 1, no NE-truthful mechanism can guarantee (1 + ε)-approximate makespan, for
some ε > 0, even if we consider exponential-time mechanisms for the case of two machines only.
Our results show that optimal solutions can be obtained if and only if resources are all of the
same type (i.e., r = 1). The negative results for r > 1 are complemented by a constant-ratio
NE-truthful mechanism for any number of machines (even non-constant) having arbitrary speeds.
This mechanism is online and achieves a competitive ratio of 8 (see Table 1 for a summary of our
results for the MKP game). Payments satisfy the natural no positive transfer condition, that is,
no agent receives money from the mechanism and thus users pay for routing their traffic.

Notice that truthful mechanisms are stronger than NE-truthful mechanisms. Indeed, dominant
strategies guarantee that, even in presence of “irrational” agents that deviate, truth-telling remains
the strategy maximizing the utility of every other agent. This is not the case for NE-truthful
mechanisms where other Nash equilibria are possible (i.e., with some of the agents being not truth-
telling). However, reaching such “alternative” Nash equilibria may be “difficult” for the agents since
they will have to “coordinate” among themselves. Moreover, our results show that, if we want to
obtain “good” approximate solutions, then we have to content ourselves with NE-mechanisms (see
Table 1 for the case r = 1). Obviously, lower bounds for NE-truthful mechanisms apply to truthful
ones.

More general settings (Section 5). We consider a scenario in which both jobs and machines
are owned by selfish agents. This extension of the MKP game represents a situation in which
some users compete for the resources while others own them. For this game, we present an online

5

mechanism achieving a competitive ratio of 12 for any number of machines with verifiable arbitrary
speeds (see Corollary 22).

Our characterization for quasi one-parameter agents yields a general technique for designing
mechanisms for any MRA game. A natural application of these results is to the problem of routing
n pieces of unsplittable traffic between n pairs of nodes in an arbitrary graph. For this problem,
NE-truthful mechanisms are characterized by routing algorithms which do not shorten the length
of the path used for connecting a pair of nodes if the corresponding traffic demand increases. Our
negative results for the MKP model when r > 1 imply that such algorithms cannot minimize the
maximum link latency even when links are identical (a network of the KP model can be seen as
a network with identical links connecting a source to a destination via disjoint paths of different
lengths). In other words, even for identical links, exact solutions can be achieved only if we assume
(a rather simple) combinatorial structure of the network (e.g., parallel identical links as in the KP
model).

Agents owning several jobs (Section 6). We conclude with another extension of the KP
model which cannot be formulated in terms of quasi one-parameter agents (and thus, as an RA
game). This extension considers the case in which agents own more than one job and it is motivated
by a scenario in which users’ traffic is routed by n selfish providers and providers offering a better
service (that is lower latency) can charge higher fees (see Sect. 6 for a more detailed discussion of the
model). We first show that no

√
33−1
4 -approximate solution can be achieved even when considering

exponential-time truthful mechanisms for the case of two identical machines and at most two jobs
per agent. This result contrasts with the (1+ ε)-approximate mechanism for identical speeds, when
each agent owns one job. Motivated by this negative result, we turn our attention to truthful
approximate mechanisms and give upper and lower bounds on the approximation ratio of such
mechanisms (see Table 2). Some of our positive results are obtained via new polynomial-time
approximation algorithms which can be combined with suitable payment functions so to obtain
NE-truthful mechanisms achieving the same approximation ratio.

Speed ratio Lower bound Upper bound
r = smax/smin (for any m and any r)

5/4− ε deterministic and truthful exact deterministic
r = 1 even exp. time [Thm 19] and NE-truthful

(non poly-time) [Cor 12]
1 + ε
(deterministic, poly-time) [Cor 12]

1 < r < 2 min
{
r, 1

2 + 1
r

}
[Thm 17] 8 [Thm 15]

(deterministic, NE-truthful) (deterministic, NE-truth., and online)
r integer 1 + r−1

2r2−r
[Thm 16] 8 [Thm 15]

(deterministic, NE-truthful) (deterministic, NE-truth., and online)

Table 1: Our Results: (in-)approximability via (NE-)truthful mechanisms for the MKP game
(routing on networks of the KP model or scheduling selfish jobs on related machines).

6

k versus m Lower bound Upper bound
k = 1 1 1 + ε [Cor 12]

k ≤ m k = 2
√

33−1
4 [Thm 23] 3/2 + ε [Thm 35]

k > 2
√

33−1
4 2− 1/m [Thm 31]

k > m m = 2, ki even for all i 4/3 [Thm 24] 3/2 + ε [Thm 35]
m = 4, ki even for all i 4/3 3 + ε [Cor 36]

m > 2, m even 4/3 3 [Thm 33]
m > 2, m odd 4/3 3(1 + 2

m−1) [Cor 34]

Table 2: Our Results: (in-)approximability via deterministic NE-truthful mechanisms for identical
machines. ki denotes the number of jobs owned by agent i and k = maxi ki; lower bounds apply
to exponential-time mechanisms as well, while upper bounds are provided via polynomial-time
mechanisms.

1.2 Related work

A number of papers for (variants of) the KP model [19] have studied the problem of characterizing,
computing, and bounding the cost of Nash equilibria for the corresponding routing problem [20,
8, 12, 11, 9, 10] (see also [28, 26] for a different model considering splittable traffic on arbitrary
networks). In the anarchic scenario in which agents decide by themselves, the final solution (a Nash
equilibrium) can have a cost Θ(log m/ log log log m) times the optimum [8]; this ratio is the price
of anarchy for the case of arbitrary speeds, while the case of identical speeds has only a slightly
better price of anarchy of Θ(log m/ log log m) [19, 8, 18].

Feldmann et al. [10] show how to compute in polynomial time a Nash equilibrium for the KP
model whose cost is at most (1 + ε)-times the optimum, for every ε > 0. They prove this result via
a Nashification technique which converts any given scheduling with makespan C into a scheduling
which is a Nash equilibrium and whose makespan is at most C.

Christodoulou et al. [4] suggested a way of reducing the effect of selfishness by changing the
internal scheduling policy of the machines. A remarkable fact here is that, for identical speeds,
this approach reduces the effect of selfishness in the KP model from Θ(log m/ log log m) down to
4/3 − 1/m [4]. 1 The authors also conjecture that this ratio is the best possible with this kind of
approach (termed coordination mechanism).

The price of anarchy [19], introduced in the context of the KP model, can be seen as the worst-
case approximation ratio that agents will reach “by themselves”. However, it is not clear how
agents will “converge” to a Nash equilibrium and Even-Dar et al. [9] indeed show that, for some
natural strategies, this may take an exponential number of “moves” in the KP model (at each step
some agent moves his/her piece of traffic to the link which currently gives the minimum latency).
The price of anarchy has been studied also in other atomic congestion games [7, 27]. In recent
papers [16, 13] games with static coalitions have been considered.

In the attempt to cope with the negative effects of selfishly acting agents, the elegant theory of
mechanism design (see the milestone papers by Vickrey [29], Clarke [5] and Groves [15]) has been
recently applied to a number of optimization problems arising in the context of network optimization

1As Christodoulou et al. [4] point out, their approach can be seen as redesigning a system so to improve its
performance when selfish users are involved. In particular, a change in the machines’ internal scheduling policy yields
a variant of the KP model in which, although the network is the same, the latency of a piece of traffic is different.

7

[22, 23, 1]. These problems are resource assignment problems, typically arising from the Internet,
in which the agents can lie about the “type” of resources they hold (e.g., about the links/machines
processing time). Nisan and Ronen [22] pointed out that classical mechanism design techniques
(namely VCG mechanisms [29, 5, 15]) were not suitable for certain scheduling/routing problems.
Archer and Tardos [1] considered the problem of scheduling jobs on parallel related machines (i.e.,
each agent corresponds to a link in the network of the KP model). They observed that this
problem belongs to a wider class of problems involving one-parameter agents (see Def. 3) for which
the design of a truthful mechanism reduces to the problem of designing a monotone algorithm (see
Def. 3). This result is closely related to a certain type of auctions in which the auctioneer (i.e., the
mechanism) offers identical items to a set of buyers (i.e., selfish agents) considered by Myerson [21].
In this work we exploit the results in [21, 1], although our problems are not one-parameter (indeed,
our MKP game is “harder” then its dual in [1] since the former does not admit exact solutions,
while the latter does).

Roadmap. In Section 2 we formally define our model and the basic concepts/definitions used
throughout the paper; in particular, Section 2.1 presents the mechanism design approach. In
Section 3 we characterize NE-truthful mechanisms for quasi one-parameter agents and for MRA
games. We apply these results to the MKP game in Section 4 where we prove upper and lower
bounds (Sections 4.1 and 4.2, respectively). We extend this model in Section 5. In particular, in
Section 5.1 we consider machines that are owned by selfish agents; in Section 5.2 we consider the
problem of routing in general networks. Section 6 deals with the case of agents owning more than
one job. The effects of changing the internal scheduling policy are discussed in Section 7, together
with a number of open problems and possible research directions.

2 Resource assignment games

In this paper we consider the following Resource Assignment game, which we call the RA game.
We have a set R of n requests and a set S of m resources. A feasible solution X is an allocation of
the resources to the requests. We consider the general setting in which the i-th request is associated
with a weight ti and, for a feasible solution X, the processing time of request i is equal to

resi(X) · ti + addi(X|t−i),

where t−i denotes the vector (t1, t2, . . . , ti−1, ti+1, . . . tn) of the weights of all requests other than i.
That is, the completion time of request i consists of two parts: the first part, resi(X) · ti, depends
on the solution X and on the weight ti of the request; the second part, addi(X|t−i), depends on
the solution X and on the weights t−i of the other requests. For example, the requests can be
communication requests of different weights between a source u and a destination v in a network
and the resources are the edges of the underlying communication graph. A solution X satisfies
each of the requests by assigning a u-v path to each of them. In this case, resi(X) can be seen as
a cost per unit of traffic, given the path that X assigns to i, and addi(X|t−i) as an additional cost
due to the fact that these resources must be shared with other users.

Each request is owned by a selfish agent who, naturally, would prefer solutions where his/her
own request is processed faster. Specifically, in the RA game, each agent i associates his/her
request to some set of resources (chosen according to some probability distribution) and the set

8

of resources chosen by each agent defines a solution X. Given the vector of the request weights
t = (t1, t2, . . . , tn), agent i assigns to solution X value vi(X|t) defined as

vi(X|t) := −(resi(X) · ti + addi(X|t−i)),

that is, the opposite of the processing time of his/her own request (e.g., the time required for having
his/her own traffic being transmitted). Hence, the valuation function2 vi(X|t) expresses how much
agent i “likes” the assignment X, given his/her request of weight ti and the agent prefers solutions
for which he/she gives a high valuation. This may be in contrast with the main goal of computing
solutions which are “globally” optimal; that is, solutions which allocate resources so to minimize
some cost function cost(X|t).

The KP game. The KP game [19] is a special case of the RA game. Here the resources are m
parallel links of different speeds (s1, . . . , sm), the i-th request consists of one unsplittable piece of
traffic of weight ti and each request is to be allocated to one of the m links. If a link of speed s
is allocated to requests of total weight w then all these requests will be completed in time w/s.
Each agent owns one request (the generalization to more than one request per agent is given in
Sect. 6) and wishes to minimize his/her own latency. The global goal instead is to minimize the
maximum latency. The problem is easily seen to be equivalent to the following scheduling problem.
We have n jobs of weights (t1, . . . , tn) which need to be allocated to a set of m related machines of
speeds (s1, . . . , sm); the completion time of machine j in allocation X is equal to wj(X|t)/sj , where
wj(X|t) is the sum of the weights of jobs in Xj , that is the set of jobs assigned by X to machine j.
Jobs are processed in a round-robin fashion and thus all jobs assigned to the same machine finish
at the same time. Thus, if job i is assigned to machine j then the completion time of job i can be
written as

wj(X|t)
sj

=
ti
sj

+

∑
k∈Xj ,k 6=i tk

sj

and agent’s i valuation of X is vi(X|t) = −wj(X|t)
sj

. One can cast the KP game into the more general
setting of RA games by letting

resi(X) = 1/sj , addi(X|t−i) =
1
sj

∑
k∈Xj ,k 6=i

tk, (1)

where j is the machine to which X assigns job i.
The global optimization function is the makespan, that is, the maximum machine completion

time:
cost(X|t) = max

1≤j≤m

wj(X|t)
sj

.

The KP game models the case in which agents perform selfish routing over parallel links; that is,
each agent chooses a link according to some probability distribution which maximizes his/her own
valuation (i.e., the agent picks the probability distribution that minimizes the expected completion
time of his/her own jobs). Koutsoupias and Papadimitriou [19] introduce the concept of price of

2 Actually the term “payoff function” is more standard in the setting of a strategic game but we choose to use the
term “valuation” since, as it will be clear in the next sections, we are interested in a mechanism design approach to
resource assignment games.

9

anarchy or coordination ratio, that is, the ratio between the cost (i.e., makespan) of the worst Nash
equilibrium and the optimal cost. For this specific game it has been shown that the price of anarchy
is Θ(log m/ log log log m) [8].

2.1 A mechanism design approach

In this work, we consider a mechanism design approach to the RA game. In the resulting game,
which we call the MRA game, an allocation algorithm A computes a feasible allocation of requests
to resources instead of allowing each agent to choose which resources to allocate to his/her request.
Since it is unreasonable to assume that algorithm A has knowledge of the weight of each request,
we assume that A elicits this information from the agent owning the request and computes an
allocation based on the weights of the requests as reported by the agents. Agent i can “influence”
the allocation algorithm by misreporting the weight ti of his/her request to the algorithm. Based
on the reported values b = (b1, . . . , bn), algorithm A computes a solution A(b). Hence, agent i may
report bi 6= ti so to induce algorithm A to compute a solution that i likes better, i.e., with higher
valuation. In this case, there is no guarantee that a c-approximation algorithm A returns a solution
A(b) which is a c-approximate solution for the true input t. In order to incentivate the agents to
report their true values t, we define suitable payment functions pi

A(b) which determine the amount
of money that each agent i receives according to the declared values b. The payment functions, as
well as the allocation algorithm A, are known to the agents. In the literature a pair M = (A, pA)
is termed a mechanism. So, each agent is now willing to maximize his/her utility (or net profit)
ui

M (·) which is defined as follows:

ui
M (b|t) := pi

A(b) + vi(A(b)|t). (2)

We assume that agents are selfish but rational, i.e., they declare a false value only if they can obtain
a strictly larger utility. To stress that agent i can only change the i-th value bi of b, we distinguish the
declared values of the other agents by introducing the notation b−i := (b1, b2, . . . , bi−1, bi+1, . . . , bn).
For any value x, we set

(x, b−i) := (b1, b2, . . . , bi−1, x, bi+1, . . . , bn).

We consider two solution concepts that have been studied for mechanisms: NE-truthful mechanisms
and mechanisms truthful with respect to dominant strategies. Roughly speaking, in a NE-truthful
mechanism, truth-telling is a Nash equilibrium and thus no agent has an incentive to unilaterally
change his/her strategy if the other agents say the truth (see, for example, [24]).

Definition 1 A mechanism M = (A, pA) is NE-truthful if, for every agent i, it holds that for all
t and for all bi

ui
M (ti, t−i|t) ≥ ui

M (bi, t−i|t).

NE-truthful mechanisms are commonly known as Bayesian-Nash implementations [24]. A stronger
solution concept consists in requiring that truth-telling is the best strategy for a player regardless
of the strategy adopted by other players:

Definition 2 A mechanism M = (A, pA) is truthful with dominant strategies (in short, truthful)
if, for every agent i, for every reported values b−i of the other agents, and for every bi

ui
M (ti, b−i|t) ≥ ui

M (bi, b−i|t). (3)

10

Our setting leads to a variant of the KP game, which we call the MKP game, in which agents
are not allowed to pick the link to use for routing their traffic but instead an allocation algorithm
A, based on the reported weights of the requests, assigns each request to a link. Thus, agents
may misreport the weight of their traffic so to “indirectly” pick better links. Observe that, in our
variant, we assume that the mechanism is not able to verify whether the agent is reporting the real
weight bi or a different one. It can only compute the allocation and the payments but it cannot
verify the real cost of the solution. Indeed, in practice, it may be too expensive to keep track of
the actual amount of traffic sent by each user, thus preventing from the possibility of checking, for
instance, whether bi < ti. Moreover, a user may report bi > ti and actually send an amount of
traffic equal to bi, by just padding the original traffic with some “fake” traffic up to the declared
value bi.

Notation. For the MKP game introduced above, we adopt the following notation. We let Ai(b)
denote the machine to which job i is allocated according to the allocation A(b) computed by A on
input the vector of reported values b and by si

A(b) its speed.3 Also, we let wi
A(b|t−i) denote the

sum of the weights of jobs assigned to Ai(b) except for ti. As in the KP game [19] we define agent’s
i valuation of solution A(b) as

vi(A(b)|t) := −
ti + wi

A(b|t−i)
si
A(b)

. (4)

The cost cost(A(b)|t) of solution A(b), is the makespan with respect to the true input t. According
to our terminology, this is

cost(A(b)|t) := max
i

{
ti + wi

A(b|t−i)
si
A(b)

}
= max

i

{
−vi(A(b)|t)

}
.

In the sequel, for the sake of readability, we will sometimes omit b−i, t−i, A and M in the
definitions above and simply use pi(bi), and ui(bi|t). We also denote cost(A(b)|t) simply as cost(A, b).

3 A characterization of NE-truthful mechanisms

In this section we introduce the notion of a quasi one-parameter agent and characterize NE-truthful
mechanisms for quasi one-parameter agents as those mechanisms for which the allocation algorithm
is monotone. Since MRA games involve quasi one-parameter agents, this result characterizes NE-
truthful mechanisms for all MKP games.

We start by reviewing the notions of a one-parameter agent and of a monotone allocation
algorithm.

Definition 3 (one-parameter agents and monotone algorithms) An agent i is one-parameter
if his/her valuation is of the form vi(X|t) = −resi(X) · ti for some publicly known function resi(·).
An algorithm A is monotone (for functions resi) if, for every agent i, for all b−i, and for all bi and
b′i < bi, it holds that resi(A(bi, b−i)) ≤ resi(A(b′i, b−i)).

3A more appropriate notation would be sAi(b) but for the sake of readability we use si
A(b).

11

Myerson [21] proved that monotone algorithms A characterize truthful mechanisms in the case
of one-parameter agents in the sense that an algorithm A admits payment functions P such that
(A,P) is a truthful mechanism if and only if A is monotone. Archer and Tardos [1] gave an
alternative form for the payments which can be used for obtaining polynomial-time mechanisms.

Theorem 4 ([21, 1]) An algorithm A admits payment P such that M = (A,P) is truthful for
one-parameter agents with respect to functions resi if and only if, for all i, A is monotone for resi.
If A is monotone with respect to resi, then the payment functions P i are of the form

P i(bi, b−i) := hi(b−i) + bi · resi(A(bi, b−i))−
∫ bi

0
resi(A(u, b−i)) du (5)

where the hi’s are arbitrary scaling functions.4

Next we introduce the notion of a quasi one-parameter agent and give a necessary and sufficient
condition on an algorithm A for the existence of payment functions Q such that (A,Q) is NE-
truthful.

Definition 5 (quasi one-parameter agents) An agent i is quasi one-parameter if his/her val-
uation is of the form vi(X|t) = −resi(X) · ti − addi(X|t−i), for publicly known functions resi(·) and
addi(·).

We have the following necessary condition.

Theorem 6 A mechanism M = (A,Q) for quasi one-parameter agents with functions resi and
addi is NE-truthful only if A is monotone with respect to functions resi.

Proof. Fix agent i and vector t−i. For τ > 0, set Qi(τ) = Qi(τ, t−i), resiA(τ) = resi(A(τ, t−i))
and addi

A(τ) = addi(A(τ, t−i|t−i)).
Pick x < y and consider the two cases in which the true type of agent i is ti = x and the case

ti = y. Being NE-truthful requires the following two inequalities to hold

Qi(x)− resiA(x) · x− addi
A(x) ≥ Qi(y)− resiA(y) · x− addi

A(y);
Qi(y)− resiA(y) · y − addi

A(y) ≥ Qi(x)− resiA(x) · y − addi
A(x).

By summing them up we obtain

resiA(x) · x + resiA(y) · y ≤ resiA(y) · x + resiA(x) · y,

that is (
resiA(x)− resiA(y)

)
(x− y) ≤ 0.

Since x < y, we obtain resiA(x) ≥ resiA(y), thus implying that A is monotone. 2

Next we show that monotonicity of A is also sufficient for the existence of payment functions Q
such that (A,Q) is NE-truthful.

4We stress that we have a different payment scheme for each choice of the scaling functions hi and thus we should
have used the more precise (and more cumbersome) notation P i

hi
.

12

Theorem 7 Let A be a monotone algorithm with respect to resi and let P be payment functions
such that (A,P) is truthful for one parameter agents with respect to resi. Then, for all functions
addi, (A,Q) is NE-truthful for quasi one-parameter agents with respect to functions resi and addi

where payments are defined as

Qi(b) := P i(b) + addi(A(b)|b−i). (6)

Proof. Observe that, by Definition 5, the utility of a quasi one-parameter agent with payment
Qi satisfies

ui(bi, t−i|t) = −resi(A(bi, t−i)) · ti − addi(A(bi, t−i)|t−i) + P i(bi, t−i) + addi(A(bi, t−i)|t−i)
= P i(bi, t−i)− resi(A(bi, t−i)) · ti.

In other words, the utility of the quasi one-parameter agent i (for functions resi and addi) with
payment function Qi is equal to the utility of the one parameter agent (for function resi) with
respect to payment function P i. Since (A,P) is truthful we have that ui(ti, t−i|t) ≥ ui(bi, t−i|t) for
all bi, ti and t−i. 2

We observe that, since MRA games involve quasi one-parameter agents, Theorems 6-7 apply to
any MRA game. Thus, we have the following corollary.

Corollary 8 Let A be an allocation algorithm for a MRA game. Then there exist payment func-
tions Q such that M = (A,Q) is a NE-truthful mechanism for this MRA game if and only if A is
monotone for work functions resi.

According to the definition of monotone algorithm (Def. 3), the above result states that resi(A(bi, b−i))
must be monotone non-increasing in bi, for all i and b−i. This requirement has a natural inter-
pretation: the algorithm is not allowed to worsen the resources allocated to an agent if his/her
communication request increases.

4 Mechanisms for the MKP game

In this section we apply our characterization for MRA games to the MKP game. We have the
following definition.

Definition 9 (job-monotone algorithms) An allocation algorithm A for the MKP game is job-
monotone if for all i, for all b−i, and for all bi and b′i < bi, it holds that si

A(bi, b−i) ≥ si
A(b′i, b−i).

Observe that algorithm A is a job-monotone allocation algorithm for the MKP game if and only if
A is monotone with respect to functions resi defined in Eq. 1. Hence, Theorems 6 and 7 imply the
following theorem.

Theorem 10 Let A be an allocation algorithm for the MKP game. Then there exist payment
functions Q such that M = (A,Q) is a NE-truthful mechanism for the MKP game if and only if A
is job-monotone.

A natural requirement for the mechanism is the satisfaction of the NPT (no positive transfer)
condition; that is, no agent should be paid by the system to use the resources.

13

Theorem 11 Let A be a job-monotone allocation algorithm for the MKP game. Then there exists
payment function qA such that (A, qA) is NE-truthful and satisfies the NPT condition.

Proof. We let P denote the payment functions defined in Eq. 5 (see Theorem 4), relative to the
scaling functions hi(b−i) = − 1

smin

∑
k 6=i bk, where smin is the minimum speed of the m machines.

By Theorem 4, since A is monotone with respect to the functions resi defined in Eq. 1, (A,P) is
NE-truthful for one-parameter agents with functions resi. Now, define payments qi

A(b) as

qi
A(b) := P i(b) + addi(A(b)|b−i),

where addi is defined as in Eq. 1. By Theorem 7, (A, qA) is NE-truthful for the MKP game. We
next prove that (A, qA) satisfies the NPT condition. We have

qi
A(b) = P i(b) + addi(A(b)|b−i)

= hi(b−i) + addi(A(b)|b−i) + bi · resi(A(b))−
∫ bi

0
resi(A(u, b−i)) du

≤ hi(b−i) + addi(A(b)|b−i)

where the last inequality holds because resi(A(u, b−i)) is monotone with respect to u. Observe that

hi(b−i) + addi(A(b)|b−i) =
wi(A(b)|b−i)

si
A(b)

− 1
smin

∑
k 6=i

bk

≤ 1
smin

wi(A(b)|b−i)−
∑
k 6=i

bk


≤ 0.

Hence we have that qi
A(b) ≤ 0 and thus the theorem holds. 2

4.1 Upper bounds for the MKP game

In this section we give upper bounds on the approximation ratio achievable by NE-truthful mech-
anisms for the MKP game.

We first consider the case of machines with identical speeds and observe that every allocation
algorithm A is job-monotone (see Definition 9). Theorem 11 implies the following result.

Corollary 12 If all the machines have identical speeds, then for any (c-approximate) algorithm A,
there exist payment functions qA such that M = (A, qA) is a (c-approximate) NE-truthful mechanism
for the MKP game and M satisfies the NPT condition.

The above result applies to any cost function for which A is c-approximate. In particular,
for the problem of minimizing the makespan there exists a polynomial-time NE-truthful (1 + ε)-
approximation mechanism, for every ε > 0 (see [17]).

For the case of machines of different speeds we provide an upper bound on the approximation
achievable by NE-truthful mechanism for the MKP game. We do so by giving a sufficient condition

14

for an algorithm to be job-monotone and then showing that the online algorithm of [2] satisfies
such a condition.

In general, an online algorithm A can be seen as consisting of two functions Π and Γ. Function
Π takes as input the current allocation Xi, the size of the current job ti and the speed of a machine
sj . When a new job arrives, A evaluates Π for all machines. The job will be allocated to a machine
sj for which Π(Xi, ti, sj) = 1. If this is the case for more than one machine, then the actual machine
receiving the job is determined by evaluating function Γ on the current allocation Xi and on the
set of machines S? for which Π(Xi, ti, sj) = 1.

In the next definition, we define regular online algorithms as algorithms for which Π enjoys a
monotonicity property and Γ selects the slowest machine from S?.

Definition 13 An online allocation algorithm A for the MKP game is regular if there exist func-
tions Γ and Π such that, for all speed vectors (s1, . . . , sm):

1. If Π(A(t1, . . . , ti−1), sj , ti) = 0 then for all t′i > ti it holds that Π(A(t1, . . . , ti−1), sj , t
′
i) = 0 as

well.

2. Γ assigns the i-th job of weight ti to the slowest machine j for which Π(A(t1, . . . , ti−1), sj , ti) =
1.

It can be easily seen that the following theorem follows directly from the definition of regular
algorithms.

Theorem 14 A regular allocation algorithm A is job-monotone.

Next theorem shows that there exist NE-truthful mechanism that guarantee constant approximation
ratio.

Theorem 15 There exists an 8-approximate NE-truthful mechanism for the online MKP game.
This mechanism satisfies the NPT condition.

Proof. Consider the online 8-competitive algorithm Assign-R presented in [2]. Each job is
assigned to the least capable machine; that is, the slowest machine such that the cost of the resulting
assignment stays below Λ := 2`, where ` is the minimum makespan. If the minimum makespan is
not known, then a simple doubling technique is used.

It is easy to see that algorithm Assign-R is regular from which the theorem follows. 2

4.2 Lower bounds

In this section, we give lower bounds on the approximation ratio achievable by (NE-)truthful
mechanisms for the MKP game for machines of different speeds. The idea is the following: given
a set of m machines, we construct two sets of jobs of weights t and t′, where t′ differs from t only
for the weight of job j which is one of the jobs allocated to the fastest machine on input t. By
Theorem 10, the allocation algorithm must be job-monotone and thus job j has to be allocated
to the same machine also for instance t′. By selecting appropriately the weight t′j we obtain that
any optimal algorithm allocates this job to a different machine. Therefore the optimal allocation
cannot be used in a NE-truthful mechanism and the mechanism must be sub-optimal. By carefully
picking t and t′ we can bound the achievable approximation ratio from below.

15

We present our lower bounds as a function of the ratio between the largest and the smallest
machine speed. We define r := smax/smin, where smax := max1≤i≤m{si} and smin := min1≤i≤m{si}.
Notice that our lower bounds approach 1 when r goes to infinity. This is not surprising: the
approximation ratio of the algorithm that assigns all jobs to the fastest machine tends to 1 as r
grows.

In the proof of the lower bounds we use the notation “opt(x → s)” to denote the minimum cost
of all allocations that assign the job of weight x to the machine of speed s.

Theorem 16 For any two machines for which 2r is an integer, no deterministic (NE-) truthful
mechanism for the MKP game can guarantee c-approximate solutions, for c < 1 + r−1

2r2−r
.

Proof. Consider two machines of speed 1 and r ≥ 1 and a set of 2r jobs of weight 1. Clearly,
the optimum has cost at most 2. Consider a NE-truthful mechanism M = (A, p).

If A assigns no jobs to the faster machine then the cost of the solution is 2r and the approxi-
mation ratio is at least r. Since r ≥ 1, we have that

r ≥ 1 +
r − 1

2r2 − r

and the theorem follows.
Suppose now that A assigns at least one job to the faster machine. Let j be the index of one such

a job. We consider the set of jobs of weights t′ = (1, . . . , x, 1, . . . , 1), where the jth job has weight
x = 2−1/r, and we show that A has to compute a non-optimal allocation on t′. By Corollary 10, A
must allocate job j to the faster machine and thus cost(A, t′) ≥ opt(x → r). Moreover, if opt(x → r)
assigns two or more jobs to machine 1, then opt(x → r) ≥ 2 since otherwise the work of machine
of speed r is at least x + 2r − 2 = 2r − 1/r, thus implying opt(x → r) ≥ 2 − 1/r2. Also, observe
that opt(t′) = opt(x → 1) = max{x, (2r − 1)/r} = 2− 1/r. Putting things together

cost(A, t′)
opt(t′)

≥ opt(x → r)
opt(x → 1)

≥ 2− 1/r2

2− 1/r
= 1 +

r − 1
2r2 − r

.

2

Theorem 17 For any m ≥ 2 machines with r < 2, no deterministic (NE-) truthful mechanism for
the MKP game can guarantee c-approximate solutions, for any c < min

{
r, 1

2 + 1
r

}
.

Proof. Consider m machines with speeds (1, 1, . . . , 1, r) and m + 1 jobs of weight 1. Any (NE-)
truthful mechanism M = (A, p) assigning no job to the fastest machine incurs a cost of at least 2,
while the optimum is 2/r. In this case the approximation ratio is at least r.

Let us thus assume that A assigns at least one job to the fastest machine, and let j be the
index of such a job. Let us consider a new job sequence t′ = (1, . . . , 1, x, 1, . . . , 1), where the
weight of the jth job has been increased from 1 to x > 1. By Theorem 10, algorithm A cannot
allocate this job to a slower machine. Hence, this job must be allocated to the fastest machine and
cost(A, t′) ≥ opt(x → r). For x = 2/r > 1, we have opt(x → r) = min{2, (1 + 2/r)/r} as shown in
Fig. 1. In the same figure, we prove that opt(t′) ≤ 2/r, thus implying that the approximation ratio
of A is bounded from below by

cost(A, t′)
opt(t′)

≥ opt(x → r)
opt(x → 1)

≥ min{2, (1 + 2/r)/r}
2/r

= min
{

r,
1
2

+
1
r

}
.

16

solutions speed 1 · · · speed 1 · · · speed 1 speed r cost
case 1 1 . . . 1 1 1, x (1 + 2/r)/r
case 2 1 . . . 1, 1 . . . 1 x 2

Figure 1: Assignments of jobs used in the proof of Theorem 17: we have m jobs of weight 1 and
one job of size x = 2/r. For r < 2, the optimum solution has cost 2/r. Any solution assigning the
job of size x to machine of speed r > 1 has cost at least min{2, (1 + 2/r)/r}.

2

Since r ≤ 1+
√

17
4 implies that r ≤ 1

2 + 1
r , we obtain the following result.

Corollary 18 For m ≥ 2 machines and for any c ≤ 1+
√

17
4 , no deterministic (NE-) truthful

mechanism for the MKP game can guarantee c-approximate solutions.

We have seen that, for the case of machines of identical speeds, there exists a NE-truthful
optimal (albeit exponential-time) mechanism for the makespan (see Corollary 12). Next, we show
that no truthful mechanism with respect to dominant strategies can guarantee approximation ratio
better than 5/4 even for the case of two machines with the same speed and even if we allow non-
polynomial mechanism. Intuitively, this is due to the fact that the valuation assigned by an agent
i to a solution depends on the types of all agents. Instead, in the “dual” problem of scheduling
with selfish machines for which there exists an optimal mechanism (see [1]), the valuation of agent
i depends only on his/her own type ti and on some other public input (i.e., the size of the jobs).

Theorem 19 For any c < 5/4, no deterministic truthful mechanism (with dominant strategies) for
the MKP game can guarantee c-approximate solutions even for the case of two identical machines.

Proof. Let M = (A, pA) be a truthful mechanism. We consider an instance consisting of three
jobs and declarations b′ = (2, 1, 3) and b′′ = (4, 1, 3) with two machines with speed s = 1. We first
show that, for at least one of b′ and b′′, M does not return the optimal allocation.

Suppose, by contradiction, that M is an exact mechanism and, since M is truthful, it must be
the case that, for all t2 and t3, truth-telling is a dominant strategy for agent 1. Hence,

u1
M (b′|(2, t2, t3)) ≥ u1

M (b′′|(2, t2, t3))

and
u1

M (b′′|(4, t2, t3)) ≥ u1
M (b′|(4, t2, t3)).

By Equations (2) and (4), this is equivalent to

p1(b′)− 2− w1
A(b′|(t2, t3)) ≥ p1(b′′)− 2− w1

A(b′′|(t2, t3))

and
p1(b′′)− 4− w1

A(b′′|(t2, t3)) ≥ p1(b′)− 4− w1
A(b′|(t2, t3)).

The above two inequalities can be rewritten as

p1
A(b′)− p1

A(b′′) ≥ w1
A(b′|(t2, t3))− w1

A(b′′|(t2, t3))

17

and
p1

A(b′)− p1
A(b′′) ≤ w1

A(b′|(t2, t3))− w1
A(b′′|(t2, t3))

which imply that
p1

A(b′)− p1
A(b′′) = w1

A(b′|(t2, t3))− w1
A(b′′|(t2, t3)). (7)

It is easy to see that b′ and b′′ admit only one optimal allocation each. The following table shows
the two optimal allocations

reported weights machine 1 machine 2
b′ 1, 2 3
b′′ 4 1, 3

from which we have w1
A(b′|(t2, t3)) = t2 and w1

A(b′′|(t2, t3)) = 0. Therefore, by Eq. 7 we have that
p1

A(b′) − p1
A(b′′) = t2. This condition cannot hold for all t2 as otherwise it implies that M knows

t2. Therefore, for at least one of b′ and b′′, M computes a sub-optimal solution. We conclude the
proof by observing that the second best allocation for b′ has makespan 4 and that the second best
allocation for b′′ has makespan 5. 2

5 Extensions of the MKP game

In this section we discuss some extensions of MKP game. In Section 5.1 we consider a version of
the game where selfish agents own also the machines and in Section 5.2 we consider the problem
of routing selfish unsplittable traffic on arbitrary networks.

5.1 Selfish machines

In this section, we consider the following extension to the MKP game. We have two types of agents:
job-agents owning jobs and machine-agents owning machines. We remark that each machine-agent
owns only one machine and he/she is the only one to know the real speed of his/her machine. The
allocation algorithm elicits from each job-agent the weight of his/her job and from each machine-
agent the speed of his/her machine and, based on the reported data, the algorithm computes an
allocation of the jobs to the machines. The valuation of a job-agent is the same as the one we have
used in the previous sections. Instead, machine-agent i corresponding to machine i of speed si has
valuation of the form vi(X|ti) = −W i(X)/si, where W i(X) is the work assigned to machine i by
solution X. We further assume that the machine-agents are verifiable. Specifically, payments are
provided after the jobs have been completed by the agent and the agent receives a payment only if
his/her machine completed the jobs within a time corresponding to the reported speed bi and the
work W i(X) assigned to it, that is, after W i(X)/bi time units.

In the new scenario, we have to design the payments and the allocation algorithm in such a way
that job-agents and machine-agents have an incentive to reveal the true weight of their jobs and
true speed of their machines, respectively. We use algorithm Monotone-Assign-R from [3] that, for
sake of completeness, is described in Figure 2. We notice that algorithm Monotone-Assign-R receives
as input an upper bound Λ on the makespan of the optimal solution. The following theorem holds.

Theorem 20 ([3]) There exist payments rA such that M = (Monotone-Assign-R, rA) is a 12-
competitive polynomial-time online truthful mechanism (with dominant strategies) for m selfish
verifiable machines.

18

Algorithm Monotone-Assign-R(s,Λ):
/* s1 ≤ s2 · · · ≤ sm; */
initialize w′

j := 0 and w′′
j := 0 for j = 1, 2, . . . ,m;

set w′
m+1 = ∞;

1. upon arrival of new job ti do begin

2. let l be the slowest machine such that

((w′′
l + ti)/sl ≤ 2Λ) ∧ ((w′

l > 0) ∨ (w′
l+1 > 0));

3. assign ti to machine l;

4. if w′
l > 0 then w′′

l := w′′
l + ti else w′

l := ti; end.

Figure 2: An online weakly monotone algorithm for any number of machines.

We stress that in the above mechanism payments are computed online for each new job and at
every time step the machines receive a non-negative payment.

Theorem 21 Algorithm Monotone-Assign-R is regular.

Proof. Let Π be defined as in Step 2 of Monotone-Assign-R (see Fig. 2) and for sake readability
let A denote Monotone-Assign-R. We have

Π(A(t1, . . . , ti−1), sj , ti) = ((w′′
j + ti)/sj ≤ 2Λ) ∧ ((w′

j > 0) ∨ (w′
j+1 > 0)).

From the above we have that if Π(A(t1, . . . , ti−1), sj , ti) = 0 then for any t′i > ti it holds that
Π(A(t1, . . . , ti−1), sj , t

′
i) = 0. Moreover Monotone-Assign-R allocates job ti to the slowest machine j

for which Π(A(t1, . . . , ti−1), sj , ti) = 1. Thus Conditions 1 and 2 of Definition 13 are satisfied and
Monotone-Assign-R is regular. 2

Consider now mechanism (Monotone-Assign-R, pA), where pA are payment functions for both
job-agents and machine-agents defined as follows: for each job-agent i, pi

A(b) := qi
A(b), where qA

are the payment functions defined in Theorem 11; for each machine-agent j, pj
A(b) := rj

A(b), where
rA are the payment functions defined in Theorem 20. Since Monotone-Assign-R is regular, from
Theorems 14, 10 and 20, we obtain the following general result.

Corollary 22 There exists an online 12-competitive polynomial-time mechanism for the problem
of scheduling n selfish jobs on m selfish machines such that:

1. For the n selfish agents owning the jobs, the mechanism is NE-truthful and satisfies the NPT
condition.

2. For the m agents owning the machines, if the machines are verifiable, then the mechanism is
truthful (with dominant strategies), satisfies the NPT condition and the voluntary participa-
tion condition (i.e., truth-telling agents have non-negative utilities).

19

5.2 More games with quasi one-parameter agents

Corollary 8 can be applied to a routing game on general graphs as opposed to graphs consisting of a
collection of parallel edges as in the MKP game. In particular, we are given a network G = (V,E, l),
with le = 1/se and se being the speed of link e ∈ E; moreover, we have n selfish users, each of
them corresponding to a triple (σi, δi, ti), with σi, δi ∈ V and ti > 0. A feasible solution is a
set X = {X1, . . . , Xn} of n paths, one for each agent, such that path Xi connects σi to δi in G.
User i sends an amount of traffic ti trough the links in Xi, and traversing a link e takes time
(ti + T e(X|t−i))/se. The quantity T e(X|t−i) is due to the traffic that solution X sends on link e
together with traffic ti; e.g., the amount of work that traffic ti finds on link e once entering on this
link. The valuation of agent i is thus equal to

vi(X|t) := −
∑
e∈Xi

ti + T e(X|t−i)
se

,

that is, the opposite of the time required to transmit from σi to δi. This shows that in this general
routing game, agents are quasi one-parameter and thus, by Theorem 6 and 7, a routing algorithm
A admits payment functions P such that (A,P) is NE-truthful if and only if A is length monotone.
More precisely, algorithm A is length monotone if, as the weight of request i grows and the weights
of other requests do not change, algorithm A assigns paths of decreasing length to request i (the
length of path Xi is

∑
e∈Xi 1/se).

6 Agents owning more than one job

In this section we investigate the version of the MKP game in which an agent may own more
than one job and machine speeds are identical. We have m machines of speed s, l jobs of weight
(t1, . . . , tl), and n < l agents. Throughout this section we make use of the following notation:

J i the set of jobs owned by agent i
ki the number of jobs owned by agent i, that is, ki = |J i|
t−i the vector of the true weights of all jobs owned by agents other than i
b−i the vector of the declared weights of all jobs owned by agents other than i
ownj the set of jobs with the same owner as job j, that is, ownj = J i for all j ∈ J i

Aj(b) the set of jobs that solution A(b) assigns to the same machine as job j
(including job j itself)

wj
A(b|t) the sum of the real weights of the jobs of Aj(b), that is, wj

A(b|t) =
∑

h∈Aj(b) th

oj
A(b|t) the sum of the real weights of the jobs in Aj(b) that do not belong to ownj , that is,

oj
A(b|t) =

∑
h∈Aj(b)\ownj

th

mj
A(b) the number of jobs in Aj(b) that belong to ownj , that is, mj

A(b) = |Aj(b) ∩ ownj |

The valuation of agent i is equal to minus the sum of the finish times of his/her jobs, that is,

vi
A(b|t) := −

∑
j∈Ji

wj
A(b|t)
s

. (8)

This corresponds to the case in which each customer pays the agent controlling his/her piece of
traffic a fixed amount minus the experienced latency of his/her traffic and each agent wants to
maximize the amount of money received from the customers.

20

When algorithm A is clear from the context or immaterial, we will drop the subscript “A” and
simply write mj(b), wj(b|t), vi(b|t), and oj(b|t). Without loss of generality we assume that each
machine has speed s = 1.

6.1 Lower bounds

In this section we prove lower bounds on the approximation ratio obtained by truthful mechanisms
in the case where agents may own more than one job. Our proofs adopt the following strategy:
we fix agent i and the vector t−i of the weights of the jobs owned by agents than i and consider
two possible declarations b′ and b′′ for agent i; any (NE-) truthful mechanism M = (A, p) must
guarantee that

pi(b′, t−i) + vi
A(b′, t−i|b′) ≥ pi(b′′, t−i) + vi

A(b′′, t−i|b′) (9)

and
pi(b′′, t−i) + vi

A(b′′, t−i|b′′) ≥ pi(b′, t−i) + vi
A(b′, t−i|b′′). (10)

From the above equations, we derive necessary conditions on the payment function and the alloca-
tion algorithm of a truthful mechanism which in turn imply a lower bound on the approximation
ratio. As the next two theorems show, if agents are allowed to own more than one job and machines
have the same speed, then, unlike the case studied in the previous section, not all algorithms A
admit payments P so that (A,P) is NE-truthful.

We start with a lower bound on the achievable approximation ratio when agents are allowed to
own at most 2 jobs.

Theorem 23 For any m ≥ 2 and for any c <
√

33−1
4 , no (NE-)truthful mechanism can guarantee

c-approximate solutions on m machines of equal speeds when there is at least one agent that owns
2 jobs.

Proof. Let M = (A, p) be a truthful mechanism for this problem. Let us consider an instance
with m = 2 machines, n = 2 agents, l = 3 jobs and J1 = {1, 2} and J2 = {3}. We consider
declarations b′ = (x′, y′) and b′′ = (x′′, y′′) for agent 1, with x′ ≤ y′ < 1 and x′′ ≤ 1 < y′′, and
set t−1 = (1). Observe that, if M is an optimal mechanism, then the allocation algorithm A must
allocate the two smallest jobs on the same machine and the largest one on the other machine. Thus,
on input b′ or b′′, algorithm A should produce the following two allocations:

instance machine 1 machine 2
b′ x′, y′ 1
b′′ x′′, 1 y′′

Since M is (NE-) truthful, Eq.s 9-10 hold and payments must satisfy

p1(b′)− 2(x′ + y′) ≥ p1(b′′)− x′ − y′ − 1, (11)
p1(b′′)− x′′ − y′′ − 1 ≥ p1(b′)− 2(x′′ + y′′). (12)

These two inequalities hold both only when x′′ + y′′ ≥ x′ + y′. Hence, we conclude that, if M is
(NE-) truthful and x′′ + y′′ < x′ + y′, then A cannot give an optimal allocation on both inputs b′

and b′′.
We now give a lower bound on the approximation ratio of the solution given by A. Consider

vectors b′ =
(√

33+3
12 ,

√
33+3
12 , 1

)
and b′′ =

(√
33−3
12 − ε,

√
33+9
12 , 1

)
, for some arbitrary small ε > 0.

21

Observe that x′′ + y′′ = x′ + y′ − ε < x′ + y′ which implies that A cannot be optimal on both
vectors. Observe that any sub-optimal allocation on b′ must allocate the two jobs of agent 1 on
different machines, while on b′′ it must allocate them on the same machine. If A gives a sub-optimal
allocation on input b′, then the cost of A(b′) is at least 1 + x′ and the approximation ratio is at
least 1+x′

2x′ =
√

33−1
4 . Instead, if A gives a sub-optimal allocation on b′′, then the cost of A(b′′) is at

least x′′ + y′′ and the approximation ratio is at least x′′+y′′

1+x′′ =
√

33−1
4 −β, where β is arbitrary small

(is equal to ε
1+x′′). Hence the theorem follows. 2

The above theorem also applies to the case in which agents may own more than two jobs.
However, in this case, we can obtain a better lower bound.

Theorem 24 For any m ≥ 2 and for any c < 4/3, no truthful mechanism can guarantee c-
approximate solutions on m machines of equal speeds when each agent owns k ≥ m jobs. This
holds also for instances with two machines and one agent owning four jobs.

Proof. We prove the theorem for m = 2 machines of unitary speed. Let M = (A, p) be a truthful
mechanism for this problem. Let us consider an instance with one agent and four jobs and consider
two vectors of declared weights b′ = (1, 1, 1, 1) and b′′ = (x, x, x, 3x − 3) for some x > 0. Observe
that if M is an exact mechanism, then for sufficiently large x, A computes the following allocations:

instance machine 1 machine 2
b′ 1, 1 1, 1
b′′ x, x, x 3x− 3

Equations 9-10 imply that
p1(b′)− p1(b′′) ≥ −2

and
p1(b′)− p1(b′′) ≤ −3,

proving that A cannot compute an optimal allocation on both b′ and b′′. Thus, if A computes a
sub-optimal solution on b′ (assigning at least 3 jobs to a machine) then its solution costs at least
3 while the optimum is 2. Instead, if A computes a sub-optimal solution on b′′ (assigning an even
number of jobs to each machine), then its solution costs at least 4x − 3 while the optimum is 3x.
Hence, for any ε > 0, there exists a sufficiently large x such that the approximation ratio of A is at
least (4/3− ε). This completes the proof. 2

6.2 Upper bounds

In this section we will provide a constant-approximation NE-truthful mechanism for the case of an
arbitrary number of machines with unitary speed. The main idea is to develop new approximation
algorithms for which the valuation functions can be rewritten as those of quasi one-parameter
agents.

We start by observing the following fact.

Fact 25 For each i, the valuation function of agent i can be rewritten as

vi
A(b|t) = −

∑
j∈Ji

(
oj
A(b|t) + tj ·mj

A(b)
)

. (13)

22

Proof. Each job j ∈ J i contributes wj
A(b|t) to the valuation vi

A(b|t). We split the quantity
wj

A(b|t) in two parts: one due to the weights of the jobs owned by agent i that are assigned to the
same machine as job j (we denote this quantity by sj

A(b|t)) and a second part due to the weights
of the jobs owned by oother agents and that are asigned to the same machine as job j (that is,
oj
A(b|t)). We can this write

vi
A(b|t) = −

∑
j∈Ji

(
oj
A(b|t) + sj

A(b|t)
)

.

The weight tj of job j ∈ J i appears in the sum
∑

j∈Ji sj
A(b|t). once for each of the mj

A(b|t) jobs of
J i that are schedules on the same machine as job j. This concludes the proof. 2

Let us consider the class of algorithms computing solutions for which the quantity mi(b) is
constant, for any b.

Definition 26 (independent algorithms) An algorithm A is independent if, for every b, b′, it
assigns jobs to machines in such a way that, for any task j, mj

A(b) = mj
A(b′). In this case, we will

just write mj
A instead of mj

A(b).

The next theorem proves that independent algorithms can be used to design NE-truthful mech-
anisms for the case where agents own several jobs.

Theorem 27 For any independent algorithm A, there exist payment functions pA such that M =
(A, pA) is NE-truthful. Moreover, if A is a polynomial-time algorithm then payments pA are com-
putable in polynomial-time.

Proof. For every agent i we define the payment function

pi
A(b) :=

∑
j∈Ji

oj
A(b|b). (14)

Assume that b−i = t−i. Then, we have that oj
A(b|b) = oj

A(b|t). Moreover, since algorithm A is
independent, by Eq. 13 we have that

ui(b|t) := pi
A(b) + vi

A(b|ti) =
∑
j∈Ji

oj
A(b|b)−

∑
j∈Ji

(
oj
A(b|t) + mj

A · tj
)

=
∑
j∈Ji

(
oj
A(b|b)− oj

A(b|t)
)
−

∑
j∈Ji

mj
A · tj

= −
∑
j∈Ji

mj
A · tj .

Hence, for b−i = t−i, the utility of agent i does not depend on his/her declarations and (A, pA) is
a NE-truthful mechanism.

To conclude the proof, observe that payments pi
A(·) in Eq. 14 are computable in polynomial

time if A runs in polynomial time. 2

We now give two algorithms for allocating selfish jobs to identical machines when any agent
may own several jobs. We start by considering the case in which, for each agent i, ki ≤ m or ki is

23

a multiple of m and give an independent algorithm spread for this simple case (see Fig. 3). Then,
we show how this algorithm can be used as a subroutine to design a polynomial-time mechanism
that is NE-truthful in the general case.

Algorithm spread considers one agent at a time and it allocates all jobs of agent i before
considering jobs of agent i + 1. The algorithm spreads the jobs of agent i evenly among the
machines according to the following rule: the jobs of agent i are partitioned into subsets J i

h each of
cardinality m (with the possible exception of the last set which may have less than m jobs); then
each of the m machines receives exactly (or at most, if the subset contains less than m jobs) one
of the m jobs of subset J i

h; each job of the set J i
h is assigned to the least loaded machine.

Algorithm spread(b, m)

for i = 1 to n do
set ci = dki/me;
partition J i into ci sets J i

1, J
i
2, . . . , J

i
ci

, each of size m except, possibly, for J i
ci

that may have fewer jobs.
for h = 1 to ci

for j ∈ J i
h in non-increasing order by declared weight do

assign job j to the least loaded machine that has been assigned
no other job from J i

h;

Figure 3: The algorithm spread.

Lemma 28 If for each agent i, ki ≤ m or ki is a multiple of m, then algorithm spread is inde-
pendent.

Proof. For any agent i, consider a job j ∈ J i. If ki ≤ m, then for any input b, algorithm spread
allocates at most one job from agent i on each machine and mj

A(b) = 1. Instead, if ki = ci ·m, then
for any input b, each machine receives exactly ci jobs from agent i and mj

A(b) = ci. 2

We now prove that spread leads to a polynomial-time NE-truthful 2-approximate mechanism for
the case where, for each agent i, ki ≤ m or ki is a multiple of m.

We start by studying the approximation factor guaranteed by algorithm spread. For the case
k ≤ m, algorithm spread is a simple variant of the greedy algorithm in which no machine receives
two jobs from the same agent. We prove that the difference between the maximum and the minimum
load assigned to the machines by algorithm spread is bounded from above as for the greedy
algorithm. Let Li

h denote the load of machine h after algorithm spread, on input the vector b, has
assigned all jobs of agent i. Let

Li
max := max

1≤h≤m
Li

h, Li
min := min

1≤h≤m
Li

h (15)

and bmax := max1≤j≤l bj . The following technical lemma holds.

Lemma 29 If for each agent i, ki ≤ m, then we have that, for each agent i, Li
max − Li

min ≤ bmax.

24

Proof. We prove the lemma by induction on the agent index i. The lemma clearly holds after
the algorithm examined all jobs of agent i = 1 (there is at most one job per machine). Let us
assume that the lemma holds after the algorithm examined all jobs of agent i and consider how the
algorithm allocates jobs of agent i+1. Let α and β be the indexes of two machines with maximum
and minimum load, respectively, after the algorithm allocated all jobs of agent i + 1. We remark
that, since ki+1 ≤ m, algorithm spread assigns at most one job of agent i+1 to each machine. Let
x and y denote the weights of the jobs of agent i + 1 assigned to machines α and β, respectively (if
no such a job is assigned then we simply consider a “dummy” job of weight 0). Then, we have

Li+1
max − Li+1

min = Li
α + x− Li

β − y.

We distinguish two possible cases:

(Li
α ≤ Li

β). Since y ≥ 0, we have that

Li+1
max − Li+1

min ≤ Li
β + x− Li

β − y ≤ x ≤ bmax.

(Li
α > Li

β). If x ≤ y, then by the inductive hypothesis we have that

Li+1
max − Li+1

min ≤ Li
α − Li

β ≤ bmax.

On the other hand, if x > y we get a contradiction. In fact, in this case algorithm spread
allocates the job of weight x before the job of weight y. When the algorithm allocates the
job of weight x machines α and β have load Li

α and Li
β, respectively. Since, by hypothesis,

Li
α > Li

β the algorithm cannot allocate this job to machine α.

This completes the proof. 2

Lemma 30 If for each agent i, ki ≤ m or ki is a multiple of m, then algorithm spread is (2−1/m)-
approximate.

Proof. Consider first the case in which, for each agent i, ki ≤ m. Let Li
max and Li

min be defined
as in Eq. 15. Define ∆ = Ln

max − Ln
min. Observe that

opt(b) ≥ (
l∑

i=1

bi)/m ≥ (Ln
min · (m− 1) + Ln

max)/m = Ln
min + ∆/m

and thus
Lmin ≤ opt(b)−∆/m.

Moreover
opt(b) ≥ bmax ≥ ∆

where the second inequality follows from Lemma 29. Thus, we have that

cost(spread, b) = Ln
max

= Ln
min + ∆

≤ opt(b)−∆/m + ∆ (by the above equations)
= opt(b) + ∆(1− 1/m)
≤ opt(b) + opt(b)(1− 1/m) (by the above equations)
= opt(b)(2− 1/m).

25

Algorithm split(b, m)

01. partition the machines in two sets S1 and S2 of
cardinality dm/2e and bm/2c;

02. for i = 1 to n
03. write ki as ki = ci · dm/2e+ qi for some

0 ≤ qi < dm/2e;
04. partition J i in J i

1(bi) containing the ci · dm/2e smallest jobs
and J i

2(bi) containing the remaining qi jobs;
05. let β1 = ∪n

i=1J
i
1(bi) and β2 = ∪n

i=1J
i
2(bi);

06. schedule jobs in β1 on machines of S1 using algorithm spread;
07. schedule jobs in β2 on machines of S2 using algorithm spread;

Figure 4: An algorithm for the case k > m.

Consider, now, the case in which some agent i has a number of jobs which is a multiple of m,
say ci ·m jobs for an integer ci > 0. The algorithm partitions the set J i into ci sets J i

1, J
i
2, . . . , J

i
ci

of size m. Thus, it is easy to observe that if we replace agent i with ci agents i1, i2, · · · , ici , where
agent ih owns m jobs in J i

h, the allocation computed by the algorithm does not change. Then, by
the previous case we have that cost(spread, b) ≤ opt(b)(2− 1/m). 2

We can now state the following theorem.

Theorem 31 There exist payment functions pspread such that M = (spread, pspread) is a
polynomial-time NE-truthful (2 − 1/m)-approximate mechanism for allocating selfish jobs to m
identical machines if, for each agent i, ki ≤ m or ki is a multiple of m.

Proof. By Lemma 28 algorithm spread is independent in the particular case where, for each
agent i, ki ≤ m or ki is a multiple of m. Thus, by Theorem 27 there exist payment functions
pspread such that (spread, pspread) is a polynomial-time NE-truthful mechanism. Moreover,
by Lemma 30, algorithm spread is (2 − 1/m)-approximate with respect to the declared weights.
However, since the mechanism is NE-truthful, the declared weights coincide with the real weights
and thus the mechanism is (2− 1/m)-approximate. 2

We now show how algorithm spread can be used as a subroutine in a constant-approximation
mechanism that is NE-truthful in the general case where each agent owns any number of jobs. This
mechanism is based on algorithm split, shown in Fig. 4. The algorithm partitions the machines in
two sets S1 and S2 of size dm/2e and bm/2c, respectively. Moreover, for each agent i it partitions
the job set J i in J i

1 and J i
2 in such a way that J i

1 contains a number of jobs that is a multiple of
dm/2e while J i

2 contains at most bm/2c jobs. Then, it uses algorithm spread to allocate the jobs
in J i

1 to the machines in S1 and the jobs in J i
2 to the machines in S2.

Theorem 32 There exist payment functions psplit such that M = (split, psplit) is a polynomial-
time NE-truthful mechanism for allocating jobs to m identical machines when any agent may own
several jobs.

26

Proof. For each agent i we define the payment function

pi
split(b) :=

∑
j∈Ji

oj
split(b|b). (16)

Observing that when b−i = t−i it holds that oj
split(b|b) = oj

split(b|t), we have that

ui
split(b|t) = vi

split(b|t) + pi
split(b|t) (by definition)

= −
∑
j∈Ji

(
oj
split(b|b) + tjm

j
split(b)

)
+

∑
j∈Ji

oj
split(b|b) (by Eq. 13)

= −
∑
j∈Ji

tj ·mj
split(b).

We now observe that each machine of S1 receives exactly ci jobs of agent i and thus for each
j ∈ J i

1(b) we have mj
split(b) = ci. On the other hand, each machine of S2 receives at most one

job of agent i and thus for each j ∈ J i
2(b) we have mj

split(b) = 1. We thus have

−
∑
j∈Ji

tj ·mj
split(b) = −

∑
j∈Ji

1(bi)

ci · tj −
∑

j∈Ji
2(bi)

tj .

This quantity is maximized when J i
2(b) contains the qi jobs of J i with the largest true weight; that

is, when J i
2(b) = J i

2(t). In other words, if b−i = t−i, then agent i can maximize his utility by setting
bi = ti. 2

Theorem 33 If m is even, then Algorithm split is 3-approximate for allocating jobs to m identical
machines.

Proof. Observe that if m is even then the algorithm partitions machines in two sets S1 and S2 of
size m/2, and jobs in two sets β1 and β2, where, for each agent i, β1 contains a number of jobs of J i

that is a multiple of m/2, while β2 contains at most m/2 jobs of J i. Then, it uses algorithm spread
to allocate jobs in β1 to machines in S1 and jobs in β2 to machines in S2. Denote by costi the cost
of the allocation of jobs in βi to machines in Si, for i = 1, 2. The cost of the allocation computed
by algorithm split is obviously equal to max{cost1, cost2}. Let B1 =

∑
i∈β1 bi, B2 =

∑
i∈β2 bi, and

B = B1 + B2. Let b1
max = maxi∈β1{bi}, b2

max = maxi∈β2{bi} and bmax = max{b1
max, b2

max}. Notice
that, by Lemma 30, it follows that cost1 ≤ B1

m/2 + b1
max and cost2 ≤ B2

m/2 + b2
max. Therefore,

cost(split, b) = max{cost1, cost2}

≤ max{ B1

m/2
+ b1

max,
B2

m/2
+ b2

max}

≤ max{ B1

m/2
,

B2

m/2
}+ max{b1

max, b2
max}

≤ B1 + B2

m/2
+ bmax

≤ 2
B

m
+ bmax

≤ 3optm(b).

2

27

Corollary 34 If m is odd, then there exists a polynomial-time NE-truthful 3(1 + 2/(m − 1))-
approximate mechanism for allocating jobs to m identical machines when any agent may own several
jobs.

Proof. Consider the mechanism (split, psplit) but run it on only m − 1 machines. Then,
by Theorem 32 the mechanism is polynomial-time and NE-truthful. Moreover, by (the proof of)
Theorem 33 we have that

cost(split, b) ≤ 2
B

m− 1
+ bmax = 2

m

m− 1
B

m
+ bmax ≤

(
3 +

2
m− 1

)
optm−1(b).

2

The above results can be improved when considering small values of m. In particular, we prove
the following theorem.

Theorem 35 For every ε > 0, there exists a polynomial-time NE-truthful (3
2 + ε)-approximate

mechanism for allocating jobs on two identical machines, when each agent owns either a single job
or an even number of jobs.

Proof. Consider the following algorithm: first run the Graham’s PTAS [14] for 2 machines to
get a (1 + ε)–approximate solution X; then transform X into a new solution X ′ in the following
way. For every agent i such that ki > 1 and X allocates ci > ki/2 jobs on machine j (where j is
either 1 or 2), move the ci − ki/2 lightest jobs of i from machine j to the other machine.

It is easy to see that this algorithm is independent. In fact, for each agent i, if ki > 1 then the
algorithm assigns ki/2 jobs to each machine. Then, by Theorem 27 there exists a payment scheme
for turning this algorithm into a NE-truthful mechanism.

It remains to analyze the approximation guarantee of the mechanism. Observe that the algo-
rithm computes first a solution X that is (1 + ε)-approximate and then computes a solution X ′

from X by moving some of the jobs. In particular, for each agent i, the algorithm may move the
ci − ki/2 lightest jobs of agent i. The total weight of the moved jobs is at most half of the total
weight of the jobs of agent i. Summing over all the agents, we have that at most half of the load
of a machine can be moved to the other machine. It follows that, the maximum load of X ′ is at
most 3/2 times the maximum load of X. Since solution X is (1 + ε)-approximate, we have that
the solution computed by the algorithm is (3/2 + ε)-approximate. 2

We notice that for m = 4 we can get a better approximation ratio by simply using the algorithm
for m = 2 and ignoring two machines. Clearly in this way we lose a factor of 2 in the approximation
given by Theorem 35, obtaining a (3 + ε)-approximation.

Corollary 36 For every ε > 0, there exists a polynomial-time NE-truthful (3 + ε)-approximate
mechanism for allocating jobs on four identical machines, when each agent owns either a single job
or an even number of jobs.

7 Conclusions and open problems

In this work, we have investigated a general resource assignment game (which includes the notable
example of the selfish routing game of Koutsoupias and Papadimitriou) from a mechanism design

28

prospective. In the resulting MRA game agents cannot directly choose the resources nor refuse
the allocation chosen by the allocation algorithm. However, they may still manipulate the system
by reporting false information about their requests. The allocation algorithm is also allowed to
charge each agent for the use of the resources. We feel this is a very general and natural scenario
and other approaches (e.g., suggesting and allocation for the KP model which is a good Nash
equilibrium [10]) should consider this aspect of the problem (i.e., the fact that computations are
based on the information reported by the agents).

Our characterization of NE-truthful mechanisms for Resource Assignment games is quite intu-
itive: if the “weight” of an agent request increases, then the algorithm should not worsen the set
of resources that are assigned to this agent. Rather surprisingly, this natural requirement prevents
from obtaining arbitrary good approximate solutions, even for the simple scenario of the MKP
game. Since this negative result holds no matter what the running time of the algorithm is, it
can be seen as the price that we have to pay (in terms of performance degradation) when selfish
agents are involved in the use of the resources. Payments allow to reduce significantly the system
degradation that occurs in the “anarchic” KP model, but we still have to pay something!

We have also generalized the MKP game in several directions which consider important aspects
of the problem. The topology of the underlying network is an important factor and our char-
acterization for routing on arbitrary graphs implies that the maximum link congestion cannot be
minimized even when all links are the same (the network in the KP model is equivalent to a network
connecting the source to the destination via disjoint paths of different lengths). Our characteri-
zation holds also for cost functions other than the maximum link congestion as the monotonicity
condition (Theorems 6-7) does not consider the objective function. Similarly, changing the internal
scheduling policy as done in [4] does not affect the mechanism. Indeed, if we change the order
in which jobs are executed, then we only affect the “additive” factor addi(X|t−i) in the definition
of quasi one-parameter agent. As this term is irrelevant for the monotonicity of the allocation
algorithm, Theorems 6-7 still hold. Therefore, all of our positive/negative results apply and, inter-
estingly, better approximation factors cannot be obtained in this way. Another interesting aspect
concern the extension of the MKP game with selfish machines (Section 5.1): this variant provides
a first example of a resource allocation problem in which we have both agents competing and agent
owning the resources.

These aspects are considered here separately. An interesting future research direction is to
combine them and see whether this affects the approximation guarantee of the mechanisms. It would
be also interesting to consider resource allocation games involving agents whose costs functions are
not of the form of the MRA games (i.e., not quasi one-parameter). This requires the development
of new mechanism design techniques which should depart significantly from the one-parameter
setting [21, 1]. A first candidate might be the extension of the MKP game involving more jobs per
agent. Our positive results are obtained via independent algorithms which essentially reduce this
problem to the quasi one-parameter setting. However, it is not clear whether NE-mechanisms can
use different algorithms so to achieve a better approximation factor.

References

[1] A. Archer and E. Tardos. Truthful mechanisms for one-parameter agents. In Proc. of the
IEEE Symposium on Foundations of Computer Science (FOCS), pages 482–491, 2001.

29

[2] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line routing of virtual circuits with
applications to load balancing and machine scheduling. Journal of the ACM, 44(3):486–504,
May 1997.

[3] V. Auletta, R. De Prisco, P. Penna, G. Persiano. On Designing Truthful Mechanisms for
Online Scheduling. In Proc. of the 12th International Colloquium on Structural Information
and Communication Complexity (SIROCCO), volume 3499 of LNCS, pag. 3-17, 2005.

[4] G. Christodoulou, E. Koutsoupias and A. Nanavati Coordination Mechanisms. In Proc. of the
31st International Colloquium on Automata, Languages, and Programming (ICALP), volume
3142 of LNCS, pag. 345-357, 2005.

[5] E.H. Clarke. Multipart Pricing of Public Goods. Public Choice, pages 17–33, 1971.

[6] R. Cole, Y. Dodis, and T. Roughgarden. Pricing network edges for heterogeneous selfish users.
In Proc. of the Annual ACM Symposium on Theory of Computing (STOC), pages 521–530.
ACM Press, 2003.

[7] R. Cominetti, J.R.Correa, N.E. Stier-Moses. Network games with atomic players. In Proc.
of the 30th International Colloquium on Automata, Languages, and Programming (ICALP),
volume 4516 of LNCS, pages 525–536, 2006.

[8] A. Czumaj and B. Vöcking. Tight bounds for worst-case equilibria. In Proc. of the 13th Annual
ACM Symposium on Discrete Algorithms (SODA), pages 413–420, 2002.

[9] E. Even-Dar, A. Kesselman, and Y. Mansour. Convergence time to Nash equilibria. In Proc.
of the 30th International Colloquium on Automata, Languages, and Programming (ICALP),
volume 2719 of LNCS, 2003.

[10] R. Feldmann, M. Gairing, T. Luecking, B. Monien, and M. Rode. Nashification and the
coordination ratio for a selfish routing game. In Proc. of the 30th International Colloquium on
Automata, Languages, and Programming (ICALP), volume 2719 of LNCS, 2003.

[11] A. Ferrante and M. Parente. Existence of Nash Equilibria in Selfish Routing problems. Tech-
nical Report, Università di Salerno, 2002.

[12] D. Fotakis, S. Kontongiannis, E. Koutsoupias, M. Mavronicolas, and P. Spirakis. The structure
and complexity of Nash equilibria for a selfish routing game. In Proc. of the 29th International
Colloquium on Automata, Languages, and Programming (ICALP), volume 2382 of LNCS,
pages 123–134, 2002.

[13] D. Fotakis, S. Kontongiannis, and P. Spirakis. Atomic congestion games among coalitions.
In Proc. of the 30th International Colloquium on Automata, Languages, and Programming
(ICALP), volume 4516 of LNCS, pages 572–583, 2006.

[14] R.L. Graham. Bound on multiprocessor timing anomalies. SIAM Journal on Applied Mathe-
matics, 17:416–429, 1969.

[15] T. Groves. Incentive in Teams. Econometrica, 41:617–631, 1973.

30

[16] A. Hayrapetyan, E. Tardos, and T. Wexler. The Effect of Collusion in Congestion Games.
ACM Symposium on Theory of Computing (STOC), 2006.

[17] D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for scheduling
problems: theoretical and practical results. Journal of the ACM, 34:144–162, 1987.

[18] E. Koutsoupias, M. Mavronicolas, and P. Spirakis. Approximate equilibria and ball fusion,
TOCS, 36: 683–693, 2003

[19] E. Koutsoupias and C.H. Papadimitriou. Worst-case equilibria. In Proc. of Annual Symposium
on Theoretical Aspects of Computer Science (STACS), volume 1563 of LNCS, pages 404–413,
1999.

[20] M. Mavronicolas and P. Spirakis. The price of selfish routing. In Proc. of the Annual ACM
Symposium on Theory of Computing (STOC), pages 510–519, 2001.

[21] R. Myerson. Optimal auction design. Mathematics of Operations Research, 6:58–73, 1981.

[22] N. Nisan and A. Ronen. Algorithmic Mechanism Design. In Proc. of the 31st Annual ACM
Symposium on Theory of Computing (STOC), pages 129–140, 1999.

[23] N. Nisan and A. Ronen. Computationally Feasible VCG Mechanisms. In Proceedings of the
2nd ACM Conference on Electronic Commerce (EC), pages 242–252, 2000.

[24] M.J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994.

[25] C. H. Papadimitriou. Algorithms, Games, and the Internet. In Proc. of the 33rd Annual ACM
Symposium on Theory of Computing (STOC), pages 749–753, 2001.

[26] T. Roughgarden. Designing networks for selfish users is hard. In Proc. of the 42nd IEEE
Symposium on Foundations of Computer Science (FOCS), pages 472–481, 2001.

[27] T. Roughgarden. Selfish Routing with Atomic Players. In Proc. of the Symposium on Discrete
Algorithms (SODA) 2005, pages 1184–1185, 2005.

[28] T. Roughgarden and E. Tardos. How bad is selfish routing? In Proc. of the 41st IEEE
Symposium on Foundations of Computer Science (FOCS), pages 93–102, 2000.

[29] W. Vickrey. Counterspeculation, Auctions and Competitive Sealed Tenders. Journal of Fi-
nance, pages 8–37, 1961.

31

	Introduction
	Our contribution
	Related work

	Resource assignment games
	A mechanism design approach

	A characterization of NE-truthful mechanisms
	Mechanisms for the MKP game
	Upper bounds for the MKP game
	Lower bounds

	Extensions of the MKP game
	Selfish machines
	More games with quasi one-parameter agents

	Agents owning more than one job
	Lower bounds
	Upper bounds

	Conclusions and open problems

