
Memory Organization Schemes for Large Shared

Data: A Randomized Solution for Distributed
Memory Machines

(Extended Abstract)

Alexander E. Andreev1, Andrea E. F. Clementi2, Paolo Penna2, and
José D. P. Rolim3

1 LSI Logic, (CA) USA
andreev@lsil.com

2 Dipartimento di Matematica, “Tor Vergata” University of Rome
{lastname}@mat.uniroma2.it

3 Centre Universitaire d’Informatique, University of Geneva, CH,
rolim@cui.unige.ch

Abstract. We address the problem of organizing a set T of shared data
into the memory modules of a Distributed Memory Machine (DMM) in
order to minimize memory access conflicts during read operations.
In this paper we present a new randomized scheme that, with high prob-
ability, performs any set of r unrelated read operations on the shared
data set T in O(log r + log log |T |) parallel time with no memory con-
flicts and using O(r) processors. The set T is distributed into m DMM
memory modules where m is polynomial in r and logarithmic in T , and
the overall size of the shared memory used by our scheme is not larger
than (1 + 1/ log |T |)|T | (this means that there is “almost” no data repli-
cation). The memory organization scheme and most part of all the com-
putations of our method do not depend on the read requests, so they can
be performed once and for all during an off-line phase. This is a relevant
improvement over the previous deterministic method recently given in [1]
when “real-time” applications are considered.

1 Introduction

Consider a shared-memory synchronous parallel machine in which a set of p pro-
cessors can access to a set of b memory modules (also called banks) in parallel,
provided that a memory module is not accessed by more than one processor
simultaneously. The processors are connected to the memory modules through
a switching network. This parallel model, commonly referred to as Distributed
Memory Machine (DMM) or Module Parallel Computer, is considered more re-
alistic than the PRAM model and it has been the subject of several studies in
the literature [8,9,14,15,20]. In an EREW PRAM, each of the p processors can in
fact access any of the N memory words, provided that a word is not accessed by
more than one processor simultaneously. To ensure such connectivity, the total

C. Meinel and S. Tison (Eds.): STACS’99, LNCS 1563, pp. 68–77, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Memory Organization Schemes for Large Shared Data 69

number of the switching elements must be Θ(pN). For large shared memory,
constructing a switching network of this complexity is very expensive or even
impossible in practice.

One standard way to reduce the complexity of the switching network is to
organize the shared memory in modules [11], each of them containing several
words. A processor switches between modules and not between individual words.
So, if the total number of modules is b << N we then need only Θ(pb) switching
elements to realize the interconnection network.

There are two fundamental problems that always arise when the DMM model
is adopted. The first one concerns the construction of feasible switching networks
and related routing algorithms that must guarantee a full connectivity between
processors and memory modules with the best achievable delay. Several random-
ized and deterministic solutions of this problem have been derived over the last
years (see [12] for a good survey).

Once the routing problem is efficiently solved, the shared data have to be
distributed (and, if necessary, replicated) among the set of memory modules
so that processors can access them avoiding simultaneous reading accesses on
the same memory module. This second problem is sometimes referred to as the
granularity problem. The importance of this problem lies in the fact that reading
conflicts on the same shared-memory module (and, in general, any operation that
generates conflicts in the use of shared external devices) can only be solved at
the cost of a significant time delay. So, the memory contention, i.e. the maximum
number of shared accesses simultaneously mapped into the same module, is one
of the most important factors of the overall time complexity of a DMM algorithm.

In this paper, we address the granularity problem by assuming that we have
at hand a sufficiently good solution for the routing problem and thus processors
and memory modules can be thought as being ideally connected by a complete
bipartite graph. We also assume that our DMM model is provided by memory
interleaving technology [11] that allows any processor to send access requests
to more than one memory module simultaneously, provided that each of these
modules is not used by other processors.

Based on the above assumptions, several works have been devoted to the de-
sign of efficient solutions for the granularity problem. In particular, randomized
solutions have been presented in [8,14,20], while less efficient but determinis-
tic solutions have been introduced in [15,21]. Most of these works concern the
problem of simulating a PRAM algorithm on a DMM model. Further relevant
applications of the granularity problem concern the design of parallel systems
for Private Information Retrieval (PIR) on public-accessible databases [3,4,6],
parallel routing-table computations for IP lookup [16,17].

Let T be the table of binary data to be shared and r be the number of parallel
read accesses to be satisfied. The performance analysis of any solution of the
granularity problem on the DMM model should mainly address the following
aspects:

1) The total size of the shared memory required to implement the original
table T ; 2) The memory contention, i.e., the maximum number of simultaneous

70 Alexander E. Andreev et al.

access requests that a single memory module must satisfy; 3) The parallel time
complexity. This time complexity depends on both the local computations per-
formed by each processor and on the memory contention. As discussed before,
it is reasonable to assume that the latter represents a dominant factor; 4) The
number of processors.

Clearly, the role of the first aspect becomes crucial when large data tables
have to be shared (this is the case, for instance, of public databases accessible,
say, on WWW servers). On the other hand, in the case of PRAM simulations,
it is reasonable to assume that the number of shared data is relatively small.

To our knowledge, the best randomized solution for the granularity problem
in the case of PRAM simulation on the DMM model has been introduced by
Karp et al in [8]. They indeed derived a randomized method that simulates a
PRAM with p log log p log∗ p processors by using a DMM with p processors with
optimal expected delay time O(log log p log∗ p) per step of simulation. The mem-
ory contention is O(log log p). Each of the shared data is replicated in O(log log p)
copies and mapped to p memory modules by means of O(log log p) hash functions
(see also [9]). The randomized simulation of the PRAM algorithm consists of a
sequence of consecutive phases to be executed on the DMM model. Each phase
simulates O(p1/10) steps of the PRAM algorithm and all the variables (observe
that this number is at most O(p11/10)) used during these steps are distributed
into the memory modules by using new randomly selected hash functions. This
random distribution is called the cleaning up task. Observe also that this solu-
tion requires the a priori knowledge of the data used during the generic phase
and which must be assigned to the memory modules.

The above solution can be considered efficient for the problem of simulating
PRAM algorithms where, as already remarked, the number of sharing data is
relatively small and it is possible to define the set of data actually used by the
program or by a part of it [15]. On the other hand, this randomized solution
turns out to be less efficient when: i) the number of shared data is significantly
larger than the number of available processors, ii) it is not possible to determine
which is the set of shared data requests that will be performed in the next phase.

These are the typical situations that arise in the case of concurrent accesses
to large data structures such as public database available on WWW servers and
IP routers databases where “on-line” read requests have to be satisfied in “real
time”. We emphasize that an application of Karp et al’s method for this version
of the granularity problem would imply a new assignment of the sharing data
to the memory modules (during the cleaning up procedure) for each new set of
read requests.

One solution for the problem of performing read accesses on a large database
using the DMM model has been recently given by Andreev et al [1]. The algo-
rithm performs r arbitrary read requests on a database T of size N = 2n within
the following performances1. 1) The total size of the shared memory required to
implement the original table T is 2n(1 + 1

n) to represent the input function and
O(r3 log(r3n)) to perform extra algebraic computations; 2) There is no memory
1 We here use a definition of processor which is different from that used in [1].

Memory Organization Schemes for Large Shared Data 71

contention, i.e., each memory module receives at most one read request during
the algorithm; 3) The worst-case parallel time is logarithmic in r and n; 4) The
number of processors is O(r5n).

Andreev et al’s method have interesting applications for the direct-sum prob-
lem in circuit complexity [1]. On the other hand, one negative aspect lies in a
rather expensive setup procedure INIT whose goal is to select the correct ad-
dresses of the memory modules that will be considered during the algorithm2.
This procedure is a sequence of non trivial search and comparing operations in-
side a matrix M of O(r3) elements from the finite field GF (q) (where q = O(r3n))
that allows to select one row of M that satisfies a certain algebraic property. More
importantly, INIT depends on the particular values of the input requests, so it
must be run for every new set of r requests. This setup procedure performed at
“run time” yields an overhead cost that makes the overall algorithm not useful
for real time applications.

1.1 Our Result

We provide a randomized version of Andreev et al’s algorithm that solves the
above problem and requires neither the execution of INIT nor to implement the
relative matrix M . The processor programs are thus simpler and more suitable
for real time applications.

Given any error probability 0 < δ < 1/2, our new randomized version per-
forms with probability at least (1− δ) any set of r read requests on T of N = 2n

bits within the following complexity. 1) 2n(1 + 1
n) memory size (no additional

shared memory for extra-computation); 2) there is no memory contention; 3)
O(log r + log n + log(1/δ)) parallel time; 4) O(r((1/δ)r3n)) processors. (As we
will see later, the (r3n) factor refers to the amount of the simple xor gates
of fan-in 2 that are required to parallelize the task of one read request); 5)
O(log r + log δ) random bits.

Observe that in case of error, the algorithm does not fail to compute the
function but it just might have memory contention greater than 0.

The advantage of our randomized solution is not only in the above perfor-
mances. In fact, the distribution of T into the memory modules does not depend
on the set of the r read requests, so it can be done off-line in a pre-processing
phase. The use of randomness in our algorithm is required only to select a set
of O(r2) elements from a finite field with uniform distribution. Furthermore, the
computation of the memory module addresses which have to be used to satisfy
the r read requests is simple and involves only elementary linear algebra on finite
fields (more precisely, it is required to compute the set of points that belong to
a line specified by one of its points and the parameter of its direction). Finally
the number of memory modules in which the table is organized is polynomial in
r and logarithmic in the size of T . As discussed before, the fact that both the
number of processors and the number of memory modules are logarithmic in the

2 A detailed description of the main ideas of this algorithm is given in Section 2.

72 Alexander E. Andreev et al.

number of sharing data makes our solution more efficient in the case of large
database applications than those proposed for PRAM simulations. A relevant
example of such applications is the parallel implementation of Private Infor-
mation Retrieval (PIR) systems [3,4,6] on the DMM model. Due to the lack of
space, this application will be described in the full version of this paper.

2 Description of the Algorithm

Let T be the binary database to be shared. Let |T | = 2n for some integer n > 0,
we then consider T as the output table of a finite Boolean function f : {0, 1}n →
{0, 1}. According to this terminology, our problem is that of computing the
function f on a set of r unrelated inputs. As stated in the Introduction, we will
adopt the DMM parallel model. The time required by any processor to perform a
query to a shared memory module is denoted as extime. In our case, each shared
memory module contains one Boolean subfunction (which is stored by means
of its output table): processors can specify the input of one of these Boolean
functions and get one output bit.

Finally, in order to run randomized algorithms, we assume that a public
pseudo-random generator of bits is available to all processors.

Let X1, . . . , Xr be a set of inputs for function f . Our first step consists of
splitting the input space {0, 1}n in the direct product of two subspaces:

{0, 1}n = {0, 1}4k × {0, 1}n−4k

(the correct choice of k will be given later). The first subspace is here considered
as the finite field GF (q)4 where q = 2k. It follows that f can be written as
f(A, B), where A ∈ GF (q)4, B ∈ {0, 1}n−4k, and our problem is now to compute
the set of values f(A1, B1), f(A2, B2), . . . , f(Ar, Br) for arbitrary pairs (Ai, Bi),
i = 1, . . . , r.

We need here some algebraic definitions. Consider the set GF (q)4 as a 4-
dimensional linear space. Let l(A, u) be the line passing through A and parallel
to the vector h(u) = (1, u, u2, u3). Notice that the parameter u determines the
direction of the line. Let U be any subset of GF (q) (the correct choice of this
subset is crucial for our randomized algorithm, and it will be given in Section 4);
the term SL4(U) denotes the set of all lines l(A, u) such that A ∈ GF (q)4

and u ∈ U . We also define the set of points l#(A, u) = l(A, u) \ {A}. For
any A ∈ GF (q)4, consider the function fA : {0, 1}n−4k → {0, 1} defined as
fA(B) = f(A, B). Furthermore, for each line l ∈ SL4(U), define the function
gl : {0, 1}n−4k → {0, 1} as

gl =
⊕
A∈l

fA

These functions give our representation of f in the shared memory, i.e., each
of them is stored in one single memory module of the DMM. Notice that the
construction (more precisely, the size and the structure of the function tables)

Memory Organization Schemes for Large Shared Data 73

is independent from f and from the sequence (Ai, Bi), i = 1, . . . , r. So, it can be
performed in a preliminary phase once and for all.
A processor can call one of such functions by paying a special time cost de-
noted as extime. In what follows, we define a system of pairwise independent
“computations” of f .

For any A ∈ l, it is easy to prove that

fA(B) = gl(B)
⊕

 ⊕
A∗∈l\{A}

fA∗(B)


 .

Informally speaking, the idea of our solution is that we can compute f on a given
input (Ai, Bi) without using the memory module that contains fAi .

If we consider a set {u1, . . . , ur} of elements from GF (q) then we can compute
f on (Ai, Bi), i = 1, . . . , r, by applying the following simple procedure:

– Procedure ALG1.

– input: f (stored in the shared memory modules by means of functions gl and fA);
(Ai, Bi), i = 1, . . . , r;
{u1, . . . , ur} (ui ∈ GF (q)) i = 1, . . . , r;

– begin
– for any i = 1, . . . , r do

– • begin

• read gl(Ai,ui)(Bi);

• for any A∗ ∈ l#(Ai, ui) read fA∗(Bi);

• end

– for any i = 1, . . . , r compute

f(Ai, Bi) = gl(Ai,ui)(Bi)
⊕

 ⊕
A∗∈l#(Ai,ui)

fA∗ (Bi)


 ; (1)

– end.

The system in Eq. 1 suggests us a way to avoid memory contention in ALG1: it
suffices to find a set of elements {u1, . . . , ur} such that any function of type fA

or gl (and so any memory module) can participate only in one equation of the
system.

In the deterministic algorithm presented by Andreev et al in [1], this task
is solved by means of a rather expensive deterministic procedure INIT that
considers a suitable matrix M(i, j) of r2 × r distinct elements from GF (q) and
then computes the first row {u1, . . . , ur} of M for which the following property
holds

for any j1 6= j2 → l#(Aj1 , uj1)
⋂

l#(Aj2 , uj2) = ∅ . (2)

This task (in particular, that of checking the above property) is expensive in
terms of number of processors, parallel time, and requires non trivial algebraic

74 Alexander E. Andreev et al.

operations and comparison in GF (q). Furthermore, we emphasize that the out-
put of the procedure INIT in fact depends on Ai (i = 1, . . . , r) hence it must be
performed for every possible values of such prefixes.

In the next section, we will give an algebraic lemma that allows us to avoid the
procedure INIT by using a suitable random choice of the sequence {u1, . . . , ur}.

3 Avoiding Memory Contention via Randomness

The randomized algorithm that, on any input sequence A1, . . . , Ar, returns an
output sequence u1, . . . , ur satisfying Property 2 enjoys of the following result.

Lemma 1. Let c ≥ 1 and let U be any subset of GF (q) such that |U | ≥ cr3. Let

M = {ui,j , i = 1, . . . , cr2; j = 1, . . . , r}
be a matrix of pairwise distinct elements from U . The probability that a randomly
chosen index i0 satisfies the property

for any j1 6= j2, l#(Aj1 , ui0,j1)
⋂

l#(Aj2 , ui0,j2) = ∅

is at least 1 − 1
2c .

Proof. Let us define the subset

BAD = {i ∈ {1, . . . , cr2} | ∃j1(i) 6= j2(i), l#(Aj1 , ui,j1(i))∩ l#(Aj2 , ui,j2(i)) 6= ∅}.
Assume that for some U ⊆ GF (q) with |U | ≥ cr3 and for some matrix M of cr3

distinct elements of U we have that

|BAD| ≥ cr2

2c
=

r2

2
. (3)

For any i ∈ BAD, consider two indexes j1(i) 6= j2(i) for which

l#(Aj1(i), ui,j1(i)) ∩ l#(Aj2(i), ui,j2(i)) 6= ∅ (4)

(observe that, from the definition of BAD, these two indexes must exist).
From the condition of the lemma ui,j1(i) 6= ui,j2(i) and Eq. 4, we easily have

that Aj1(i) 6= Aj2(i). Since the number of possible pairs (Aj1(i), Aj2(i)) with
(Aj1(i) 6= Aj2(i)) is

1
2
r(r − 1) <

1
2
r2 ≤ |BAD|

then at least two different i1 and i2 exist for which Aj1(i1) = Aj1(i2) and Aj2(i1) =
Aj2(i2). Let A1 = Aj1(i1) = Aj1(i2) , A2 = Aj2(i1) = Aj2(i2), and also define

C1 = l(A1, ui1,j1(i1))
⋂

l(A2, ui1,j2(i1)) , C2 = l(A1, ui2,j1(i2))
⋂

l(A2, ui2,j2(i2)) .

Memory Organization Schemes for Large Shared Data 75

Consider now the four vectors

V1 = C1 − A1 , V2 = A2 − C1 , V3 = C2 − A2 , V4 = A1 − C2 .

It is easy to verify that they are linearly dependent, i.e. V1 + V2 + V3 + V4 = 0.
Furthermore, we have that

V1 || h(u1), V2 || h(u2), V3 || h(u3), V4 || h(u4), where
u1 = ui1,j1(i1), u2 = ui1,j2(i1), u3 = ui2,j2(i2), u4 = ui2,j1(i2) .

At least two of the above vectors V1, V2, V3, V4 are not zero. It follows that
vectors h(ui), i = 1, . . . , 4 should be linearly dependent. But this is not true:
these vectors constitute the well known Wandermonde determinant which is
always positive for pairwise distinct values of ui, i = 1, . . . , 4. This implies that
|BAD| < cr2

2c and the lemma is proved.
2

Informally speaking, this lemma states that if we randomly choose a row of
M then, with high probability, the r elements contained in this row can be used
to compute the system in Eq. 1 avoiding reading conflicts on memory modules.

4 The Global DMM Algorithm and Its Performance
Analysis

In what follows, we give an overall description of all the tasks performed by the
global algorithm denoted as ALG. ALG receives as input an integer parameter
c ≥ 1, two positive integers n and r (1 ≤ r ≤ 2n), the output table T of a Boolean
function f : {0, 1}n → {0, 1}, and a set of r inputs {Xi = (Ai, Bi), i = 1, . . . , r}.
1. The Pre-Processing Task: The Shared Memory Partition. Let

k = dlog c + 3 log r + log ne , and q = 2k

Consider the field GF (q) using its standard binary representation. Define U
as the first cr3 elements in GF (q) (any ordering of the field works well). Then,
we store the subtables fA (for any A ∈ GF (q)4) and gl (for any l ∈ SL4(U)
in the shared memory modules. Note that this memory structure depends
only on n and r, so if some values in the Table T of f will change (and/or
some input X), we just need to update some of the subtables but we do not
need to update the memory organization scheme.

2. The Randomized Procedure RAND. Consider the (cr2 × r)-matrix M
where

M(i, j) is the
(
(i − 1)cr2 + j

)
-th element of U

(note that we don’t need to store M in the shared memory).
Choose uniformly at random an index iR from the set 1, . . . , cr2 and

for any j = 1, . . . , r, return uj = M(iR, j) .

3 The procedure ALG1. Apply procedure ALG1 using (u1, . . . , ur).

76 Alexander E. Andreev et al.

We now analyse the costs of ALG by assuming that the pre-processing task
has been already done (as already observed, this task depends only on r and n).
However, we remark that even this task can be efficiently parallelized since the
number of subtables is |GF (q)4| + |SL4(U)| which is polynomial in n and r.

Since we have defined k = dlog c + 3 log r + log ne and q = 2k, it follows that

|SL4(U)| =
|GF (q)4||U |
|GF (q)| = 24k |U |

2k
≤ 24k 1

n
.

The total size of the shared memory used to implement the f is the thus the
following

mem(ALG) = |GF (q)4|2n−4k + |SL4(U)|2n−4k ≤
(

1 +
1
n

)
2n .

Assume that we have r processors {p1, . . . , pr}.
- In the procedure RAND we select an element iR ∈ {1, . . . , cr2} by making
dlog r+log ce calls of the public pseudo-random generator. Then pj (j = 1, . . . , r)
returns the element uj by computing the ((i−1)r+j)-th element of U as specified
by the procedure RAND. This computation in GF (q) requires O(k) time using
O(k2) processors.

- The third phase requires the computation of procedure ALG1. For any i =
1, . . . , r, pi computes the function in Eq. 1.

Assume now that the sequence u1, . . . , ur verifies the property in Eq. 2 (from
Lemma 1, this happens with probability greater than (1− 1/(2c))). In this case,
each shared memory module receives at most one query, so the memory con-
tention is 0. It follows that the task of each processor pj can be performed in
O(log r + log c + log n) + extime parallel time using a number of Boolean gates
of fan-in two that satisfies the bound O(|l#(A, u)|) = O(2k) = O(cr3n)

Finally, we have proved the following theorem.

Theorem 2. Given any c ≥ 1, the algorithm ALG computes with probability at
least (1 − 1/(2c)) any n-input Boolean function f on a set of r inputs, within
the following complexity

– (1+ 1
n)2n memory size (no additional shared memory for extra-computation);

– O(log r + log n + log c) + extime parallel time (with no memory contention);
– r processors each of them having O(cr3n) Boolean gates of fan-in 2;
– O(log r + log c) random bits.

References

1. A.E. Andreev, A.E.F. Clementi, J. D.P. Rolim (1996), On the parallel computation
of Boolean functions on unrelated inputs. Proc. of the IV IEEE Israel Symposium
on Theory of Computing and Systems (ISTCS’96), IEEE, pp. 155–161.

Memory Organization Schemes for Large Shared Data 77

2. Chin F. (1986), Security Problems on Inference Control for SUM, MAX and MIN
Queries. J. of ACM, 33(3), pp. 451–464.

3. Chor B., and Gilboa N. (1997), Computationally Private Information Retrieval.
Proc. of ACM STOC, p. 304–313.

4. Chor B., Goldreich O., Kushilevitz E., and Sudan M. (1995), Private Information
Retrieval. Proc of IEEE FOCS, pp. 41-50.

5. Dobkin D., Jones A. K., Lipton R.J. (1979), Secure Databases: Protection Against
User Influence, ACM Trans. on Database Systems, 4(1), pp. 97–106.

6. Gertner Y., Goldwasser S., and Malkin T. (1998), A Random Server Model for
Private Information Retrieval. Technical Report MIT-LCS-TR-715. To appear on
Proc. RANDOM ‘98

7. Gertner Y., Ishai Y., Kushilevitz E., and Malkin T. (1998), Protecting Data Privacy
in Private Information Retrieval Schemes. Proc. of ACM STOC.

8. Karp R. M., Luby M., and Meyer auf der Heide F. (1996), Efficient PRAM Simu-
lation on a Distributed Memory Machine. Algoritmica, 16, pp. 517-542 (Extended
Abstract in ACM STOC 1992).

9. Karlin A. and Upfal E. (1986), Parallel hashing - an efficient implementation of
shared memory. Proc. of ACM STOC, 160-168.

10. Kruskal C.P., Rudolph L., and Snir M. (1990), A Complexity Theory of Efficient
Parallel Algorithms. Theoret. Comput. Sci, 71, p. 95–132.

11. Kumar V., Grama A., Gupta A., and Karypis G. (1995), Introduction to Parallel
Computing. Benjamin/Cummings Publ. Company.

12. T. Leighton (1992), Introduction to parallel algorithms and architectures: arrays,
trees, hypercubes. Morgan Kaufmann Publishers, san Mateo, CA.

13. Liu Z., Li X., and You J. (1992), On storage schemes for parallel array access.
Proc. ACM ICS, pp. 282–291.

14. Mehlhorn K. and Vishkin U. (1984), Randomized and Deterministic Simulation
of PRAM by Parallel Machines with Restricted Granularity of Parallel Memories.
ACTA Informatica, 21, pp. 339–374.

15. Pietracaprina A., and F. P. Preparata (1993), A Practical Constructive Scheme
for Deterministic Shared-Memory Access. Proc of ACM SPAA, p. 100–109.

16. Pluris Inc. (1998), Pluris Massively Parallel Routing. Technical Report available at
www.pluris.com/wp/index.html.

17. Pluris Inc. (1998), Parallel Routing, Technical report available at www.pluris.com.
18. Tannenbaum A.(1994), Computer Networks. Prenctice Hall, III Edition.
19. Ullman J. D. (1982) Principles of Database Systems. II edition.
20. Upfal E. (1984), Efficient Schemes for Parallel Communication. J. of the ACM, 31

(3), pp. 507–517.
21. Upfal E. and Wigderson A. (1987), How to share memory in a distributed system,

J. of the ACM, 34, pp. 116–127.

	Introduction
	Our Result

	Description of the Algorithm
	Avoiding Memory Contention via Randomness
	The Global DMM Algorithm and Its Performance Analysis

