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Abstract. We consider the problem of scheduling jobs on related ma-
chines owned by selfish agents and provide the first deterministic mecha-
nisms with constant approximation that are truthful; that is, truth-telling
is a dominant strategy for all agents. More precisely, we present deter-
ministic polynomial-time (2 + ε)-approximation algorithms and suitable
payment functions that yield truthful mechanisms for several NP-hard
restrictions of this problem. Our result also yields a family of deter-
ministic polynomial-time truthful (4 + ε)-approximation mechanisms for
any fixed number of machines. The only previously-known mechanism
for this problem (proposed by Archer and Tardos [FOCS 2001]) is 3-
approximated, randomized and truthful under a weaker notion of truth-
fulness.
Up to our knowledge, our mechanisms are the first non-trivial
polynomial-time deterministic truthful mechanisms for this NP-hard
problem.
To obtain our results we introduce a technique to transform the PTAS
by Graham into a deterministic truthful mechanism.

1 Introduction

The Internet is a complex distributed system where a multitude of heteroge-
neous entities (e.g., providers, autonomous systems, universities, private compa-
nies, etc.) offer, use, and even compete with each other for resources. Resource
allocation is a fundamental issue for the efficiency of a complex system. Several
efficient distributed protocols have been designed for resource allocation. The
underlying assumption is that the entities running the protocol are trustworthy;
that is, they behave as prescribed by the protocol. This assumption is unrealistic
in some settings as the entities owning the resources might try to manipulate
the system in order to get some advantages by reporting false information. For
example, a router of an autonomous system can report false link status trying
to redirect traffic through another autonomous system.

With false information even the most efficient protocol may lead to unrea-
sonable solutions if it is not designed to cope with the selfish behavior of the
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Deterministic Truthful Approximation Mechanisms 609

single entities. The field of mechanism design provides an elegant theory to deal
with this kind of problems. The main idea of this theory is to pay the agents to
convince them to perform strategies that help the system to optimize a global ob-
jective function. A mechanism M = (A, P ) is a combination of two elements: an
algorithm A computing a solution and a payment rule P specifying the amount
of “money” the mechanism should pay to each entity. Informally speaking, each
agent i has a valuation function that associates to each solution X some value
vi(X) and the mechanism pays i an amount P i(X, ri) based on the solution X
and on the reported information ri. A truthful mechanism is a mechanism such
that the payments guarantee that, when X = X(ri) is the solution computed
by the mechanism, ui := Pi(X, ri) + vi(X) is maximized for ri equal to the true
information (see Sect. 1.3 for a formal definition).

Recently, mechanism design has been applied to several optimization prob-
lems arising in computer science, networking and algorithmic questions related to
the Internet (see [10] for a survey). In the seminal papers by Nisan and Ronen [8,
9] (see also [11]) it is first pointed out that classical results in mechanism design
theory, originated from micro economics and game theory, do not completely fit
in a context where computational issues play a crucial role [9].

The main purpose of this paper is to provide polynomial-time approxima-
tion truthful mechanisms for the problem of scheduling jobs on parallel related
machines (Q||Cmax).

1.1 Previous Work

The theory of mechanism design dates back to the seminal papers by Vickrey [12],
Clarke [4] and Groves [7]. Their celebrated VCG mechanism is still the promi-
nent technique to derive truthful mechanisms for many problems (e.g., shortest
path, minimum spanning tree, etc.). In particular, when applied to combinato-
rial optimization problems (see e.g., [8,11]), the VCG mechanisms guarantee the
truthfulness under the hypothesis that the optimization function is utilitarian1

and the mechanism is able to compute the optimum.
Unfortunately, none of these hypothesis holds for Q||Cmax since we aim at

minimizing the maximum over all machines of their completion times, and the
problem is NP-hard [5].

In [2] the authors characterize those algorithms which can be turned into a
truthful mechanism for Q||Cmax. Their beautiful result brings us back to “pure
algorithmic problems” as all we need is to find a good algorithm for the original
problem which also satisfies the additional monotonicity requirement: increasing
the speed of exactly one machine does not make the algorithm decrease the work
assigned to that machine (see Sect. 1.3 for a formal definition, and Theorem 7
below). The authors then provide (i) an exact truthful mechanism based on the
the algorithm computing the (lexicographically minimal) optimal solutio and

1 A maximization problem is utilitarian if the optimization can be written as the sum
of the agents’ valuation functions.
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(ii) a randomized 3-approximation mechanism that is truthful in expectation, a
weaker notion of truthfulness.

Nisan and Ronen [8,11] considered the unrelated machines case and provide
an n-approximation deterministic truthful mechanism for it (n is the number of
machines). Rather surprisingly, this mechanism is optimal for the case of n = 2.
For the case n > 2 [8,11] prove that a wide class of “natural” mechanisms cannot
achieve a factor better than n, if we require truthfulness. Finally, for n = 2 [8,
11] give a randomized 7/4-approximation mechanism.

There is a significant difference between the definition of truthfulness used
in [8,11] and the one used in [2]. Indeed, the randomized 7/4-approximation
algorithm in [8,11] yields a truthful dominant strategy for any possible random
choice of the algorithm. In [2], instead, the notion of utility is replaced by the
expected utility one: even though the expected utility is maximized when telling
the truth, for some random outcome, there might exist a better (untruthful!)
strategy.

This idea is pushed further in [1] where one parameter agents are considered
for the problem of combinatorial auction. In this work, truthfulness is achieved
w.r.t. expected utility and with high probability, that is, the probability that an
untruthful declaration improves the agent utility is arbitrarily small.

1.2 Our Contribution

It is natural to ask whether some problems require some relaxation on the defi-
nition of truthfulness in order to achieve polynomial-time approximation mecha-
nisms. In this paper we investigate the existence of truthful polynomial-time ap-
proximation mechanisms for Q||Cmax, while maintaining the strongest definition
of truthfulness: truth-telling is a dominant strategy over all possible strategies of
an agent.

We first show that, for any fixed number of machines, Q||Cmax admits a de-
terministic truthful (2+ ε)-approximation mechanism if there exists a monotone
allocation algorithm Gc whose cost is within an additive factor of O(tmax/s1)
from the cost of Greedy, where tmax is the largest job weight and s1 is the
smallest machine speed (see Sect. 2). Our result is a modification of the clas-
sical PTAS [6]. Notice that this PTAS cannot be used to construct a truthful
mechanism because Greedy is not monotone and the allocation produced by
the combination of the two algorithms (the optimal and the greedy one) is also
not monotone. Our technical contribution here is the analysis of a new algo-
rithm obtained by combining the optimal algorithm and Gc, that preserves the
monotonicity and whose cost is within a factor of 2 of the cost of the PTAS.

We then show that such a monotone algorithm Gc exists for the following
versions of the problem (see Sect. 3):

– speeds are integer and the largest speed is bounded from above by a constant;
– speeds are divisible, that is, they belong to a set C = {c1, c2, . . . , cp, . . .} such

that for each i, ci+1 is a multiple of ci.
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Thus, for both these cases, we obtain a family of deterministic truthful (2 +
ε)-approximation mechanisms (see Sect. 4). Observe that all such restrictions
remain NP-hard even for two machines [5]. Up to our knowledge, this is the
first result in which approximate solutions yield truthful mechanisms, where
truthfulness is defined in the strongest sense. Indeed, the mechanism in [2] is
only truthful on average. Although our new algorithm is relatively simple, its
analysis, in terms of monotonicity and approximability, is far from trivial and
goes through several properties of greedy allocations on identical machines.

We emphasize that the importance of an approximating mechanism for the
case of divisible speeds is both practical and theoretical. Indeed, on one hand, in
many practical applications “speeds” are not arbitrary but they are taken from a
pre-determined set of “types”, yielding values that are multiple with each other.
Moreover, this result implies the existence, for any fixed number of machines, of
deterministic truthful (4 + ε)-approximate mechanisms for the case of arbitrary
speeds, for any ε > 0.

Observe that, also in the case of divisible speeds, existing and natural ap-
proximation algorithms are not monotone, and thus they are not suitable for
truthful mechanisms (see [3] for a discussion).

Finally, our mechanisms satisfy voluntary participation and are able to com-
pute the payments within polynomial time (see Sect. 4). The latter is a property
that cannot be directly derived from the results in [2].

Due to lack of space some proofs are omitted or only sketched. We refer the
interesting reader to the full version of this work [3].

1.3 Preliminaries

We consider the problem of scheduling on related parallel machines (Q||Cmax).
We are given the speed vector s = 〈s1, s2, . . . , sn〉, with s1 ≤ s2 ≤ . . . ≤ sn, of the
of n machines and a job sequence with weights σ = (t1, t2, . . . , tm). In the sequel
we simply denote the i-th job with its weight ti. The largest job weight in σ is
denoted by tmax. A schedule is a mapping that associates each job to a machine.
The amount of time to complete job j on machine i is tj/si. The work of machine
i, denoted as wi, is given by the sum of the weights of the jobs assigned to i. The
load (or finish time) of machine i is given by wi/si. The cost of a schedule is the
maximum load over all machines, that is, its makespan. Given an algorithm A
for Q||Cmax, A(σ, s) denotes the solution computed by this algorithm on input
the job sequence σ and the speed vector s. The cost of the solution computed by
algorithm A on input σ and s is denoted by cost(A, σ, s). We will also consider
scheduling algorithms that take as third input the parameter h. In this case we
denote by A(σ, s, h) the schedule output and by cost(A, σ, s) its cost.

We consider Q||Cmax in the context of selfish agents in which each machine
is owned by an agent and the value of si is privately known to the agent. A
mechanism for this problem is a pair M = (A, P ), where A is an algorithm to
construct a solution and P is a payment function. In particular, the mechanism
asks each agent i to report her speed and, based on the reported costs, constructs
a solution using A and pays the agents according to P = (P1, P2, . . . , Pn). The
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profit of agent i is defined as profiti = Pi − wi/si, that is, payment minus the
cost incurred by the agent in being assigned work wi.

A strategy for an agent i is to declare a value bi for her speed. Let b−i denote
b1, b2, . . . , bi−1, bi+1, . . . , bn. A strategy bi is a dominant strategy for agent i, if
bi maximizes profiti for any possible b−i. A mechanism is truthful if, for any
agent i, declaring her true speed is a dominant strategy. A mechanism satisfies
voluntary participation if, for any agent i, declaring her true speed yields a non-
negative utility.

An algorithm for the Q||Cmax problem is monotone if, given in input the ma-
chine speeds b1, b2, . . . , bn, for any i and fixed b−i, the work wi is non decreasing
in bi.

Given a sequence σ of m jobs, we denote by σh the subsequence consisting
of the first h jobs in σ, for any h ≤ m; moreover, σ \ σh denotes the sequence
obtained by removing from σ the h first jobs.

The Greedy algorithm (also known as the ListScheduling algorithm [6])
processes jobs in the order they appear in σ and assigns a job tj to the machine
i minimizing (wi + tj)/si, where wi denotes the work of machine i before job tj
is assigned; if more than one machine minimizing the above ratio exists then the
one of smallest index is chosen.

An optimal algorithm computes a solution of minimal cost opt(σ, s). Through-
out the paper we assume that the optimal algorithm always produces the lex-
icographically minimal optimal assignment. As shown in [2], this algorithm is
monotone.

An algorithm A is a c-approximation algorithm if, for every instance (σ, s),
cost(A, σ, s) ≤ c ·opt(σ, s). A polynomial-time approximation scheme (PTAS) for
a minimization problem is a family A of algorithms such that, for every ε > 0
there exists a (1 + ε)-approximation algorithm Aε ∈ A whose running time is
polynomial in the size of the input.

2 Combining Monotone Algorithms with the Optimum

In this section we show how to combine an optimal schedule on a subsequence of
the jobs with the one produced by a monotone algorithm on the remaining jobs
in order to obtain a good monotone approximation algorithm. Our approach is
inspired by the PTAS of R. L. Graham [6] that can be described as follows.
First, we optimally assign the h largest jobs. Then, we complete this assignment
by running Greedy on the remaining jobs according to the work assigned to the
machines in the previous phase.

Unfortunately, this PTAS is not monotone. Indeed, even though the first
phase is monotone, it is easy to see that Greedy is not monotone [2]. Moreover,
even if we replace Greedy with a monotone algorithm the resulting algorithm is
not guaranteed to be monotone. We, instead, propose the following approach.

Let Gc be any scheduling algorithm. By Opt-Gc we denote the following al-
gorithm.
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Algorithm Opt-Gc
Input: a job sequence σ, speed vector s, and parameter h.
Assume that the jobs in σ are ordered in non-increasing order by weight.

A. compute the lexicographically minimal schedule among those that have op-
timal makespan with respect to job sequence σh and speed vector s;

B. run algorithm Gc on job sequence σ \ σh and speed vector s assuming that
machine i has initial load 0, i = 1, · · · , n;

output the schedule that assigns to machine i the jobs assigned to machine i
in Phase A and Phase B.

We have the following lemma.

Lemma 1. If Gc is monotone then Opt-Gc is also monotone.

In the next sections we show that, if Gc has an approximation factor close to
the one of the greedy algorithm, then, for each ε > 0 and for each number n of
machines, it is possible to choose the value of the parameter h so that Opt-Gc
outputs a schedule of makespan at most (2 + ε) times the optimal schedule.

We start by defining the notion of a greedy-close algorithm.

Definition 1 (greedy-close algorithm). Let c be a constant. An algorithm
Gc is c-greedy-close if, for any job sequence σ and any machine speed vector
s = 〈s1, s2, . . . , sn〉, cost(Gc, σ, s) ≤ cost(Greedy, σ, s)+c · tmax/s1. An algorithm
Gc is greedy-close if it is c-greedy-close for some constant c.

2.1 Approximation Analysis of Opt-Gc

In this section, we show that the approximation factor of Opt-Gc is at most
twice the approximation factor of PTAS-Gc, where PTAS-Gc computes the op-
timal schedule on the h largest jobs and then combines it with a greedy-close
solution computed using algorithm Gc. Moreover, in order to guarantee a “good”
approximability, it makes a balancing step in Phase B where jobs are assigned to
non-bottleneck machines to reduce the unbalancing, while keeping the solution
optimality.

Algorithm PTAS-Gc
Input: a job sequence σ, speed vector s, and parameter h.
Assume that the jobs in σh are the h largest jobs of σ.

A. compute the lexicographically minimal schedule among those that have op-
timal makespan with respect to job sequence σh and speed vector s;
let opt(σh, s) be the makespan of the schedule produced in this phase;

B. reduce unbalancing without increasing cost by running algorithm Greedy as
long as it is possible to add jobs without exceeding opt(σh, s) and let h′ be
the last job considered in this phase;

C. run algorithm Gc on job sequence σ \ σh′ and vector speed s assuming that
machine i has initial load 0, for i = 1, · · · , n;



614 V. Auletta et al.

output the schedule that assigns to machine i the jobs assigned to machine i
in phases A, B and C.

Let PTAS-Greedy be algorithm PTAS-Gc with Gc = Greedy. We de-
fine the quantity cost(PTAS-Greedy, σ, s, h) = opt(σh, s) + cost(Greedy, σ \
σh′ , s), where h′ is the value computed in Phase B. It is easy to see that
cost(PTAS-Greedy, σ, s, h) ≥ cost(PTAS-Greedy, σ, s, h). Moreover, let Greedy∗

denote the algorithm that, on input σ and s = 〈s1, . . . sn〉, returns as output
the best schedule among those computed by Greedy on input σ and speed vec-
tors 〈0, . . . , 0, sk, . . . , sn〉 for k = 1, . . . , n. Let us also define cost(Gc, σ, s, α) :=
cost(Greedy∗, σ, s) + (1 + c)tmax/α.

It is then possible to prove the following results: (i) cost(Greedy, σ, s) ≤
cost(Greedy∗, σ, s) + tmax/s1, (ii) cost(Gc, σ, s) ≤ cost(Gc, σ, s, s1), and (iii)
cost(Gc, σ, 〈0, . . . , 0, sk, sk+1 . . . , sn〉, s1) ≤ cost(Gc, σ, 〈0, . . . , 0, sk+1 . . . , sn〉, s1).

To upper bound the cost of PTAS-Gc, we consider the following quantity:

cost(PTAS-Gc, σ, s, h) := opt(σh, s) + cost(Gc, σ \ σh′ , s, s1),

where h′ is the index of the last job considered in Phase B of PTAS-Gc. Because
of (ii) above, we have that cost(PTAS-Gc, σ, s, h) ≥ cost(PTAS-Gc, σ, s, h).

The next two lemmas provide an upper bound on cost(PTAS-Gc, σ, s, h).

Lemma 2. For any job sequence σ, any h, and any speed vector s of length n

cost(PTAS-Greedy, σ, s, h) ≤ cost(PTAS, σ, s, h) +
opt(σ, s)

h · s1

(
n∑

i=1

si

)
(n − 1).

Lemma 3. If Gc is c-greedy-close, then for any job sequence σ, any h, and any
speed vector s of length n

cost(PTAS-Gc, σ, s, h) ≤ cost(PTAS-Greedy, σ, s, h) +
(1 + c) · opt(σ, s)

h · s1

n∑
i=1

si.

We next provide a bound on the cost of PTAS-Gc in terms of opt(σ, s) and
sn/s1.

Theorem 1. If Gc is c-greedy-close then, for any job sequence σ, any h, and
any speed vector s of length n,

cost(PTAS-Gc, σ, s, h) ≤ opt(σ, s)
(

1 +
f(n) + n2 + c · n

h

sn

s1

)
.

Proof. By previous lemmata we have

cost(PTAS-Gc, σ, s, h) ≤ cost(PTAS, σ, s, h) +
opt(σ, s)

h · s1

(
n∑

i=1

si

)
(n − 1)
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+ (1 + c) · opt(σ, s)
h · s1

n∑
i=1

si

≤ opt(σ, s)

(
1 +

f(n)
h + 1

+
n + c

h · s1

n∑
i=1

si

)

< opt(σ, s)
(

1 +
f(n) + n2 + c · n

h

sn

s1

)
,

where the last inequality follows from cost(PTAS, σ, s, h) ≤ opt(σ, s)
(
1 + f(n)

h+1

)
(see [6]) and si ≤ sn. �

The bound given by Theorem 1 is good for small values of sn/s1. When
instead, sn is much larger than s1 it might be convenient to neglect the machine
with speed s1 and run instead PTAS-Gc only on the remaining n−1 machines. In
the next theorem, we prove that in this way we can obtain (1+ε) approximation
for any value of ε > 0. The proof of theorem is based on the following technical
lemma.

Lemma 4. If Gc is greedy-close, then for all σ, h and s = 〈s1, s2, . . . , sn〉

cost(PTAS-Gc, σ, 〈s1, s2, . . . , sn〉, h) ≤ cost(PTAS-Gc, σ, 〈0, s2, . . . , sn〉, h).

Theorem 2. For any positive integer n and for any ε > 0, if Gc is a polynomial-
time greedy-close algorithm, then there exists an h such that, for all σ and for
all speed vectors s of length n, cost(PTAS-Gc, σ, s, h) ≤ (1+ε)opt(σ, s). Moreover,
the running time of PTAS-Gc is polynomial in m = |σ|.

Proof. We will prove by induction on n that for any ε > 0 there exists an h,
depending on ε and n only, such that cost(PTAS-Gc, σ, s, h) ≤ (1 + ε)opt(σ, s).
The base case n = 1 is trivial. For the inductive step assume that, for
any ε > 0, there exists h such that cost(PTAS-Gc(σ, 〈0, s2, . . . , sn〉, h) ≤ (1 +
ε)opt(σ, 〈0, s2, . . . , sn〉). If sn/s1 ≤ ε, then by Theorem 1, it is possible to pick
h = h(n, ε) so that cost(PTAS-Gc, σ, s, h) ≤ (1 + ε)opt(σ, s). Otherwise, pick ε′

such that (1 + ε′)(1 + s1/sn) ≤ (1 + ε). Then by Lemma 4 and by inductive
hypothesis it is possible to choose h′ = h′(n − 1, ε′) such that

cost(PTAS-Gc, σ, 〈s1, s2, . . . , sn〉, h′) ≤ cost(PTAS-Gc, σ, 〈0, s2, . . . , sn〉, h′)
≤ (1 + ε′)opt(σ, 〈0, s2, . . . , sn〉)
≤ (1 + ε′)(1 + s1/sn)opt(σ, 〈s1, s2, . . . , sn〉)
≤ (1 + ε)opt(σ, s).

Finally, the running time is O(nh+2 + m log m + poly(m)). �

We are now ready to prove the main result of this section.
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Theorem 3. For any positive integer n and for any ε > 0, if Gc is greedy-close,
then there exists an h = h(n, ε) such that for all sequences of jobs σ and all speed
vectors s of length n, cost(Opt-Gc, σ, s) ≤ (2 + ε)opt(σ, s).

Proof Sketch. Fix ε > 0. Let h = h(n, ε) be such that cost(PTAS-Gc, σ, s, h) ≤
(1 + ε/2)opt(σ, s) (such an h exists by Theorem 2) and let h′ be the index of
the last job scheduled during phase B by algorithm PTAS-Gc on input σ, s, and
h. Construct a new job sequence σ′ from σ by adding, just after th′ , a copy of
the jobs from th+1 to th′ . It is possible to prove that the cost of the schedule
produced by PTAS-Gc on input σ′, s, and h is not less than the cost of the schedule
produced by Opt-Gc on σ, s, and h (see [3]).

We observe that the set of new jobs, considered independently from the rest
of the sequence, can be scheduled in time opt(σ, s) (using the same schedule
computed in phase B of PTAS-Gc) and thus opt(σ′, s) ≤ 2opt(σ, s). Then, we
have

cost(Opt-Gc, σ, s, h) ≤ cost(PTAS-Gc, σ′, s, h)
≤ (1 + ε/2)opt(σ′, s) ≤ (2 + ε)opt(σ, s)

and the theorem follows. �

3 A Monotone Greedy-Close Algorithm

In this section we describe a greedy-close algorithm that is monotone for the
case of “divisible” speeds (see Def. 2 below). We present our algorithm for the
case of integer divisible speeds; this is without loss of generality, as in case the
divisible speeds are not integers then they can be scaled to be integers.

Let us consider the following algorithm:
Algorithm uniform
Input: a job sequence σ and speed vector s = 〈s1, s2, · · · , sn〉, with s1 ≤ s2 ≤
· · · ≤ sn.

A. run algorithm Greedy on job sequence σ and S =
∑n

i=1 si identical machines;
B. order the identical machines by nondecreasing load l1, . . . , lS ;
C. let g := GCD(s1, s2, . . . , sn) and split the identical machines into g blocks

B1, · · · , Bg each consisting of S/g consecutive identical machines. For 1 ≤
i ≤ g and 1 ≤ k ≤ S/g, denote by Bi(k) the k-th identical machine of the
i-th block. Thus identical machine Bi(k) has load l(i−1)·S/g+k.

D. for 1 ≤ j ≤ n let kj =
∑j−1

l=1 sl/g; then machine j receives the load of
identical machines Bi(kj + 1), · · · , Bi(kj + sj/g), for each block 1 ≤ i ≤ g;

As it is described above, algorithm uniform does not run in polynomial time
as its running time depends on S which, in general, is not polynomially bounded
in n and m. However, uniform can be easily modified so to obtain the same
allocation in O(n · m + m log m) time.
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3.1 Approximation Analysis of uniform

Let us denote by wi
j the work of the sj/g identical machines from block Bi whose

loads are assigned to machine j. Then we have that wi
j =

∑sj/g
k=1 l(i−1)·S/g+k.

Theorem 4. For any job sequence σ and any integer speed vector s = 〈s1,
s2,. . . , sn〉 it holds that cost(uniform, σ, s) ≤ opt(σ, s) + tmax/g, where g =
GCD(s1, s2, . . . , sn).

When s1 divides all sis, we have that g = s1 and the uniform algorithm is
greedy-close. We then define sequences of speeds that enjoy this property, which
will be used below to prove the monotonicity of uniform.

Definition 2 (divisible speeds). Let C = {c1, c2, . . . , cp, . . .}, with the prop-
erty that ci divides ci+1. Then a speed vector s = 〈s1, s2, . . . , sn〉 is divisible if
s ∈ Cn. The restriction to divisible speeds denotes the problem version in which
the set C is known to the algorithm and all declared speeds must be in C.

We thus have following theorem.

Theorem 5. Algorithm uniform is greedy-close when restricted to divisible
speeds.

3.2 Algorithm uniform Is Monotone

In order to prove the monotonicity of algorithm uniform we first prove some
technical results on greedy allocations on identical machines.

Lemma 5. Let Li (respectively, li) denote the load of the i-th least loaded ma-
chine when Greedy uses N (respectively, N +1) identical machines. It then holds
that li+1 ≤ Li, for all 1 ≤ i ≤ N .

Lemma 6. Let Li (respectively, li) denote the load of the i-th least loaded ma-
chine when Greedy uses N (respectively, N ′ > N) identical machines. It holds
that Li ≤ li + li+1, for 1 ≤ i ≤ N .

Proof. We prove the lemma for N ′ = N + 1 since this implies the same
result for any N ′ > N . For any 1 ≤ i ≤ N , Lemma 5 yields

∑i−1
k=1 Lk ≥∑i−1

k=1 lk and
∑N

k=i+1 Lk ≥∑N
k=i+1 lk+1, thus implying Li ≤ li + li+1. �

Lemma 7. Let Li (respectively, li) denote the load of the i-th least loaded ma-
chine when Greedy uses N (respectively, N ′ > N) identical machines. For any
a, b, b′ such that N − b ≤ N ′ − b′ it holds that

W (a, b) :=
b∑

i=a

Li ≥ W ′(a + b′ − b, b′) :=
b′∑

i=a+b′−b

li.
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Proof. Let d = N ′ −N . By repeatedly applying Lemma 5 we obtain Li ≥ li+d,
for 1 ≤ i ≤ N . Since b′ − b ≤ N ′ − N = d, it holds that Li ≥ li+d ≥ li+b′−b, for
1 ≤ i ≤ N . This easily implies the lemma. �

We can now prove that uniform is monotone. Intuitively, if an agent increases
her speed, then the overall work assigned to the other agents cannot decrease.

Theorem 6. Algorithm uniform is monotone when restricted to divisible
speeds.

4 Polynomial-Time Mechanisms

Computing the payments. We make use of the following result:

Theorem 7 ([2]). A decreasing output function admits a truthful payment
scheme satisfying voluntary participation if and only if

∫∞
0 biwi(b−i, u)du < ∞

for all i,b−i. In this case, we can take the payments to be

Pi(b−i, bi) = biwi(b−i, bi) +
∫ ∞

0
biwi(b−i, u)du. (1)

We next show how to compute the payments in Eq. (1) in polynomial time
when the work curve corresponds to the allocation of PTAS-uniform.

Theorem 8. Let A be a polynomial-time r–approximation algorithm. It is pos-
sible to compute the payment functions in Equation (1) in time poly(n, m) when
(i) all speeds are integer not greater than some constant M , and (ii) speeds are
divisible.

Proof. Observe that since A is an r–approximation algorithm there exists a
value S ≤ r · S, where S =

∑n
i=1 si, such that on input (s−i, S), the algorithm

assigns all jobs to machine i. Then, in order to compute the work curve of
machine i we have only to consider speed values in the interval [0, S]. Since A
runs in polynomial time, if speeds are integer, it is always possible to compute
the work curve within time O(S · poly(n, m)). When all speeds are not larger
than M , we have that S ∈ O(n · M) and the first part of the theorem follows.

Suppose now that speeds are divisible. In this case all the speeds belong to
the interval [2−l, 2l], where l is the length in bits of the input. Then, there are
O(log 2l) distinct speed values that machine i can take. So, the computation of
the work curve takes O(l · poly(n, m)) = O(poly(n, m)). �

Truthful approximation mechanisms.

Theorem 9. There exists a truthful polynomial-time (2 + ε)-approximation
mechanism for Q||Cmax when (i) all speeds are integer bounded above by some
constant M , or (ii) speeds are divisible. Moreover, the mechanism satisfies vol-
untary participation and the payments can be computed in polynomial time.

Theorem 10. For every ε > 0, there exists a truthful polynomial-time (4 +
ε)-approximation mechanism for Q||Cmax. Moreover, the mechanism satisfies
voluntary participation and the payments can be computed in polynomial time.
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