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Abstract. In this paper, following the approach of Gocic, Kautz, Pa-
padimitriou and Selman (1995), we consider the ability of belief revision
operators to succinctly represent a certain set of models. In particular,
we show that some of these operators are more efficient than others,
even though they have the sane model checking complexity. We show
that these operators are partially ordered, i.e. some of them are not
comparable. We also strengthen some of the results by Cadoli, Donini,
Liberatore and Shaerf (1995) by showing that for some of the so called
“model based” operators, a polynomial size representation does not exist
even if we allow the new knowledge base to have a non polynomial time
model checking (namely, either in NP or in co-NP). Finally, we show that
Dalal’s and Weber’s operators can be compiled one into the other via a
formalism whose model checking is in NP. All of our results also hold
when iterated revision, for one or more of the operators, is considered.

1 Introduction

Several formalisms for knowledge representation and nonmonotonic reasoning
have been proposed and studied in the literature. Such formalisms often give rise
to intractable problems, even when propositional versions of such formalisms are
considered (see [7] for a survey).

Knowledge compilation aims to avoid these difficulties through an off-line
process where a given knowledge base is compiled into an equivalent one that
supports queries more efficiently. The feasibility of the above approach has been
deeply investigated depending on several factors such as: the formalism used for
the original and resulting knowledge base, the kind of equivalence we require, and
so on (see [4] for a survey). For example, let us consider the propositional version
of circumscription (CIRC), a well known form of nonmonotonic reasoning intro-
duced in the AI literature in [16, 17]. Informally, CIRC(T ) denotes those truth
assignments that satisfy T and that have a “minimal” set of variables mapped
into 1. The idea behind minimality is to assume that a fact is false whenever pos-
sible. In particular, we represent a truth assignment as a subset m of variables of
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T (those mapped into 1) and we say that m is a model if the corresponding truth
assignment satisfies T . Then, CIRC(T ) contains only the models of T that are
minimal w.r.t. set inclusion (see Sect. 1.2 for a formal definition). Although it is
possible to explicitly represent all the models in CIRC(T ), this representation
in general has size exponential in the size of T . So, a shorter (implicit) represen-
tation is given by the propositional formula T . However, representing the set of
models CIRC(T ) simply as T yields an overhead from the computational point
of view. For instance, given T and a subset m of its variables, deciding whether
m ∈ CIRC(T ) (model checking) is an co-NP-complete problem [2]. Notice that
in the classical propositional logic (PL) a formula F simply represents all of its
models, so model checking for PL is clearly in P. Similarly, deciding whether a
formula logically follows from CIRC(T ) (inference) is a

∏p
2-complete problem

[9], while inference for PL is co-NP-complete. A natural question is therefore: is
it possible to “translate” CIRC(T ) into a propositional formula F and then use
F (instead of T ) to solve the model checking problem in time polynomial in |T |?
Clearly such translation cannot be performed in polynomial time unless P = NP
(that is why we need to do it off-line). Additionally, a necessary condition is the
size of F to be polynomially bounded in the size of T . A negative answer to
this question has been given in [6] where the authors proved that, in general,
|F | is not polynomially bounded in |T |. Informally, this is due to the fact that
CIRC allows for representations of the information (i.e. a set of models) that
are much more “succinct” than any equivalent representation in PL (see [6] for
more formal definitions of what ‘equivalent’ means).

The above idea of compiling one formalism into another has been extended
in [13] where the relative succinctness – also known as compactness or space
efficiency – of several propositional logical formalisms has been investigated.
The way two formalisms can be compared is the following. A formalism F1

is more efficient than a formalism F2 if: (a) F1 can be compiled into F2 and
(b) F2 cannot be compiled into F1, where the compilation requires the new
knowledge base being model equivalent and having size polynomial w.r.t. the
original one. It is worth observing that, by one hand, succincteness implies non-
compactability. By the other hand, the converse does not always hold since it
might be the case that F1 and F2 cannot be compiled one into the other, i.e.
they are not comparable. A somehow surprising result of [13] is that formalisms
having the same model checking time complexity are instead totally ordered in
terms of succinctness. In this case, succinctness becomes crucial in choosing one
formalism instead of another to represent the knowledge.

Another important aspect of nonmonotonic reasoning is that we have to
deal with uncertain and/or incomplete information. Several criteria for updating
and/or revising a knowledge base have been proposed [1, 11, 12, 18, 21, 22, 24].
Suppose we have a knowledge base T and a new piece of information, repre-
sented by a formula P , is given. It might be the case that T and P are not
consistent. In this case the revision of T with P , denoted as T ◦ P , contains
those models of P defined by means of a belief revision operator ‘◦’. The so
called model based operators define the set of models of T ◦P as those models of
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P that are “close” to the models of T . To different definitions of closeness corre-
spond different revision operators. Syntax based approaches are instead defined
in terms of syntactic operations on the knowledge base T . In general, model
based approaches are preferred to syntax based ones because of their syntax ir-
relevance, i.e. revising two logical equivalent knowledge bases T and T ′ with a
formula P always yields the same set of models. Also in this case model check-
ing and inference become harder than in PL [15, 8] (see also Table 1). This
is a first motivation for investigating compilability of belief revision into PL.
Moreover, since we are dealing with revision of knowledge, it is often required
to explicitly compute a propositional formula T ′ equivalent to T ◦ P , that is
the revised knowledge base. In such a case it might be desirable not to have an
exponential increase in the size of the original knowledge base. Unfortunately,
for several revision operators non-compactability results have been proved in [5].
In the same paper also a weaker kind of equivalence has been considered: query
equivalence. In this case the compilation does not preserve the set of models but
just the set of formulas that logically follow. So, it can be used for inference but
not for model checking. In Table 1 we summarize both the complexity and the
compactability results proved for several belief revision operators, both model
and syntax based (Ginsberg’s and WIDTIO).

It is interesting to observe that some revision operators and CIRC have sim-
ilar properties. For instance, Ginsberg’s operator and CIRC have the same time
complexity and the same compactability properties (see [2, 9, 6] for the results
on CIRC). It is therefore natural to ask whether this is a chance or not. A
first study of relationships between belief revision and CIRC has been done in
[23] where the author remarked similarities between CIRC and her operator.
Subsequently, in [14] the authors pointed out interesting connections between
CIRC and several belief revision operators, thus extending the result of [23]. In
particular, they proved that CIRC can be compactly represented by means of
several belief revision operators, i.e. given a propositional formula F , two for-
mulas T and P , of size polynomial w.r.t. |F |, exist such that T ◦ P is logically
equivalent to CIRC(F ). As remarked in [14], this allows to import results from
one field into the other. For example, the above mentioned result combined with
the non-compactability results of CIRC can be used to prove several of the neg-
ative results in [5]. Also inverse reductions have been investigated, i.e. compiling
belief revision into CIRC, but in this case query equivalence (instead of model
equivalence) is considered. In [3], among other results, a precise characteriza-
tions of compactability properties of Ginsberg’s operators is given. In fact, it
can be compiled in CIRC and vice versa. Additionally, such result also holds for
the case of iterated revision, i.e. when a polynomial number of revision steps is
considered, by making use of the fact that also in this case the model checking
is in co-NP [10].

Finally, we remark that all of the non compilability results in [5, 6, 3] and
some of those in [13] relies on the standard hypothesis that the polynomial
hierarchy does not collapse. Moreover, the results in [6] hold if and only if this
hypothesis is true.
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Operator Complexity Compactability
Model Checking [15] Inference [8] Model [5] Query [5]

Ginsberg co-NP-complete
∏p

2
-complete No No

Winslett, Borgida,
∑p

2
-complete

∏p

2
-complete No No

Forbus, Satoh.

Dalal PNP[O(log n)]-comp. PNP[O(log n)]-comp. No Yes

Weber
∑p

2
-complete

∏p

2
-comp. [19] & [8] No Yes

WIDTIO
∑p

2
-complete

∏p

2
-comp. [19] & [8] Yes Yes

Table 1. Previous results: complexity and compactability of belief revision op-
erators.

1.1 Results of the Paper

In this paper we give a better characterization of (non) compactability prop-
erties of belief revision and we provide important connections between such
operators and CIRC. We consider the model based revision operators in Table 1
and we compare their space efficiency with that of CIRC, as well as their rela-
tive compactness. In particular, we show that, for some model based operators
(Winslett’s, Borgida’s, Forbus’s, and Satoh’s) belief revision is more difficult to
be compiled than CIRC, Ginsberg’s, Dalal’s or Weber’s revision. For the latter
two operators we give a precise characterization of their compactability prop-
erties. Our results significantly strengthen several non-compactability results in
[5] and the results of [15]. Moreover, they provide an intuitive explanation of
the (non) compactability results when query equivalence is considered. The re-
sults are obtained under the assumption that the polynomial hierarchy does not
collapse.

To this aim, we introduce a formalism, denoted as CIRC, whose model check-
ing is in NP and is not comparable to CIRC. Roughly speaking, CIRC can be
seen as the “complement” of CIRC, i.e. CIRC corresponds to the set of non min-
imal models of a propositional formula. In Fig. 1 we show relationships among
revision operators and their space efficiency with respect to PL, CIRC and
CIRC, where one way arrows represent the fact that one operator is strictly
more succinct then another. The results are consequences of previously known
results combined with the following two:

– CIRC can be compiled into model based operators;
– Dalal’s and Weber’s operators can be compiled into CIRC.

As a consequence we have that Winslett’s, Borgida’s, Forbus’s and Satoh’s op-
erators are more succinct than all the other operators, and Ginsberg’s operator
is not comparable to Dalal’s or Weber’s one. Moreover, Dalal’s and Weber’s can
be reduced each other via CIRC. This yields a precise characterization of their
space efficiency w.r.t. CIRC and the other belief revision operators. Addition-
ally, the fact that Dalal’s and Weber’s operators are equivalent to CIRC gives an
intuitive explanation of their query compactability properties [5] (see Table 2).

Motivated by the non-compactability results of [5], we attempt to find a
trade-off between compactability and the complexity of model checking of the
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Fig. 1. Results of the paper: the relative succinctness of belief revision operators,
where ‘∗’ means that the result also holds for iterated revision.

knowledge base in which the original one is compiled. In particular, we consider
the following question:

Can we succinctly represent a revised knowledge base by means of CIRC?
More generally, can it be compiled into a knowledge base whose model
checking is either in NP or in co-NP?

Since model checking for model based operators is harder than any problem in
NP or in co-NP, a positive answer to the above question can be used to make
model checking easier through an off-line preprocessing of compilation. In Table 2
we summarized the obtained results, which follow from properties of CIRC and
CIRC.

Compactable into a knowledge base
Operator whose model checking is in

NP co-NP

Ginsberg No Yes, also iterated
Corollary 3 & [14] [15, 6, 10]

Winslett No No
Corollary 3 & [14] Corollary 2

Borgida No No
Corollary 3 & [14] Corollary 2

Satoh No No
Corollary 3 & [14] Corollary 2

Dalal Yes, also iterated No
[5], also Theorem 4 Corollary 2

Weber Yes, also iterated No
[5], also Theorem 4 Corollary 2

Table 2. Results of the paper: compactability w.r.t. model checking time com-
plexity of the new knowledge base.
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It is worth observing that:

– None of the model based operators admits compact representations whose
model checking is in co-NP.

– Dalal’s and Weber’s operators admit compact representations whose model
checking is in NP, even when iterated revision is considered.

– None of the other model based operators admits compact representations
whose model checking is in NP.

The latter result strengthen the negative result proved in [5] in that no model
equivalent knowledge base exists even when we allow its model checking to be
either in NP or in co-NP. Additionally, it is not possible to compile a model
based revision operator into CIRC, thus implying that the result of [15] (which
holds in the case of query equivalence) cannot be extended to model equivalence.

We emphasize that the compactness of belief revision operators, in general,
does not seem to depend on either the complexity of inference and model check-
ing or the previously known compactability results. For instance, Winslett’s and
Weber’s ones have the same complexity (see Table 1) while they are ordered in
terms of space efficiency (see Fig. 1). Additionally, Dalal’s and Weber’s, that
have different complexity, can be compiled one into the other, instead. The re-
ducibility of those two operators to CIRC also gives an intuitive explanation of
their compactability properties (see Table 1) which, actually, are the same as
CIRC

Due to lack of space some of the proofs of the above results will be omitted
or only sketched in this extended abstract.

1.2 Preliminaries

Given a propositional formula F and given a truth assignment m to the variables
of F , we say that m is a model of F if m satisfies F . Models will be denoted as
sets of variables (those mapped into 1). We denote by M(F ) the set of models of
F . A theory is a set T of propositional formulas. The set of models M(T ) of the
theory T is the set of models that satisfy all of the formulas in T . If M(F ) 6= ∅
then the formula is satisfiable. Similarly, a theory T is consistent if M(T ) 6= ∅.
We use a → b and a ↔ b as a shorthand for ¬a ∨ b and (a ∧ b) ∨ (¬a ∧ ¬b),
respectively. Given two models m and n, we denote by m∆n their symmetric
difference. Given a set of sets S, we denote by min⊆ S (respectively, max⊆ S),
the minimal (respectively, maximal) subset of S w.r.t. set inclusion. The circum-
scription of a propositional formula F (denoted by CIRC(F )) is defined as

CIRC(F ) .= {m ∈M(F ) | ∀m′ ⊂ m, m′ /∈ M(F )} = min⊆M(F ).
Given a theory T and a propositional formula P , we denote by T ◦P the theory
T revised with P according to some belief revision operator ◦. We distinguish
the following belief revision operators:

Ginsberg. Let W(T, P ) .= max⊆ {T ′ ⊆ T | T ′ ∪ {P} 6|=⊥}. Then
T ◦G P

.= {T ′ ∪ {P} | T ′ ∈ W(T, P )} .
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Winslett. Let µ(m, P ) .= min⊆ {m∆n | n ∈M(P )} . Then,
M(T ◦Win P ) .= {n ∈M(P ) | ∃m ∈ M(T ) : m∆n ∈ µ(m, P )} .

Borgida. It is defined as ◦Win if T ∪ {P} is not consistent, and it is defined as
T ∪ {P} otherwise.

Forbus. For any two models m1 and m2 let d(m1, m2) = |m1∆m2|. Also let
km,P = min{d(m, n) : n ∈ M(P )}. Then,
M(T ◦F P ) .= {n ∈M(P ) | ∃m ∈ M(T ) : d(m, n) = km,P } .

Satoh. Let δ(T, P ) .= min⊆{
⋃

m∈M(P ) µ(m, P )}. Then,
M(T ◦S P ) .= {n ∈M(P ) | ∃m ∈ M(T ) : m∆n ∈ δ(T, P )} .

Dalal. Let kT,P = min{km,P | m ∈ M(T )}. Then,
M(T ◦D P ) .= {n ∈M(P ) | ∃m ∈ M(T ) : d(m, n) = kT,P }.

Weber. Let Ω =
⋃

δ(T, P ), i.e. Ω contains all of the variables appearing on a
minimal difference between models of T and model of P . Then,
M(T ◦Web P ) .= {n ∈M(P ) | ∃m ∈ M(T ) : m∆n ⊆ Ω}.

An advise taking Turing machine is a Turing machine that can access an advice
a(n), i.e. an “oracle” whose output depends only on the size n of the input. The
class NP/poly is the class of those languages that are accepted by a nondeter-
ministic Turing machine with an advice of polynomial size (see [20] for a formal
definition). The class co-NP/poly is similarly defined. In [25] non-uniform classes
such as NP/poly and the polynomial hierarchy have been related. In particular,
it has been proved that if NP ⊆ co-NP/poly or co-NP ⊆ NP/poly then the poly-
nomial hierarchy (denoted by PH) collapses at the third level, i.e. PH =

∑p
3 (see

[20] for a formal definition of those concepts), which is considered very unlikely
in the complexity community.

2 The Complemented Circumscription and Its Properties

In this section we introduce CIRC and state its basic (non) compactability
properties that will be used in the rest of the paper. To this aim we first introduce
a model equivalence preserving reduction used in [3] and we assume that a
knowledge base K in a formalism F represents a set of models F(K).

Definition 1 ([3]). Given two logical formalisms F1 and F2, F1 7→ F2 if the
following holds: for each knowledge base K1 in F1, there exists a knowledge base
K2 in F2 and a polynomial time computable function gK1 such that (i) for any set
of variables m1, m1 ∈ F1(K1) ⇔ gK1(m1) ∈ F2(K2); (ii) |K2| is polynomially
bounded in |K1|.

The above definition implies that, once we have computed (off-line) the for-
mula K2, we can decide whether m1 is a model of K1, by checking if gK1(m1)
is a model of K2. Additionally, gK1(m1) can be computed in polynomial time.
Finally, the ‘7→’ relation is transitive.

Definition 2. We denote by CIRC(F ) the set of non minimal models of a
propositional formula F , that is

CIRC(F ) = M(F ) \ CIRC(F ) = {m ∈M(F ) | ∃m′ ∈ M(F ) : m′ ⊂ m} .
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Lemma 1 ([6, 13]). For any n a propositional formula Fn (of size polynomial
in n) exists such that for every n-variables 3CNF propositional formula f there
exists a model mf (computable in polynomial time) such that

f is unsatisfiable ⇔ mf ∈ CIRC(Fn).

The above lemma states that the circumscription of a formula Fn is able
to capture all of the unsatisfiable 3CNF formulas with n variables (notice that
Fn depends only on n). As a consequence we obtain the following result, whose
proof is similar to non compilability proofs given in [6, 13].

Theorem 1. The following hold: (i) CIRC 7→ CIRC ⇒ co-NP ⊆ NP/poly; (ii)
CIRC 7→ CIRC ⇒ NP ⊆ co-NP/poly.

The above theorem can be easily generalized to any two formalisms whose
model checking is in co-NP and NP, respectively. Thus, the following corollary
holds.

Corollary 1. Let Fco-NP and FNP be any two formalism whose model checking
is in co-NP and NP, respectively. Unless the polynomial hierarchy collapses at
the third level, the following two hold: (i) CIRC 67→ FNP; (ii) CIRC 67→ Fco-NP.

In the rest of the paper we will make use of the above result and thus we will
always assume PH 6= ∑p

3.

3 Reducing CIRC to Belief Revision

In this section we provide some reductions from CIRC to any of the model based
belief revision operators. As a consequence we have that none of such operators
can be compactly represented by CIRC or by ◦G.

Theorem 2. CIRC 7→ ◦Win, CIRC 7→ ◦B, CIRC 7→ ◦F .

Proof. We will prove the theorem only for the ◦Win operator, since the proof can
be easily adapted to the other two operators. Let F be a propositional formula
over the variables x1, . . . , xn. We show that two formulas T and P of polynomial
size exist such that M(T ◦Win P ) = CIRC(F ).

Let y1, . . . , yn be a set of new variables in correspondence one-to-one with
x1, . . . , xn and let my be the set {yi|xi ∈ m}. We construct two formulas T and
P over the set of variables x1, . . . , xn, y1, . . . , yn such that

M(T ) = {m1 ∪my
2 | m1, m2 ∈ M(F ), m2 ⊂ m1}

and M(P ) = M(F ). Let us observe that if no two models m1, m2 ∈M(F ) exist
such that m2 ⊂ m1, then T is not satisfiable. We will see in the sequel how to
deal with that case. Thus, let us suppose M(T ) 6= ∅ and let

T = F ∧ F [xi/yi] ∧ ¬
(

n∧
i=1

xi → yi

)
︸ ︷︷ ︸

m1 6⊆m2

∧
(

n∧
i=1

yi → xi

)
︸ ︷︷ ︸

m2⊆m1
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and P = F ∧
n∧

i=1

¬yi. We now prove that m ∈M(T ◦Win P ) ⇔ m ∈ CIRC(F ).

(⇒) By the definition of ◦Win we have that a model mT ∈ M(T ) exists such
that m ∈ µ(mT , P ). Let mT = m1 ∪my

2, where m1, m2 ∈ M(F ) and m2 ⊂
m1. Let us first observe that, since m does not contain any variable yi,

m∆mT = (m∆m1) ∪my
2 .

We now prove that m = m1. Suppose, by contradiction, that m∆m1 6= ∅.
Then, m1∆mT = my

2 ⊂ m∆mT , which implies that m 6∈ µ(mT , P ), thus a
contradiction. So, m2 ⊂ m1 = m, that is m ∈ CIRC(F ).

(⇐) There exists m2 ∈ M(F ) such that m2 ⊂ m. Let mT = m ∪my
2. Clearly

mT ∈ M(T ). Suppose by contradiction that m /∈ µ(mT , P ). Thus, an m1 ∈
M(P ) exists such that m1∆mT = (m1∆m) ∪my

2 ⊂ m∆mT = my
2, thus a

contradiction.

We now consider the case in which no two models m1, m2 ∈ M(F ) exist such
that m2 ⊂ m1. To this aim, we have to slightly modify the above construction
and consider the formula F ′ = F ∨∧n+1

i=1 xi, where xn+1 is a new variable. Let
T ′ and P ′ be the formulas obtained by replacing F with F ′ in the definition of
T and P , respectively. Let x = {x1, . . . , xn+1}. We then have that

M(T ′ ◦Win P ′) = CIRC(F ′) = CIRC(F ) ∪ {x}.
Finally, the above reduction also apply to ◦F , while it can be easily adapted

for ◦B (it suffices to guarantee that T ′∧P ′ is not consistent). Hence, the theorem
follows.

Theorem 3. CIRC 7→ ◦D, CIRC 7→ ◦Web, CIRC 7→ ◦S.

Proof. (sketch of ) First of all we slightly modify the formulas T and P of The-
orem 2 as follows:

T = F ′ ∧ F ′[xi/yi] ∧ ¬
(

n+1∧
i=1

xi → yi

)
︸ ︷︷ ︸

m1 6⊆m2

∧
(

n+1∧
i=1

yi → xi

)
︸ ︷︷ ︸

m2⊆m1

∧
(

n+1∧
i=1

¬yi ↔ zi

)
,

and P = F ′ ∧
n+1∧
i=1

¬yi

n+1∧
i=1

¬zi, where F ′ is defined as in the proof of Theorem 2.

In the case of ◦D, the proof is a consequence of the following claims:

Claim 1: kT,P = n + 1.
Claim 2: For all m ∈ CIRC(F ), there exists mT ∈M(T ) such that d(m, mT ) =

n + 1.
Claim 3: For any m ∈ CIRC(F ) and for all mT ∈M(T ), d(m, mT ) > n + 1.

As far as ◦Web and ◦S concerns, we first observe that δ(T, P ) does not contain
any variable xi. Moreover, it is easy to see that, for any n ∈ CIRC(F ), and for
any mT ∈ M(T ), n∆mT contains at least one variable xi. This proves the
theorem.
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4 (Non) Compactability of Model Based Revision

In this section we consider the problem of compiling the revised knowledge base
into a model equivalent one that has model checking either in NP or co-NP. To
this aim we will denote by FNP and Fco-NP any two formalisms1 whose model
checking is in NP and co-NP, respectively.

Let us first observe that an immediate consequence of the reductions given
in Sect. 3 and of Corollary 1 is the following fact.

Corollary 2. For any ◦ ∈ {◦Win, ◦B, ◦F , ◦S, ◦D, ◦Web}, ◦ 67→ Fco-NP.

The above result implies that such operators cannot be represented by means
of CIRC. Motivated by this fact we ask whether it is possible to obtain compact
representations of M(T ◦ P ) by means of FNP. In this case, we show that the
situation is more tangled.

We first consider Dalal’s and Weber’s revision and show that they admit a
compact representation by means of CIRC.

The main idea of the reductions is that both kT,P and Ω can be represented
in polynomial space (kT,P is an integer and |Ω| ≤ n). Moreover, once those
two entities have been computed (off-line), then the problem of deciding m ∈
M(T ◦ P ) is in NP for both the operators.

Theorem 4. ◦D 7→ CIRC, ◦Web 7→ CIRC.

The above result can be easily extended to the case of a polynomial number
of revision steps. Notice that a different proof can be derived by making use of
the fact that such two operators are query compactable [5].

We now consider the other revision operators. To this aim we combine the
results proved in Sect. 3 with the results given in [14]. In particular we exploit
the fact that such operators can be used to represent CIRC.

Theorem 5 ([14]). For any ◦ ∈ {◦Win, ◦B, ◦F , ◦S}, CIRC 7→ ◦

The above theorem combined with Corollary 1 yields the following result.

Corollary 3. For any ◦ ∈ {◦Win, ◦B, ◦F , ◦S}, ◦ 67→ FNP.

5 Succinctness of Belief Revision

We compare the space efficiency of the belief revision operators and consider the
problem of compiling one operator into another. By combining our results with
previously known results we will obtain the partial ordering shown in Fig. 1.

To this aim we first introduce the following notation.

1 In this case the term formalism is quite general, since it refers to any representation
of a set of models.
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Definition 3. For any two logical formalisms F1 and F2: (i) F1 ≺ F2 if both
F1 7→ F2 and F2 67→ F1; (ii) F1 ≈ F2 if F1 7→ F2 and F2 7→ F1; (iii) F1 6≈ F2

if both F1 67→ F2 and F2 67→ F1.

All of the following results are easy consequences of Theorem 3, Theorem 4
and Corollary 3. We first compare ◦D and ◦Web operators with the other model
based ones. All of the results also hold for a polynomial number of revision steps
of ◦D or ◦Web.

Corollary 4. For any ◦ ∈ {◦Win, ◦B, ◦F , ◦S}, ◦D ≈ ◦Web ≈ CIRC ≺ ◦.

Corollary 5. For any ◦ ∈ {◦D, ◦Web}, CIRC 6≈ ◦ and ◦G 6≈ ◦.

6 Conclusions and Open Problems

We have shown that belief revision operators with the same model checking
and inference complexity have different behaviours in terms of compilability and
space efficiency. We precisely characterized the space efficiency of ◦D and ◦Web

which, following the definitions of [3], are model-NP-complete. Moreover, our
results combined with those in [14] imply that ◦Win, ◦B, ◦F and ◦S are both
model-NP-hard and model-co-NP-hard.

The first problem left open is that of finding similar characterizations for the
latter operators, as well as that of understanding their relative space efficiency.
More generally, it could be interesting to investigate relationships with other
formalisms considered in [13, 3] such as default logic, model preference and
autoepistemic logic. Furthermore, compactability results for the case of iterated
revision are not known. Do these operators became even harder to be compacted
when more than one step of revision is considered?

It is interesting to observe that a different situation occurs when query equiv-
alence is considered. Indeed, in [14] the authors proved that in this case ◦G and
◦S can be reduced one to the other and ◦Win can be reduced to both.
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