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Abstract. We study mechanisms for cooperative cost-sharing games
satisfying: voluntary participation (i.e., no user is forced to pay more
her valuation of the service), consumer sovereignty (i.e, every user can
get the service if her valuation is large enough), no positive transfer (i.e.,
no user receives money from the mechanism), budget balance (i.e., the
total amount of money that users pay is equal to the cost of servicing
them), and group strategyproofness (i.e., the mechanism is resistant to
coalitions).

We show that mechanisms satisfying all these requirements must obey
certain algorithmic properties (which basically specify how the serviced
users are selected). Our results yield a characterization of upper continu-
ous mechanisms (this class is interesting as all known general techniques
yield mechanisms of this type). Finally, we extend some of our negative
results and obtain the first negative results on the existence of mech-
anisms satisfying all requirements above. We apply these results to an
interesting generalization of cost-sharing games in which the mechanism
cannot service certain “forbidden” subsets of users. These generalized
cost-sharing games correspond to natural variants of known cost-sharing
games and have interesting practical applications (e.g., sharing the cost
of multicast transmissions which cannot be encrypted).

1 Introduction

Consider a set U of n users that wish to buy a certain service from some service
providing company P. Each user i ∈ U valuates the service offered an amount
equal to vi. This value represents how much user i would benefit from being
serviced. Alternatively, vi quantifies the maximum amount of money that user i
is willing to pay for getting the service. The service provider must then develop
a so called mechanism, that is, a policy for deciding (i) which users should be
serviced and (ii) the price that each of them should pay for getting the service.

Mechanisms are complex auctions where users are asked to report their will-
ingness to pay which, in the end, determines the mechanism outcome (i.e., the
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serviced users and the prices). In particular, the value vi is known to user i but
not to the provider. Hence, users may act selfishly and misreport vi (e.g., try-
ing to get the service for a better price). Group strategyproof mechanisms are
“resistent” to coalitions of selfish users (see below for a formal definition), and
thus particularly appealing for cost-sharing games requiring some “reasonable”
share of the costs among the (possibly selfish) users.

An instance of a cost-sharing games is a pair I = (U, C), where U is a set of
n users, and the cost function C : 2U → R+ ∪ {0} gives the cost C(Q) > 0 of
servicing all users in a non-empty set Q ⊆ U . Each user is a selfish agent report-
ing some bid value bi (possibly different from vi); the true value vi is privately
known to agent i. Based on the reported values b = (b1, . . . , bn) a mechanism
M = (A, P ) uses an algorithm A to select a subset A(b|I) ∈ 2U of users to
service. Moreover, according to the payment functions P = (P 1, . . . , Pn), each
user i ∈ A(b|I) must pay P i(b|I) for getting the service. (Users that do not get
serviced do not pay.) Hence, the utility of agent i when she reports bi, and the
other agents report b−i := (b1, . . . , bi−1, bi+1, . . . , bn), is equal to

uM
i (bi,b−i|I) :=

{
vi − P i(bi,b−i|I) if i ∈ A(bi,b−i|I),
0 otherwise.

Developing economically viable cost-sharing mechanisms is a central problem
in (cooperative) game theory. In particular, there is a number of natural con-
straints/goals that, for every instance I = (U, C) and for every v = (v1, . . . , vn),
a mechanism M = (A, P ) should satisfy/meet: 1

1. α-Approximate Budget Balance (α-BB). The prices charged to all users
should recover the cost of servicing them and, at the same time, should not
be more than α > 1 times this cost. In particular, we require that

C(A(b)) ≤
∑

i∈A(b|I)

P i(b|I) ≤ α · C(A(b)). (1)

The lower bound guarantees that there is no loss for the provider. The upper
bound implies that a competitor could offer a better price to all users only if
coming up with payments such that the above condition is satisfied for some
1 ≤ α′ < α. Ideally, one wishes the budget-balance (BB) condition, that
is, the case α = 1. In this case, no competitor can offer better prices to all
users in A(b) without running into a loss. (The cost C(Q) is “common” to
all providers and represents the “minimum” cost for servicing Q.)

2. No Positive Transfer (NPT). No user receives money from the mecha-
nism, i.e., P i(·) ≥ 0.

3. Voluntary Participation (VP). We never charge a user an amount of
money greater than her reported valuation, that is, ∀bi, ∀b−i it holds that
bi ≥ P i(bi,b−i|I). In particular, a user has always the option of not paying
for a service for which she is not interested. Moreover, P i(b|I) = 0, for all
i /∈ A(b|I), i.e., only the users getting the service will pay.

1 Notice that we need to consider all possible v = (v1, . . . , vn) since the mechanism
does not known these values.
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4. Consumer Sovereignty (CS). Every user is guaranteed to get the service
if she reports a high enough valuation, that is, ∀ b−i, ∃ bi = bi(b−i) such
that i ∈ A(bi,b−i|I).

5. Group Strategyproofness (GSP). We require that a user i ∈ U that
misreport her valuation (i.e., bi 	= vi) cannot improve her utility nor improve
the utility of other users without worsening her own utility (otherwise, a
coalition C containing i would secede). Consider a coalition C ⊆ U of users.
For any two vectors x and y of length n, (xC ,y−C) denotes the vector
z = (z1, . . . , zn) such that zi = xi if i ∈ C and zi = yi if i /∈ C. The group
strategyproofness requires that if the inequality

uM
i (bC ,v−C) ≥ uM

i (vC ,v−C) (2)

holds for all i ∈ C then it must hold with equality for all i ∈ C as well.
Notice that, since we require the condition on Eq. 2 to hold for every v =
(vC ,v−C), replacing b−C by v−C does not change the definition of group
strategyproofness. Hence, the special case of C = {i} yields the weaker
notion of strategyproofness : ∀bi and ∀b−i it holds that

uM
i (vi,b−i) ≥ uM

i (bi,b−i), (3)

for every user i.

Mechanisms satisfying all requirements above have been deeply investigated (see
e.g. [10,9,3]). All known techniques yield mechanisms which select the final set
Q = A(b) among a “sufficiently reach” family PA ⊆ 2U of candidates. More
specifically, an invariant of known mechanisms is that one can always find an
order i1, . . . , in of the users such that each of the following subsets is given in
output for some bid vector b:

{i1, . . . , in}︸ ︷︷ ︸
Q1=U

, {i2, . . . , in}︸ ︷︷ ︸
Q2

, . . . , {ij, . . . , in}︸ ︷︷ ︸
Qj

, . . . , ∅. (4)

In general, an algorithm A may consider all possible subsets of U , that is,
PA = 2U , meaning that every Q ⊆ U is returned for some bid vector b. In some
cases, however, it may be convenient/necessary to never output certain subsets.
There are (at least) two main reasons for this:

1. Computational complexity. Computing C(Q) may be NP-hard for certain
Q ⊆ U . In this case, it may be good to avoid Q = A(b) since otherwise
M = (A, P ) will not run in polynomial time, or it will only guarantee α-BB
condition, for some α > 1, unless P=NP.

2. Generalized cost-sharing games. In many practical applications, certain sub-
sets Q ⊆ U may be “forbidden” in the sense that it is impossible to service all
and only those users in Q. We model these applications by introducing gen-
eralized cost-sharing games where instances are triples I = (U, P , C), with
P ⊆ 2U and C : P → R+ ∪ {0}. The set P contains the non-forbidden sets
and thus we require A(b) ∈ P, for all b. (We assume ∅ ∈ P and C(Q) > 0
for Q 	= ∅.)
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As mentioned above, all known techniques yield mechanisms which are se-
quential, that is, there exists σ = (i1, . . . , in) such that Pσ ⊆ PA, where Pσ

consists of all the subsets listed in Eq. 4 (see Def. 1). This poses severe limi-
tations on which (generalized) cost-sharing games these techniques can “solve
efficiently”: (i) Polynomial running time can be achieved only if C(·) can be
approximated in polynomial time within a factor α for all sets in Pσ; (ii) For
generalized cost-sharing games, the instance I = (U, P, C) must satisfy Pσ ⊆ P .
It is then natural to ask whether there exist mechanisms of a totally different
type (i.e., not sequential) which are more powerful, that is, they are computa-
tionally more efficient and/or solve more (generalized) cost-sharing games.

In this work we prove that, for the natural class of upper continuous mecha-
nisms [2] (see also Def. 2), the answer to this question is “no”. And it remains
“no” even if we allow the α-BB condition for an arbitrarily large α < ∞ (e.g.,
α = n). More specifically, for every upper continuous mechanism M = (A, P )
which is α-BB, VP, CS, NPT and GSP, it must be the case that A is sequential,
for every α ≥ 1. Our proofs show an interesting phenomenon: for upper contin-
uous mechanisms satisfying all but the α-BB condition above, the fact that A
is not sequential creates a “gap” in the payments which either must be all 0 or
cannot be bounded from above (i.e., for every β > 0 there exists b such that
P i(b) > β).

Our result, combined with a simple upper continuous mechanism given in [14,2],
shows that sequential algorithms characterize upper continuous mechanisms.
This implies that generalized cost-sharing games admits such upper continuous
mechanisms if and only if they admit sequential algorithms (see Corollary 5). In
particular, relaxing BB to α-BB, for any α > 1, would not allow for solving a
wider class of problems; and the “simple” technique in [14,2] is not less powerful
than more complex ones which yield upper continuous mechanisms.

Given our characterization, we can better understand which are the limita-
tions of upper continuous mechanisms satisfying α-BB, NPT, VP, CS and GSP:

1. Polynomial-time mechanisms exist only if C(·) is approximable within poly-
nomial time over Pσ, for some σ. If we require BB, then C(·) must be
polynomial-time computable over Pσ, for some σ.

2. For generalized cost-sharing games, these mechanisms exist only for those
instances I = (U, P, C) satisfying Pσ ⊆ P , for some σ. Moreover, the factor
α in the α-BB condition is totally irrelevant: if α-BB is possible then BB is
possible too, for any α > 1.

We stress that these are the first lower bounds on (upper continuous) mecha-
nisms satisfying α-BB, NPT, VP, CS and GSP. On one hand, one cannot derive
any lower bound on polynomial-time mechanisms from the computational com-
plexity of approximating C(·): indeed, there exists cost-sharing games which
admit (upper continuous) polynomial-time BB mechanisms satisfying NPT, VP,
CS and GSP [14,15], while the cost function C(·) is NP-hard to approximate
within some α > 1. On the other hand, generalized cost-sharing games have
not been investigated before, though many practical applications require them
(see Sect. 4).
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We also obtain necessary conditions for general (i.e., non upper continuous)
mechanisms. We use these conditions (Def.s 3 and 4) to prove general lower
bounds and that, for two users, upper continuous mechanisms are not less pow-
erful than general ones (basically, every mechanism must be sequential – Corol-
lary 3). We describe several applications of generalized cost-sharing games and
of our results in Sect. 4.

Due to lack of space, some of the proofs are omitted; these proofs are available
in the full version of the paper [13].

Related Work. Probably the simplest BB, NPT, VP, CS and GSP mechanism is
the one independently described in [14,2]: Starting from U , drop users in some
fixed order σ = (i1, . . . , in), until some user ir accepts to pay for the total cost
of the current set, that is, bir ≥ C({ir, . . . , in}).

More sophisticated mechanisms were already known from the seminal works
by Moulin and Shenker [10,9]. Their mechanisms employ so called cross-monoto-
nic cost-sharing methods which essentially divide the cost C(Q) among all users
in Q so that user i would not pay more if the mechanism expands the set Q
to some Q′ ⊃ Q. Cross-monotonic functions do not exists for several games of
interest, thus requiring relaxing BB to α-BB, for some factor α > 1 [8,2,1,7,5].
Moreover, cross-monotonicity is difficult to obtain in general (e.g., the works
[3,12,6,1,5] derive these cost-sharing methods from the execution of non-trivial
primal-dual algorithms).

In [14] the authors prove that Moulin and Shenker mechanisms also work for
a wider class of cost-sharing methods termed self cross-monotonic. The simple
mechanism described above is one of such mechanisms [14]. Also the polynomial-
time mechanisms for the Steiner tree game in [14,15] are in this class.

Basically, all known mechanisms are upper continuous, except for the one
in [2] which, however, requires C(·) being subadditive. All mechanisms in the
literature are either variants of Moulin and Shenker mechanisms [10,9], or have
been presented in [2]. In all cases, the mechanisms are sequential (and apart
from those in [14,15], they use algorithms such that PA = 2U ).

Characterizations of BB, NPT, VP, CS and GSP mechanisms are known only
for the following two cases: (i) the cost function C(·) is submodular [10,9], or (ii)
the mechanism is upper continuous and with no free riders 2 [2]. In both cases,
these mechanisms are characterized by cross-monotonic cost-sharing methods.

1.1 Preliminaries and Basic Results

Throughout the paper we let Ai(b) = 1 if i ∈ A(b), and Ai(b) = 0 otherwise,
for all i and all b.

Definition 1. For any ordering σ = (i1, . . . , in) of the users, we let

Pσ := {∅} ∪ {ij, ij+1, . . . , in}1≤j≤n.

2 Mechanisms without free riders guarantee that all users in A(b) pay something.
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An algorithm A is sequential if there exists σ such that Pσ ⊆ PA. An instance
I = (U, P, C) of a generalized cost-sharing game admits a sequential algorithm
if Pσ ⊆ P, for some σ. A generalized cost-sharing game admits a sequential
algorithm if every instance of the game does.

Theorem 1 ([14,2]). For any ordering σ of the users, there exists an upper
continuous BB, NPT, VP, CS and GSP mechanism M = (A, P ) such that PA =
Pσ. Hence, every instance of a generalized cost-sharing game which admits a
sequential algorithm, admits an upper continuous BB, NPT, VP, CS and GSP
mechanism.

The following lemma is a well-known result in mechanism design. (See also [13]
for a proof.)

Lemma 1 ([16,11]). For any strategyproof mechanism M = (A, P ) the follow-
ing conditions must hold:

Ai(bi,b−i) = 1 ⇒ ∀b′i > bi, Ai(b′i,b−i) = 1; (5)
Ai(bi,b−i) = Ai(b′i,b−i) ⇒ P i(bi,b−i) = P i(b′i,b−i). (6)

Lemma 1 and the CS condition imply that, for every i and every b−i, there
exists a threshold θi(b−i) such that agent i is serviced for all bi > θ(b−i), while
for bi < θi(b−i) agent i is not serviced. The following kind of mechanism breaks
ties, i.e. the case bi = θi(b−i), in a fixed manner:

Definition 2 (upper continuous mechanisms [2]). A mechanism M =
(A, P ) is upper-continuous if Ai(x,b−i) = 1 for all x ≥ θi(b−i), where θi(b−i) :=
inf{y| Ai(y,b−i) = 1} (This value exists unless the CS condition is violated.)

We will use the following technical lemma to show that, if payments are bounded
from above, then once a user i bids a “very high” bi, then this user will have to
be serviced no matter what the other agents report.

Lemma 2. Let M = (A, P ) be a strategyproof mechanism satisfying NPT, CS
and

∑
i∈U P i(b) ≤ β, for all b. Then, there exists B = B(β) ≥ 0 such that, for

all i and all b−i, Ai(B,b−i) = 1.

2 Cost-Sharing Mechanisms and Strategyproofness

2.1 Two Necessary Conditions

We next show that strategyproof α-BB, NPT, VP, CS mechanisms must be able
to service (i) all users and (ii) exactly one out of any pair i, j ∈ U . (Of course,
for some bid vector b.)

Definition 3. An algorithm A satisfies the full coverage property if U ∈ PA,
that is, the algorithm decides to service all users for some bid vector b.
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We next show that full coverage is a necessary condition for obtaining strate-
gyproof mechanisms satisfying NPT and CS and whose prices are bounded from
above (a necessary condition for α-BB).

Theorem 2. If A does not satisfy the full coverage property, then any strate-
gyproof mechanism M = (A, P ) satisfying NPT and CS will run in an unbounded
surplus, that is, for every β > 0, there exists b such that

∑
i∈U P i(b) > β.

Proof. We prove the contraposition. Suppose
∑

i∈U P i(b) ≤ β, for all b. Then,
Lemma 2 implies that A(B) = U , for some constant B ≥ 0 and for B =
(B, . . . , B).

Theorem 2 states that, if the mechanism is not able to service all users, then an
unbounded surplus must be created. The result we will prove next is a sort of
“dual”: if the mechanism is not able to selectively service two users, then it will
not collect any money.

Definition 4. An algorithm A satisfies the weak separation property if, for any
i, j ∈ U , the algorithm can return a feasible solution to service only one of them,
that is, there exists Q ∈ PA such that |Q ∩ {i, j}| = 1.

Condition weak separation is also necessary for strategyproof mechanisms:

Theorem 3. If A does not satisfy the weak separation condition, then any strat-
egyproof mechanism M = (A, P ) satisfying NPT, VP and CS will not collect any
money from the users when they report some bid vector b. Moreover, mechanism
M will service a subset Q 	= ∅, thus implying that, mechanism M cannot be α-
BB, for any α > 1.

Proof. Since A does not satisfy the weak separation condition there exist j, k ∈ U
such that

∀b, Aj(b) = Ak(b). (7)

Let (x,0−l) denote the vector having the l-th component equal to x and all
others being equal 0. Consider the following three bid vectors:

b(j) := (bj ,0−j) = (0, . . . , 0, bj , 0, . . . , 0, 0, 0, . . . , 0)

b(k) := (bk,0−k) = (0, . . . , 0, 0, 0, . . . , 0, bk, 0, . . . , 0)
b(j,k) := (0, . . . , 0, bj , 0, . . . , 0, bk, 0, . . . , 0)

with bj and bk such that Aj(b(j)) = 1 and Ak(b(k)) = 1. (These two values exist
by the CS condition.) Then, Eq. 7 implies Aj(b(k)) = 1 and Ak(b(j)) = 1. The
CS and NPT conditions imply that P j(b(k)) = 0 and P k(b(j)) = 0. We apply
Lemma 1 and obtain the following implications:

Aj(b(k)) = 1 ⇒ Aj(b(j,k)) = 1 (8)

⇒ P j(b(j,k)) = P j(b(k)) = 0, (9)
Ak(b(j)) = 1 ⇒ Ak(b(j,k)) = 1 (10)

⇒ P k(b(j,k)) = P k(b(j)) = 0. (11)
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The VP condition, Eq. 9, and Eq. 11 imply that, P i(b(j,k)) = 0, for 1 ≤ i ≤ n.
Taking b = b(j,k), we get the first part of the theorem. Moreover, Eq.s 8 and 10
prove the second part.

The following result follows from Theorems 2 and 3:

Corollary 1. Any α-BB strategyproof mechanism M = (A, P ), also satisfying
NPT, VP and CS, must use an algorithm A satisfying both the full coverage and
weak separation properties.

The above result implies the first lower bound on polynomial-time α-BB, NPT,
VP, CS, and GSP mechanisms:

Corollary 2. If C(U) is NP-hard to approximate within a factor α ≥ 1, then no
α-BB mechanism satisfying NPT, VP, CS and GSP can run in polynomial-time.

2.2 Characterization of Mechanisms for Two Users

We will prove that, for the case of two users, full coverage and weak separa-
tion suffice for the existence of mechanisms. The following fact will be the key
property:

Fact 4. Any algorithm A satisfying the full coverage and weak separation con-
ditions is a sequential algorithm for the case of two users. (Indeed, U ∈ PA and
{1} ∈ PA or {2} ∈ PA.)

The above fact and Corollary 1 imply the following:

Corollary 3. For generalized cost-sharing games involving two users, the fol-
lowing are equivalent:

1. There exists a strategyproof α-BB mechanism Mα = (Aα, Pα) satisfying
NPT, VP and CS;

2. Every instance I = (U, P , C) admits a sequential algorithm A;
3. There exists a group strategyproof BB mechanism M = (A, P ) satisfying

NPT, VP and CS.

Our next result, whose proof is given in the full version of this work [13], shows
that Corollary 3 does not apply to the case of three (or more) users.

Theorem 5. There exists an instance I = (U, P , C), with |U | = 3, which does
not admit sequential algorithms. However, there exist a strategyproof mechanism
M = (A, P ) satisfying BB, NPT, VP and CS for this instance. Hence, A is not
sequential.

We stress that the mechanism of the above theorem is not upper continuous nor
GSP.
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3 Characterization of Upper Continuous Mechanisms

We begin with the following technical lemma.

Lemma 3. Let M = (A, P ) be a GSP mechanism satisfying NPT and VP. For
all b′ = (b′i,b−i) and b′′ = (b′′i ,b−i) such that Ai(b′) = Ai(b′′), the following
holds for all j ∈ U : if Aj(b′) = Aj(b′′) then P j(b′) = P j(b′′).

In this section we will consider bid vectors which take values 0 or some “suf-
ficiently large” B ≥ 0. Recall that a user bidding B is serviced no matter the
other agents bids.

Definition 5. For any mechanism M = (A, P ) such that
∑

i∈U P i(b) ≤ β, for
all b, we let B = B(β) be the constant of Lemma 2, and PA

β := {A(b)|b ∈
{0, B}n} ⊆ PA. Moreover, βQ denotes the vector whose i-th component is equal
to B for i ∈ Q, and 0 otherwise.

Lemma 4. Let M = (A, P ) be an upper continuous GSP mechanism satisfying
NPT, VP and CS. Moreover, let

∑
i∈U P i(b) ≤ β, for all b. Then, for all

Q ∈ PA
β, it holds that Q = A(βQ).

Theorem 6. Let M = (A, P ) be an upper continuous α-BB mechanism satisfy-
ing GSP, NPT, VP and CS. Then, for every Q ∈ PA

β , there exists iQ ∈ Q such
that Q \ {iQ} ∈ PA

β.

Proof. Notice that α-BB implies
∑

i∈U P i(b) ≤ β for all bid vectors b with
β = max

Q∈PA αC(Q). Thus from Lemma 4, we can assume Q = A(βQ). First of
all, we claim that there is at least one user iQ ∈ Q such that iQ /∈ A(βQ\{iQ}).
Indeed, Lemma 1 implies that, for all i ∈ A(βQ\{i}), it must be the case that
P i(βQ\{i}) = 0. Hence, if such an iQ does not exist, then

∑
i∈Q P i(b) = 0, which

contradicts the α-BB condition (i.e.
∑

i∈U P i(b) > 0 for all bid vectors b).
Let us then consider iQ ∈ Q such that iQ /∈ A(βQ\{iQ}), and let R := Q\{iQ}.

Lemma 2 implies R ⊆ A(βR). By contradiction, assume R ⊂ A(βR) and let
k ∈ A(βR) \ R. We will show that a coalition C = {iQ, k} will violate the GSP
condition. To this end, consider the following bid vectors which differ only in the
iQ-th coordinate. We let ∗ ∈ {0, B} denote the coordinates of these two vectors
other than iQ and k:

b(1) = βQ = (∗, . . . , ∗, B, ∗, . . . , ∗, 0, ∗, . . . , ∗) (12)

b(2) = βR = (∗, . . . , ∗, 0, ∗, . . . , ∗, 0, ∗, . . . , ∗) (13)

Since k /∈ R and k 	= iQ, it must be the case k /∈ Q = R ∪ {iQ} = A(b(1)).
From the fact that M is upper continuous, we can choose bk such that 0 < bk <

θk(b(1)
−k). Let biQ = P iQ(b(1)) and consider the following bid vector which differs

from b(1) only in the iQ-th and k-th entries:

b(3) = (∗, . . . , ∗, biQ , ∗, . . . , ∗, bk, ∗, . . . , ∗).

The proof of the following fact is given in the full version [13].



346 P. Penna and C. Ventre

Fact 7. In the sequel we will use the fact that uM
iQ

(b(3)) = uM
iQ

(b(1)) and uM
k (b(3))

= uM
k (b(1)), for vk = bk.

We are now ready to show that, under the hypothesis k ∈ A(b(2)), the coalition
C = {iQ, k} violates the GSP condition. Indeed, consider vC = (viQ , vk) =
(biQ , bk), bC = (0, 0) and v−C = b(1)

−C = b(2)
−C = b(3)

−C . Hence, (vC ,v−C) = b(3)

and (bC ,v−C) = b(2). Fact 7 implies

uM
iQ

(vC ,v−C) = uM
iQ

(b(3)) = uM
iQ

(b(1)) = viQ − P iQ(b(1)) = 0 = uM
iQ

(b(2)),

where the last inequality is due to the definition of b(2) and to the VP condition.
(Observe that it must hold P iQ(b(2)) = 0.) Similarly,

uM
k (vC ,v−C) = uM

k (b(3)) = uM
k (b(1)) = 0 < vk = uM

iQ
(b(2)),

where the last equality follows from the definition of b(2), from the VP condition,
and from k ∈ A(b(2)). The above two inequalities thus imply that the coalition
C = {iQ, k} violates the GSP condition. Hence a contradiction derived from the
assumption R ⊂ A(βR). It must then hold Q\{iQ} = R = A(βR) = A(βQ\{iQ}).

Corollary 4. If M = (A, P ) is an upper-continuous mechanism satisfying α-
BB, NPT, VP, CS and GSP, then A must be sequential.

Proof. Let Q1 := U and observe that, from the proof of Theorem 2, Q1 = U ∈
PA

β . We proceed inductively and apply Theorem 6 so to prove that Qj ∈ PA
β and

therefore we can define ij := iQj such that Qj+1 := Qj \ {ij} ∈ PA
β .

Corollary 5. For generalized cost-sharing games involving any number of users,
the following are equivalent:

1. There exists an upper-continuous mechanism Mα = (Aα, Pα) satisfying α-
BB, NPT, VP, CS and GSP;

2. Every instance I = (U, P , C) admits a sequential algorithm A;
3. There exists an upper-continuous mechanism M = (A, P ) satisfying BB,

NPT, VP, CS and GSP.

4 Applications, Extensions and Open Questions

Cost-sharing games have been studied under the following (underlying) assump-
tion: given any subset Q of users, it is possible to provide the service to exactly
those users in Q.

This hypothesis cannot be taken for granted in several applications. Indeed,
consider the following (simple) scenarios:

Fig. 1(a). A network connecting a source node s to another node t, and n ≥ 2
users all sitting on node t. If the source s transmits to any of them, then
all the others will also receive it. (Consider the scenario in which there is no
encryption and one users can “sniff” what is sent to the others. This problem
is a variant of the games considered in [8,4,3,5].
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Fig. 1. (a) A variant of the Steiner tree game in [3]; (b) A variant of the wireless
multicast game in [1]; (c) Another variant of the wireless multicast game obtained by
considering stations with switched-beams antennae and limited battery capacity

Fig. 1(b). The wireless multicast game in which a source station s and n ≥ 2
other stations/users located all in the transmission range of s. Similarly to
the previous example, station s can only choose to transmit to all of the
them or to none. This game is a variant of the one in [1], where the authors
implicitly assume that stations/users receiving a physical signal are not able
to get the transmission.

Fig. 1(c). As above, but now the source s uses a switched beam antenna: the
coverage area is divided into independent sectors or beams. The energy spent
by s depends on the number of used sectors. It may be the case that the
battery level of s is sufficient to reach one user, but not both.

The first two problems are equivalent to a simple generalized cost-sharing
game with P = {U, ∅}. The latter, instead, corresponds to the case U 	∈ P .
Corollary 1 implies that none of the three instances above admits an α-BB, NPT,
VP, CS, and GSP mechanism. The same holds for several natural variants of cost-
sharing games studied in the literature [10,9,3,1,12,6,2,5], where connectivity
games on graphs allow more than one user per node but no “encryption”: either
all users in that node are serviced or none.

A similar negative result holds if the service provider is not able to service
all of its potential customers (i.e., U /∈ PA), as in the third example. This
requirement implies some lower bounds on polynomial-time mechanisms which

Table 1. A summary of upper/lower bounds on ‘α’ for mechanisms satisfying α-BB,
NPT, VP, CS and GSP. Quantity ρ(X ) is the best approximation guarantee of any
polynomial-time algorithm approximating C(·) over X ⊆ 2U ). Results marked ‘∗’ holds
in general (i.e., for non-upper continuous mechanisms too).

(Generalized) Cost-Sharing Games Upper Continuous Mechanisms
any (non polytime) poly-time

P = 2U 1 [14,2] α ≤ ρ(2U ) [14]
With Sequential Algorithms α ≥ ρ({U}) [Cor. 2]∗

Pσ ⊆ P 1 [14,2] α ≤ ρ(Pσ) [14]
α ≥ ρ({U}) [Cor. 2]∗

With No Sequential Algorithm Pσ �⊆ P unbounded [Cor. 4] unbounded [Cor. 4]
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relate the computational hardness of approximating C(U) to the factor α-BB
condition (Corollary 2).

If one ignores computational issues, than Corollary 5 states that, for upper
continuous mechanisms, generalized games which are “solvable” are all and only
those that admit a sequential algorithm. Here the factor α plays no role. In
other words, if we stick to properties NPT, VP, CS and GSP only, then it makes
sense to relax BB to α-BB only for computational reasons. This contrasts with
prior results in [2] where adding a “fairness” requirement (i.e., no free riders)
then paying a factor α > 1 is necessary (and sometimes sufficient) for upper
continuous mechanisms, regardless of their running time.
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