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ABSTRACT
We study the problem of assigning unsplittable traffic to a
set of m links so to minimize the maximum link congestion
(i.e., the makespan). We consider the case of selfish agents
owning pieces of the traffic. In particular, we introduce
a variant of the model by Koutsopias and Papadimitriou
[1999] in which owners of the traffic cannot directly choose
which link to use; instead, the assignment is performed by
a scheduler. The agents can manipulate the scheduler by
reporting false information regarding the size of each piece
of unsplittable traffic.
We provide upper and lower bounds on the approximation

achievable by mechanisms that induce a Nash equilibrium
when all agents report their true values.
For the case of each agent owning one job, our positive re-

sults for m identical links show the effectiveness of introduc-
ing such a scheduler since, in this case, (1 + ε)-approximate
solutions are guaranteed in polynomial time. In contrast,
the result by Koutsopias and Papadimitriou [1999] shows
that, without payments and allowing selfish routing, Nash
equilibria yield (in the worst case) Ω( log m

log log m
)-approximate

solutions, even for unitary weighted traffic. When links have
different speeds we prove lower and upper bounds on the
approximation achievable by a mechanism inducing a Nash
equilibrium.
For the case of agents owning more than one job, we

give mechanisms that achieve constant approximation and
prove lower bounds on the approximation ratio that can be
achieved by a mechanism.
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1. INTRODUCTION
Selfish routing games have been the subject of several

studies because of their applications to situations, typical
in the Internet, where different entities compete for shared
resources and may act selfishly trying to increase their own
benefits. For instance, allowing source routing gives the pos-
sibility to the users of choosing the best path for their own
traffic (e.g., minimizing the latency of their own traffic), re-
gardless of the overall network performances (e.g., the over-
all latency in the network).
A natural approach to study this kind of problems comes

from micro-economics and game theory. In particular, it is
common to consider so called selfish agents, that is, a set
of “players” whose goal is to perform the “best strategy”
w.r.t. their own benefits. A powerful tool for studying these
problems is the well-known concept of Nash equilibrium (see
e.g. [15]). Informally speaking, Nash equilibria correspond
to those “stable” situations for which no player has an in-
centive to unilaterally change her strategy.
The seminal paper by Koutsopias and Papadimitriou [11]

introduces the concept of coordination ratio as the measure
of the loss of performance due to the lack of cooperation
of selfish agents: given a global optimization function (the
maximum link congestion), how bad is the worst-case Nash
equilibria? In other words, the coordination ratio measures
the “price of the anarchy.” A number of papers for (variants
of) the model introduced in [11] have studied the problem of
characterizing, computing, and bounding the cost of Nash
equilibria for the corresponding routing problem [12, 4, 8,
7, 5, 6] (see also [18, 17] for a different model considering
splittable traffic on arbitrary networks).
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In the attempt to cope with the negative effects of self-
ishly acting agents, the elegant theory of mechanism design
(see the milestone papers by Vickrey [19], Clarke [2] and
Groves [9]) has been recently applied to a number of opti-
mization problems arising in the context of network opti-
mization [13, 14, 1]. Intuitively, with mechanism design we
aim at providing payments to the agents so to incentivate
each of them to cooperate. In particular, mechanisms are
applied to those problems for which (part of) the input is
privately known to the agents and the strategy of an agent
is to report (a possibly false) piece of information; based
on the reported values, a solution is computed and each
agent is rewarded with some amount specified by a function
pi(·); moreover, each agent valuates the computed solution
X some amount vi(X). In order to induce cooperation, the
mechanism should guarantee that the net profit, or utility, of
every agent i, given by the sum of the valuation and the pay-
ment, is maximized when reporting the correct information.
So, mechanism design can be seen as the “reverse” problem
of designing a game (payments + algorithm) such that the
designers’ goal matches with the agents’ preferences [16].

In this paper we investigate the routing problem intro-
duced in [11] from a different prospective: instead of allow-
ing selfish routing, we consider a scheduler which allocates
the traffic (i.e., jobs) on the links (i.e., parallel related ma-
chines). In this model, agents cannot directly choose the link
to be put on, nor refuse the allocation chosen by the sched-
uler. However, they may still manipulate the system by re-
porting false information on the size of their own job(s). A
detailed description of the model is provided in Sect. 1.1. We
investigate the benefits of replacing the “anarchic” policy of
having agents choosing their own route with a scheduling
algorithm which, combined with a suitable payment func-
tion, yields a mechanism inducing the agents’ to report the
correct information. We measure such benefits by consid-
ering how good the makespan of the solution computed by
the mechanism can be w.r.t. the optimal one. So, our prob-
lem can be seen as the problem of scheduling selfish jobs
on parallel related machines, as opposed to the problem of
scheduling (non-selfish) jobs on selfish machines investigated
in [1].

1.0.0.1 Roadmap.
In Section 1.1 we formally define our model and the basic

concepts/definitions used throughout the paper. We discuss
our results in Section 1.2. Section 2 provides a necessary
condition for the existence of a truthful mechanism and
related consequences on the existence of truthful approxi-
mation mechanisms. Sections 3-4 provide a deterministic
and a randomized mechanism for identical and non-identical
machine speeds, respectively. Finally, in Sect. 5 we investi-
gate the case of agents owning more than one job.
We remark that due to space limitation we have moved

some of the proofs to the Appendix.

1.1 The Model
We consider (selfish) routing over a network consisting of

m parallel links through which n (selfish) users want to route
their traffic trying to minimize their own latency. The goal
is to minimize the maximum latency. The case in which each
user owns one unsplittable piece of traffic can be formulated
as a scheduling problem as follows (the generalization to

more than one piece of traffic per agent is given in Sect. 5).
We have to schedule a set of jobs with weights t = (t1, t2,

. . . , tn) on a set ofm related machines with speeds (s1, s2, . . . ,
sm) and we wish to minimize the makespan. Each job rep-
resents a certain amount of traffic owned by a selfish agent.
The strategy of each agent is to declare a value bi repre-
senting the weight of her job. Based on the reported values
b = (b1, . . . , bn), the scheduler runs an allocation algorithm
A to compute an assignment A(b).
Naturally, agents would prefer to be assigned to faster

and less loaded machines, in order to have their own jobs
to be processed faster. In particular, a valuation function
vi(A(b)|t) expresses how much agent i “likes” the assignment
A(b), given the job weights t.
To stress that agent i can only change the i-th value bi of b,

we distinguish the declared values of the other agents by in-
troducing the notation b−i := (b1, b2, . . . , bi−1, bi+1, . . . , bn).
For any value x, we denote by

(x, b−i) := (b1, b2, . . . , bi−1, x, bi+1, . . . , bn).

We remark that the valuation function of agent i depends
on both its job weight ti and the weights of the other jobs
t−i.
We proceed as in the KP model [11] by assuming that

machines process jobs in round-robin fashion, i.e., all jobs
assigned to the same machine finish roughly at the same
time. We let Ai(b) denote the machine to which job i is
allocated according to A(b) and by si

A(b) its speed.
1 Also,

we let wi
A(b|t−i) denote the sum of the true weights of the

jobs assigned to machine Ai(b), excluding job i.
We thus define agent’s i valuation of solution A(b) as

vi(A(b)|t) := − ti + wi(A(b)|t−i)

si
A(b)

.

Hence, agent i may report bi �= ti so to induce algo-
rithm A to compute a solution that i likes better, i.e., with
higher utility. In this case, there is no guarantee that a c-
approximation algorithm A returns a solution A(b) which is
a c-approximate solution for the true input t. In order to
incentivate the agents to report their true values t, we de-
fine suitable payment functions pi

A(b) which determine the
amount of money that each agent i receives according to the
declared values b. These functions are known to the agents,
as well as the allocation algorithm A. A pair (A, pA) is
termed in the literature mechanism. So, each agents is now
willing to maximize her utility (or net profit) ui(·) which is
defined as follows:

ui(A(b)|t) := pi
A(b) + vi(A(b)|t).

We assume that agents are selfish but rational, i.e., they
declare a false value only if they can obtain a strictly larger
utility. Nash equilibria guarantee that no agent has an in-
centive to unilaterally change her strategy (see, for example,
[15]). In particular, we would like to guarantee that truth-
telling is a Nash equilibrium:

Definition 1. A mechanism M = (A, pA) is equilibria-
truthful if, for every agent i, it holds that for all t and for
all bi

ui(A(ti, t−i)|t) ≥ ui(A(bi, t−i)|t).
1A more appropriate notation would be si

Ai(b) but for the

sake of readability we use si
A(b).
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Figure 1: The model. On the left, a set of n users wants to route their traffic from S to D choosing one of
the m available links (i.e., disjoint paths). A scheduler resides on node S and, based on the declared traffic
weights, assigns a link to every user. On the right, a set of n providers connects the users to node S towards
the destination node D; each provider Pi has a pull of customers; the faster traffic tij is processed, the more
money provider Pi receives from the corresponding customer.

Equilibria-truthful mechanisms guarantee that, if all agents
report their job size correctly, then none has an incentive to
report a different value. A stronger notion is that of re-
quiring that truth-telling is the best strategy for a player i
regardless of the strategy adopted by other players:

Definition 2. A mechanism M = (A, pA) is truthful
with dominant strategies (in short, truthful) if, for every
agent i, for every reported values b−i := (b1, . . . , bi−1, bi+1)
of the other agents, and for every bi

ui(A(ti, b−i)|t) ≥ ui(A(bi, b−i)|t). (1)

It is worth observing that the fact that a mechanism
M = (A, pA) is (equilibria-)truthful does not imply that the
mechanism M ′ = (A′, pA) is (equilibria-)truthful as well.
According to our terminology, the cost of solution A(b),

that is the makespan, with respect to the input t is

cost(A(b)|t) := max
i

�
ti + wi(A(b)|t−i)

si
A(b)

�
= max

i

n
vi(A(b)|t)

o
.

Observe that, in our model, we assume that the mecha-
nism is not able to verify whether the agent is reporting the
real weight bi or a different one. It can only compute the
allocation and the payments but it cannot verify the real
cost of the solution. Indeed, in practice, it may be too ex-
pensive to keep track of the actual amount of traffic sent by
each user, thus preventing from the possibility of checking,
for instance, whether bi < ti. Moreover, a user may report
bi > ti and actually send an amount of traffic equal to bi,
by just padding the original traffic with some “fake” traffic
up to the declared value bi.
In the sequel, for the sake of readability, we will some-

times omit b−i, t−i and A in the definitions above and sim-
ply use si(bi), w

i(bi), p
i(bi), and ui(bi|t). We also denote

cost(A(b)|t) simply as cost(A, b).

1.2 Our Results
In this work we characterize the existence of approxi-

mation mechanisms for our problem depending on (the com-
bination of) the following factors:
– The ratio r between the largest and the smallest machine

speeds;
– Whether we consider truthful or equilibria-truthful mech-

anisms;
– Whether each agent owns a single job or more than one;
– The number m of machines.

Since the problem is NP-hard even for 2 machines with
identical speeds, we focus on both exponential-time and

polynomial-time mechanisms. In particular, the negative
results on exponential-time mechanisms show that the in-
approximability of the problem does not arise because of its
computational intractability but it comes from the “lack of
cooperation” due to the selfish agents.
We first consider the case in which each agent owns one

job. For this problem version, we provide a necessary con-
dition for an algorithm A to admit a payment function
p = (p1, . . . , pn) such that M = (A, p) is equilibria-truthful.
Roughly speaking, this condition states that A should as-
sign jobs “monotonically”, that is, if we increase the size of
one job then this job should not be moved to a slower ma-
chine. This condition can be considered as the “dual” of the
monotonicity requirement for scheduling problems involving
selfish machines [1]. Clearly, the same condition must hold
also for truthful mechanisms.
Based on this result, we show that, even for two machines,

no equilibria-truthful mechanism can guarantee exact so-
lutions. Notice that our result also holds for exponential-
time mechanisms. Moreover, our negative results can be
strengthened to prove inapproximability results for equilibria-
truthful mechanisms depending on r. Our results for agents
owning one job are summarized in Table 1.
We then consider the case of m machines with identi-

cal speeds (for which the necessary condition above always
holds) and we show that, for every algorithm A there exists
a payment pA such that M = (A, pA) is equilibria-truthful.
This implies the existence of deterministic polynomial-time
(1 + ε)-approximation equilibria-truthful mechanisms, for
any m and for any ε > 0. Moreover, it is possible to achieve
exact solutions if we use equilibria-truthful mechanisms run-
ning in non-polynomial time. In Sect. 6 we briefly discuss
an application of this result to a stronger model in which the
scheduler, based on the reported values, can only suggest a
link to each of the agents, but cannot avoid them to perform
selfish routing after they received the payment.
It is then natural to ask whether a similar result does

apply to (the stronger notion of) truthful mechanisms. We
give a negative answer and show that no (exponential-time)
truthful exact mechanism exists even for two machines with
identical speeds.
Finally, we provide a randomized mechanism for m = 2

which is equilibria-truthful w.r.t. the expected utility of the
agents and whose approximation ratio is r. This mechanism
exploits the payment schemes for identical machines suitably
combined with a randomized allocation.
We then turn our attention to the case of agents own-

ing more than one job. This is a natural extension of the
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KP model [11] motivated by the scenario in which users
are first gathered together into n disjoint sets corresponding
to n (selfishly acting) providers (see Fig. 1), and each user
pays an amount of money to her provider depending on the
experienced latency (see Sect. 5 for a more detailed discus-
sion of the model). We first show that no 7/6-approximate
solution can be achieved even when considering exponential-
time truthful mechanisms for the case of two identical ma-
chines and at most two jobs per agent. This result con-
trasts with the (1+ ε)-approximate mechanism for identical
speeds, when each agent owns one job. Motivated by this
negative result, we turn our attention to truthful approxi-
mate mechanisms and give upper and lower bounds on the
approximation ratio of such mechanisms (see Table 2). Some
of our positive results are obtained via new polynomial-
time approximation algorithms which can be combined with
suitable payment functions so to obtain equilibria-truthful
mechanisms achieving the same approximation ratio.

1.2.0.2 Related work.
In our work we consider the KP model [11] where traffic

is unsplittable and each agent can choose her link. In the
KP model, the congestion for the case of m links of equal
speed can be Ω( log m

log log m
) times worse than the optimal. In

contrast one of our results shows that (1+ ε) approximation
is possible if the allocation is computed by a scheduler.
Our work is similar in spirit to the works [6, 5] in that

both of them consider the issue of designing a scheduler
for selfish unsplittable traffic in the KP model [11]. How-
ever, both [6, 5] assume that the scheduler is provided with
the correct traffic weights and the scheduler must compute
an assignment which is a Nash equilibrium. In [6] the au-
thors show how to obtain pure Nash equilibria whose cost
is (1+ ε)-times the optimum. We prove instead that, in our
setting, (1 + ε)-approximate solutions cannot be obtained
at all, even when considering exponential-time algorithms.
One interpretation of the two results is that, from the net-
work designer/manager point of view, it is better to have
jobs of known weight which are allowed to move from a pre-
computed assignment, than having agents that can lie about
the weights of their jobs but cannot refuse the assignment of
the scheduler. The work in [5] focuses on particular schedul-
ing policies which, at every time step, allow exactly one job,
if any, to move to a better machine until a configuration
is reached corresponding to any Nash equilibrium; the work
reported in [5] focuses on the overall number of steps, rather
than the quality of the corresponding solution (this issue is
also tackled in [6]). An approach similar to ours for reduc-
ing the cost of selfish routing by imposing payments on the
agents has been adopted by [3] for the so-called flow model
where each agent controls a negligible portion of the entire
traffic.

2. A NECESSARY CONDITION FOR TRUTH-
FULNESS

In this section we provide a necessary condition for an al-
gorithm A to admit a payment function p = (p1, p2, . . . , pn)
such that M = (A, p) is (equilibria-) truthful and we use
this condition to derive lower bounds on the approximation
of any deterministic truthful mechanism.

Theorem 3. A deterministic mechanism M = (A, p) is

(equilibria-) truthful only if A satisfies si
A(x) ≥ si

A(y), for
any agent i and for any x > y.

Proof. Let M be an (equilibria-) truthful, mechanism
and let x and y be two positive integers, with x > y. Ob-
serve that if ti = x the utility of agent i when reporting
the weight x must be greater than or equal to the utility
obtained reporting y. From the definition of ui(·) we obtain

pi(x)− x+ wi(x)

si(x)
≥ pi(y)− x+ wi(y)

si(y)
. (2)

Similarly when ti = y we obtain

pi(y)− y + wi(y)

si(y)
≥ pi(x)− y +wi(x)

si(x)
. (3)

By Eq. 2 we obtain

pi(x) ≥ pi(y) +
x+wi(x)

si(x)
− x+ wi(y)

si(y)
,

and by plugging in the right side in Eq. 3 we have

pi(y) ≥ pi(x) +
y + wi(y)

si(y)
− y + wi(x)

si(x|y)

≥ pi(y) +
x+ wi(x)

si(x)
− x+ wi(y)

si(y)

+
y + wi(y)

si(y)
− y + wi(x)

si(x)

= pi(y) +
x− y

si(x)
+

y − x

si(y)

Hence we have x−y
si(x)

+ y−x
si(y)

≤ 0, thus implying si(x) ≥
si(y).

We use the theorem above to prove lower bounds on the
approximation ratio achievable by a mechanism. Given a set
of m machines, we construct two instances t and t′ where
t′ differs from t only for the weight of job j which is one
of the jobs allocated to the fastest machine on input t. By
the theorem above job j has to be allocated to the same
machine also for t′. By selecting appropriately the weight
t′j we obtain that any optimal algorithm has to allocate this
job to a different machine. Therefore the optimal allocation
cannot be used in an equilibria-truthful mechanism.
We present our lower bounds as a function of the ratio

between the largest and the smallest machine speed. We
define r := smax/smin, where smax := max1≤i≤m{si} and
smin := min1≤i≤m{si}.
In the proof of the lower bounds we use the notation

“opt(x → s)” to denote the minimum cost of all allocations
that assign the job of weight x to the machine of speed s.

Theorem 4. For any two machines such that r is an
integer and r ≥ φ, where φ is the golden ratio, no deter-
ministic (equilibria-) truthful mechanism can guarantee c-
approximate solutions, for c < 1 + r−1

2r2−r
.

Proof. Consider two machines of speed 1 and r and a
set of 2r unitary weight jobs. Clearly, the optimum allocates
these jobs with a cost bounded above by 2. Consider a
(equlibria-) truthful mechanism M = (A, p).
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Speed ratio Lower bound Upper bound
r = smax/smin (for any m and any r)

no exact deterministic and truthful exact deterministic
r = 1 even exp. time [Thm 9] and equilibria-truthful

(non poly-time) [Thm 7]
1 + ε
(deterministic, poly-time ) [Cor 8]

1 < r < 2 min
�
r, 1

2
+ 1

r

	
[Thm 5] r [Thm 10]

(deterministic, equilibria-truthful) (equilibria-truth. in expect.)
r ≥ φ ≈ 1.61 1 + r−1

2r2−r
[Thm 4] 1 + m−1

r
[trivial]

(deterministic, equilibria-truthful) (deterministic, truthful)

Table 1: Our Results: (in-)approximability via (equilibria-)truthful mechanisms when each agent owns a
single job.

k versus m Lower bound Upper bound

k = 1 1 1 + ε [Thm 7]
k ≤ m k ≤ 2 7/6 [Thm 11] 3/2 + ε [Thm 21]

k > 2 7/6 2 [Thm 17]
k > m m = 2, ki even for all i 4/3 [Thm 12] 3/2 + ε [Thm 21]

m = 3, ki even for all i 4/3 9/4 + ε [Cor 22]
m = 4, ki even for all i 4/3 3 + ε [Cor 23]

m > 2, m even 4/3 4 [Thm 19]
m > 2, m odd 4/3 4(1 + 1

m
) [Cor 20]

Table 2: Our Results: (in-)approximability via deterministic equilibria-truthful mechanisms for identical
machines. ki denotes the number of jobs owned by agent i and k = maxi ki; lower bounds apply to exponential-
time mechanisms as well, while upper bounds are provided via polynomial-time mechanisms.

The case when A assigns no jobs to the faster is easy to
handle: the cost of the solution is 2r and the approximation
ratio is at least r. The theorem follows from the hypothesis
that r ≥ φ.
So we need to consider the case when A assigns at least

one job to the faster machine. Let j be the index of one such
a job. Consider a new set of jobs t′ = (1, . . . , x, 1, . . . , 1),
where the jth job has weight x = 2 − 1/r, and show that
A has to compute a non-optimal allocation on t′. From
Theorem 3, the algorithm A must allocate job j to the faster
machine. Observe that opt(t′) = opt(x → 1) = max{x, (2r−
1)/r} = 2 − 1/r and cost(A, t′) ≥ opt(x → r). Moreover,
if opt(x → r) assigns two or more jobs to machine 1, then
opt(x → r) ≥ 2. Otherwise, the work of machine of speed
r is at least x + 2r − 2 = 2r − 1/r, thus implying opt(x →
r) ≥ 2− 1/r2. Putting things together

cost(A, t′)
opt(t′)

≥ opt(x → r)

opt(x → 1)
≥ 2− 1/r2

2− 1/r =
2r2 − 1
2r2 − r

=
2r2 − r + r − 1

2r2 − r
= 1 +

r − 1
2r2 − r

.

The theorem thus follows from the observation that, for the
instance of all unitary jobs, at least one of them must be
assigned to machine r (unless it computes a solution of cost
r′ the optimum). Because of Theorem 3, this job cannot
be reallocated when increasing its weight to x; in this case,
the ratio between the best solution satisfying this constraint
and the optimum is the bound above.

Theorem 5. For any m ≥ 2 machines with r < 2, no
deterministic (equilibria-) truthful mechanism can guarantee
c-approximate solutions, for any c < min

�
r, 1

2
+ 1

r

	
.

Proof. Consider m machines with speed (1, 1, . . . , 1, r)
and a job sequence t consisting of m + 1 jobs of weight 1.
Any (equilibria-) truthful mechanism M = (A, p) assigning
no job to the fastest machine incurs in a cost of at least 2,
while the optimum is 2/r. In this case the approximation
ratio is r.
Let us thus assume that A assigns at least one job to the

fastest machine, and let j be the index of such a job. Let
us consider a new job sequence t′ = (1, 1, . . . , x, 1, . . . , 1),
where x > 1 is the weight of the jth job. From Theorem 3,
the algorithm A must allocate job j to the fastest machine.
Hence, cost(A, t′) ≥ opt(x → r).
For x = 2/r > 1, any optimal solution that assigns x to

the fastest machine must allocate at most two jobs to such a
machine. We thus have to consider only two kind of solutions
as shown in Fig. 2. Thus, opt(x → r) = min{2, (1+2/r)/r}.
On the other hand, any optimal solution must assign job of

weight x to a machine of speed 1, and two jobs of weight 1 to
the fastest machine: this yields opt(t′) = opt(x → 1) = 2/r.
Hence

cost(A, t′)
opt(t′)

≥ opt(x → r)

opt(x → 1)
≥ min{2, (1 + 2/r)/r}

2/r

= min

�
r,
1

2
+
1

r

�
.

Since, for r ≤ 1+
√

17
4
, r ≤ 1

2
+ 1

r
, we obtain the following

result.

Corollary 6. For m ≥ 2 machines and for any r ≤
1+

√
17

4
, no deterministic (equilibria-) truthful mechanism can

guarantee c-approximate solutions, for any c < r.
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solutions speed 1 · · · speed 1 · · · speed 1 speed r cost
case 1 1 . . . 1 1, x 1 (1 + 2/r)/r
case 2 1 . . . 1, 1 . . . 1 x 2

Figure 2: Assignments of jobs used in the proof of Theorem 5.

3. MECHANISMS FOR IDENTICAL MA-
CHINE SPEEDS

In this section we consider the case in which all machines
have the same speed. We start by proving that, in this
particular case, any scheduling algorithm A can be used to
obtain an equilibria-truthful mechanism.

Theorem 7. For any m ≥ 2 machines with r = 1 and
for any algorithm A there exists a payment function pA =
(p1

A, . . . , pn
A) such that M = (A,pA) is equilibria-truthful.

Proof. Assume that the speed of each machine is s. The
mechanism pays agent i for the additional time she has to
wait because of the other jobs assigned to the machine Ai(b),
computed w.r.t. the reported values b. Formally, we set
pi(bi, b−i) := zi(bi, b−i)/s, where

zi(bi, b−i) :=
X

j:Aj(bi,b−i)=Ai(bi,b−i),j �=i

bj .

It is easy to see that, if b−i = t−i, then zi(bi) = wi(bi) and

ui(bi|t) = pi(b)− ti + wi(bi)

s
= − ti

s
.

Thus, if all the agents other than i are truth-telling then
agent i cannot improve her utility by reporting bi �= ti, and
the mechanism is equilibria-truthful.

Using the approximation scheme of [10], we obtain the
following corollary.

Corollary 8. For any m ≥ 2, there exists a (1 + ε)-
approximate polynomial-time equilibria-truthful mechanism.

It is natural to ask whether the above result can be ex-
tended to truthful mechanisms. In the sequel we will provide
a negative answer to this question. Intuitively, this is due
to the fact that, in our problem, the valuation of a solution
of agent i depends on the types of all agents. Instead, in
the “dual” problem of scheduling with selfish machines (see
[1]), the valuation of agent i depends only on her own type
ti and on some other public input (i.e., the size of the jobs).
In the latter case, agent i can compute the valuation of a
given solution, while in our problem this does not hold.

Theorem 9. No exact truthful mechanism exists for the
problem of scheduling selfish jobs on related machines, even
for the case of two machines with identical speeds.

Proof. Consider two machines of equal speed. By con-
tradiction, let M = (A,pA) be a truthful exact mecha-
nism for the problem. Consider a set of three jobs of size
t = (t1, t2, 3) and let b′ = (2, 1, 3) and b′′ = (4, 1, 3) be
two vectors of values reported to the mechanism. Since M
is truthful and b′−1 = b′′−1, we have that, if t1 = 2, then

Algorithm rand-shift(b,m)

1. solve the problem on m identical machines using some
algorithm alg;

2. let Wj denote the set of jobs assigned to the jth iden-
tical machine;

3. pick a number q ∈ [0, m− 1] at random with uniform
distribution;

4. assign the jobs in Wj to the machine (j+ q) mod m,
j = 1, 2, . . . ,m;

Figure 3: A randomized algorithm for small values
of r = smax/smin.

u1(b′|2) ≥ u1(b′′|2), while if t1 = 4 then u1(b′′|4) ≥ u(b′|4).
This is equivalent to

p1(b′)− p1(b′′) = w1(b′)− w1(b′′). (4)

Consider now the allocations computed by the optimal al-
gorithm A on input b′ and b′′. It is easy to see that both
instances admit only one optimal allocation. The following
table shows these allocations.

instance machine 1 machine 2
b′ 1, 2 3
b′′ 4 1, 3

Thus, w1(b′) = t2 and w1(b′′) = 0 and by Eq. 4 we have that
p1(b′)−p1(b′′) = t2. Since t2 is not known to the mechanism,
M cannot guarantee that truth-telling maximizes the utility
of agent 1 on any instance, contradicting the hypothesis that
is an exact truthful mechanism.

4. RANDOMIZED MECHANISMS FOR “AL-
MOST IDENTICAL” MACHINES

In this section we provide a randomized mechanism for the
case in which the ratio r = smax/smin is small. The mecha-
nism is truthful in expectation and is based on the following
idea: we first solve the problem on m identical machines;
then, we assign the work of the identical machines to the
machines of our instance uniformly at random. Intuitively
speaking, the random shift guarantees that, no matter what
the reported value bi is, the probability of being assigned to
a certain machine is always 1/m. So, from the agent point
of view, in expectation, the speed of its machine is constant,
and we can define payments similar to the case of identical
speeds. Algorithm rand-shift is given in Fig. 3.
We can thus prove the following result:

Theorem 10. For any ε > 0, there exists a polynomial-
time randomized mechanism which is equilibria-truthful in
expectation and whose approximation ratio is r + ε.
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Proof. Consider the expected utility of a mechanismM =
(A, p), when A = rand-shift. Let Ai(b, q) denote the ma-
chine where job i is allocated on input b and when the algo-
rithm selects the random value q ∈ [0, m−1] and let si

A(b, q)
be its speed. Observe that, the quantity wi(b), that is the
sum of the real weights of the jobs assigned to the same ma-
chine as job i, does not depend on q. Let pi(b) be a payment
function that does not depend on the random number q. For
each fixed q ∈ [0, m− 1], the corresponding utility ui(b|t, q)
of agent i satisfies

ui(b|t, q) = pi(b)− ti + wi(b|t−i)

si(b, q)
.

Observe that, for every b, the probability that job i is as-
signed to the jth machine is 1/m. Thus, the expected utility
E(bi, b−i) is equal to

Ei(bi, b−i|t) := E[ui(bi, b−i|t)] (5)

=
mX

j=1

Pr[Ai(b, q) = j] ·
�
pi(b)− ti + wi(b)

sj

�
(6)

= pi(b)− ti + wi(b)

m

mX
j=1

1

sj
. (7)

The expected utility Ei(·) equals to the utility in the case of
m machines of identical speed s := m/(

Pm
j=1 1/sj). We can

thus define the payments as in the proof of Theorem 7, that

is, pi(b) := zi(bi)
s
, where zi(x) =

P
j:Aj(x,b−i)=Ai(x,b−i),j �=i bj .

When b−i = t−i it holds that z
i(bi) = wi(bi), thus implying

Ei(bi, t−i) =
wi(bi)

s
− ti + wi(bi)

m

mX
j

1

sj
= − ti

s
.

So, the mechanism is equilibria-truthful in expectation. By
using a polynomial-time (1 + ε)-approximate algorithm alg

in the definition of rand-shift, the resulting mechanism
runs in polynomial time, is equilibria-truthful and guaran-
tees an approximation ratio equal to r(1 + ε).

5. AGENTS OWNING MORE THAN ONE
JOB

In this section we investigate the case in which an agent
may own more than one job, and machine speeds are iden-
tical.
We havemmachines of speed s, l jobs of weight (t1, · · · , tl),

and n < l agents. We denote by Xi the set of the ki jobs
owned by agent i and by k the maximum of the ki’s. For any
job j, we denote by ownj the set of jobs with the same owner
as j. If A is a scheduling algorithm then, for 1 ≤ j ≤ l, we
denote by Aj(b) the set of jobs that algorithm A, on input
the reported weights b, assigns to the same machine as job
j (including job j itself) and by wj

A(b|t) the sum of the real
weights of the jobs of Aj(b). Hence,

wj
A(b|t) =

X
h∈Aj(b)

th.

Since all machines have speed s, the quantity −wj
A(b|t)/s

is the finish time of job j according to solution A(b). We
define the valuation of agent i as minus the sum of the finish

times of her jobs, that is,

vi
A(b|t) := −

X
j∈Xi

wj
A(b|t)
s

.

Our valuation function models the case in which each cus-
tomer pays the agent controlling her piece of traffic a fixed
amount minus the experienced latency of her traffic. This
is motivated by the scenario in Fig. 1, where each of the n
providers (the selfish agents) wants to maximize the amount
of money received from the customers (i.e., the jobs owned
by that agent).
We rewrite the above valuation function as follows. For

any algorithm A, we define oj
A(b|t) as the sum of the real

weights of those jobs in Aj(b) that do not belong to ownj ;
that is,

oj
A(b|t) =

X
h∈Aj(b),h/∈ownj

th. (8)

Moreover, we define mj
A(b) as the number of jobs in Aj(b)

that belong to ownj ; that is,

mj
A(b) = |Aj(b) ∩ ownj |. (9)

Using the above definitions we can write vi
A(b|t) as

vi
A(b|t) = −

X
j∈Xi

mj
A(b) · tj

s
−
X

j∈Xi

oj
A(b|t)
s

. (10)

When algorithm A is clear from the context or imma-
terial, we will drop the subscript “A” and simply write
mj(b), wj(b|t), vi(b|t), and oj(b|t).
5.1 Lower bounds
In this section we prove lower bounds on the approxi-

mation ratio obtained by truthful mechanisms in the case
where agents can own more than one job. Our proofs adopt
the following strategy: given two possible declarations b′ and
b′′, any truthful mechanism must guarantee, for all agents i,
that

pi(b′) + vi(b′|b′) ≥ pi(b′′) + vi(b′′|b′) (11)

and

pi(b′′) + vi(b′′|b′′) ≥ pi(b′) + vi(b′|b′′). (12)

From the above equations, we then derive necessary condi-
tions on the payment function and the allocation algorithm
of a truthful mechanism which in turn imply a lower bound
on the approximation ratio.

Theorem 11. For any m ≥ 2 and for any c < 7/6, no
truthful mechanism can guarantee c-approximate solutions
on m machines of equal speeds when each agent owns at
most 2 jobs.

Proof. We prove the theorem for m = 2 machines of
unitary speed. Let M = (A, p) be a truthful mechanism for
this problem. Let us consider an instance with 2 agents and
3 jobs such that t = (t1, t2, 1) and X1 = {1, 2}, X2 = {3}.
Consider two vectors of declared weights b′ = (x′, y′, 1)

and b′′ = (x′′, y′′, 1), with x′ ≤ y′ < 1 and x′′ ≤ 1 < y′′.
Observe that if M is an exact mechanism then its allocation
algorithm A is optimal. In particular, on input b′ or b′′, it
must allocate the two smallest jobs on the same machine
(say 1) and the largest one on the other machine (say 2).
Thus, A should produce the following two allocations
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instance machine 1 machine 2
b′ x′, y′ 1
b′′ x′′, 1 y′′

and v1(b′|b′) = −2(x′ + y′), v1(b′|b′′) = −2(x′′ + y′′),
v1(b′′|b′) = −(x′ + y′ + 1) and v2(b′′|b′′) = −(x′′ + y′′ + 1).
Then, by Eq. 11-12 we have that

p1(x′, y′)− 2(x′ + y′) ≥ p1(x′′, y′′)− x′ − y′ − 1,(13)
p1(x′′, y′′)− x′′ − y′′ − 1 ≥ p1(x′, y′)− 2(x′′ + y′′).(14)

It is easy to verify that these two inequalities both hold
only when x′′ + y′′ ≥ x′ + y′. Thus, if M is truthful and
x′′ + y′′ < x′ + y′ then A cannot give an optimal allocation
on both inputs b′ and b′′.
We now give a lower bound on the approximation ratio of

the solution given by A. Consider vectors b′ = (3/4, 3/4, 1)
and b′′ = (1/4− ε, 5/4, 1), for some sufficiently small ε > 0.
Then since 1/4−ε+5/4 < 3/4+3/4 A cannot be optimal on
both vectors. Observe that any sub-optimal allocation on b′

must allocate the two jobs of agent 1 on different machines,
while on b′′ it must allocate them on the same machine.
If A gives a sub-optimal allocation on input b′, then the
cost of A(b′) is at least 7/4 and the approximation ratio
is at least 7/4

3/2
= 7/6. If, instead, A gives a sub-optimal

allocation on b′′ then the cost of A(b′′) is at least 3/2 − ε

and the approximation ratio is at least 3/2−ε
5/4

� 6/5. Then,
the theorem follows.

The above theorem also applies to the case in which agents
may own more than two jobs. However, in this case, we can
obtain a better lower bound:

Theorem 12. For any m ≥ 2 and for any c < 4/3, no
truthful mechanism can guarantee c-approximate solutions
on m machines of equal speeds when each agent owns k ≥ m
jobs.

Proof. We prove the theorem for m = 2 machines of
unitary speed. Let M = (A, p) be a truthful mechanism
for this problem. Let us consider an instance with 1 agent
and 4 jobs and consider two vectors of declared weights b′ =
(1, 1, 1, 1) and b′′ = (x, x, x, 3x− 3) for some x > 0. Observe
that ifM is an exact mechanism then, for sufficiently large x,
its allocation algorithm computes the following allocations

instance machine 1 machine 2
b′ 1, 1 1, 1
b′′ x, x, x 3x− 3

and v(b′|b′) = −8, v(b′′|b′′) = −12x + 3, v(b′′|b′) = −10
and v(b′|b′′) = −12x+ 6. Since M is truthful, by Eq. 11-12
we have that p(b′) − p(b′′) ≥ −2 and p(b′) − p(b′′) ≤ −3,
proving that A cannot compute an optimal allocation on
both b′ and b′′. Thus, if A computes a sub-optimal solution
on b′ (putting at least 3 jobs on the same machine) then
its solution costs at least 3 while the optimum is 2. If,
instead, A computes a sub-optimal solution on b′′ (putting
an even number of jobs on each machine) then its solution
costs at least 4x − 3 while the optimum is 3x. Thus, for
any ε > 0, there exists a sufficiently large x such that the
approximation ratio of A is at least (4/3−ε). This completes
the proof.

5.2 Upper bounds
Observe that the valuation by agent i of an allocation de-

pends on two terms: the allocation of i’s jobs i.e., the first
summation of Eq. 10, and the overall load due to the other
agents’ jobs w.r.t. the machines used by agent i, i.e., the
second summation of Eq. 10. In particular, if two jobs of
agent i are assigned to the same machine we count their
weights twice, while if we assign them to distinct machines
we count their weights once. With this in mind, we consider
algorithms that keep the first part constant and payment
functions that counterbalance the influence of the jobs of
other agents. In this way the utility of each agent is inde-
pendent from the values she declares and thus there is no
incentive to lie.

Definition 13 (independent algorithms). An algo-
rithm A is independent if, for every b, b′, it assigns jobs in
such a way that, for any j, mj

A(b) = mj
A(b

′). In this case,

we will just write mj
A instead of mj

A(b).

Theorem 14. For any independent algorithm A, there
exists a payment function pA such that M = (A,pA) is
equilibria-truthful.

Proof. For every agent i we define the payment function

pi
A(b) :=

X
j∈Xi

zj
A(b)

s
, (15)

where zj
A(b) :=

P
h∈A(b)j,h/∈ownj

bh. Then

ui(b|t) =
X

j∈Xi

zj
A(b)

s
−
X

j∈Xi

mj
A · tj
s

−
X

j∈Xi

oj
A(b)

s
.

When all agents other than i are truth-telling (that is, bh =
th for all h �∈ Xi) we have that ui(b|t) = −Pj∈Xi

�
mj

A · tj
�
/s.

So the utility does not depend on the declarations of the
agents, and (A,pA) is an equilibrium-truthful mechanism.

We start by considering the case in which, for each agent
i, ki ≤ m or ki is a multiple of m and present algorithm
spread, given in Fig. 4, that is independent and guarantees
a 2-approximation.

Algorithm spread(b,m)

for i = 1 to n do
set ci = �ki/m�;
for j ∈ Xi in nonincreasing order by declared weight do

assign job j to the least loaded machine that has
less than ci jobs from agent i;

Figure 4: An independent algorithm.

Lemma 15. Algorithm spread is independent if, for any
agent i, ki ≤ m or ki is a multiple of m.

We now study the approximation guaranteed by algorithm
spread. We start with the following technical lemma.
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Algorithm split(b,m)

01. partition the machines in two sets S1 and S2 of
cardinality �m/2� and �m/2�;

02. for i = 1 to n
03. write ki as ki = ci · �m/2�+ qi for some

0 ≤ qi < �m/2�;
04. partition Xi in Xi

1 containing the qi heaviest jobs
and Xi

2 containing the ci · �m/2� remaining jobs;
05. let b1 = ∪n

i=1X
i
1 and b2 = ∪n

i=1X
i
2;

06. schedule jobs in b1 on machines of S1 using spread;
07. schedule jobs in b2 on machines of S2 using spread;

Figure 5: An algorithm for the case k > m.

Lemma 16. Fix an input vector b. Let Li
h denote the

load of machine h after algorithm spread has assigned all
jobs of agent i and let Li

max := max1≤h≤m Li
h, Li

min :=
min1≤h≤m Li

h, and bmax := max1≤j≤l bj . If k ≤ m then
it holds that Li

max − Li
min ≤ bmax.

Let pspread be defined as in Eq. 15. We now prove that

(spread, pspread) is an equilibria-truthful 2-approximate

mechanism for the case when for each agent i, ki ≤ m or ki

is a multiple of m.

Theorem 17. M = (spread, pspread) is a polynomial-

time equilibria-truthful 2-approximation mechanism for allo-
cating selfish jobs to m identical machines if, for each agent
i, ki ≤ m or ki is a multiple of m.

Proof. The truthfulness follows from Lemma 15 and The-
orem 14.
We next show that spread is a 2-approximation algorithm

and consider first the case in which ki ≤ m for all agents
i. Let Li

max and Li
min be defined as in Lemma 16. Observe

that opt(b) ≥Pn
i=1 bi/m ≥ Ln

min and opt(b1, . . . , bn) ≥ bmax.
Thus, we have that

cost(A, b) = Ln
max ≤ bmax + Ln

min ≤ 2opt(b),

where the first inequality follows from Lemma 16. Thus
spread is 2-approximated with respect to the declared weights.
However, since the mechanism is equilibrium-truthful, the
declared weights coincides with the real weights and thus
the mechanism is 2-approximated.
Now let us consider the case in which some agent i has

ci ·m jobs. Then it is easy to observe that if in place of agent
i, we consider ci agents each with m jobs then the allocation
computed by spread does not change.

We now show how algorithm spread can be used as a
building block to design algorithm split (see Fig. 5) that
can be used to construct an equilibria-truthful mechanism
for the case k > m.

Theorem 18. M = (split, psplit) is an equilibria-truthful

mechanism.

Proof. Let psplit be defined as in Eq. 15. The utility

function of agent i can be rewritten as

ui(bXi , b−Xi |t) = −
X

j∈Xi

mj

split(bXi , b−Xi |t) · tj
s

= −
X

h∈Xi
1

th
s

−
X

h∈Xi
2

ci · th
s
.

By Eq. 10, if every agent other than i reports her true
weights then zj

A(b) = oj
A(b) and thus we have that, for any

agent i and for any pair of vectors bXi ,

ui(tXi , t−Xi |t) ≥ ui(bXi , t−Xi |t).

Theorem 19. split is a 4-approximate algorithm for m
even.

Proof. Observe that the algorithm partitions machines
in two sets S1 and S2, both of size m/2, and jobs in two sets
b1 and b2 and then assigns jobs in b1 to machines in S1 and
jobs in b2 to machines in S2. Denote by costi the cost of the
allocation of bi on machine Si, for i = 1, 2. The cost of the
allocation computed by algorithm split is obviously equal
to max{cost1, cost2}. We prove the theorem by showing that
costi ≤ 4optm(b), for i = 1, 2, where optm(b) is the cost of
an optimal allocation of jobs b on m identical machines. We
have that

costi ≤ 2opt m
2
(βi) ≤ 2opt m

2
(b) ≤ 4optm(b), (16)

where the first inequality follows from the fact that |Xi
2| =

ci�m/2� and from Theorem 17.

Corollary 20. There exists a polynomial-time determin-
istic truthful 4(1 + 1/m)-approximation mechanism for any
odd m, when agents own up to k > m jobs.

Proof. The case m even follows from Theorems 18-19.
The case m odd easily follows by modifying split so to use
m− 1 out of the m machines.

The above results can be improved when considering small
values of m. In particular we prove the following theorem.

Theorem 21. For every ε > 0, there exists a polynomial-
time deterministic truthful ( 3

2
+ε)-approximation mechanism

for allocating jobs on two identical machines, when each
agent owns either a single job or an even number of jobs.

Proof. Consider the following algorithm: first run PTAS
for 2 machines to get a solution X; then transform X into a
new solution X ′ as follows: For every i such that ki > 1 and
X allocates c > ki/2 jobs on machine j (where j is either 1
or 2), move the c− ki/2 lightest jobs of i from machine j to
the other machine.
First observe that this algorithm is independent. Next we

show that it is (3/2 + ε)-approximate.
Since c ≤ ki/2, and since we move the lightest jobs, after
performing this step for all agents, we have moved at most
1/2 of the load of each machine to the other. It follows that,
the maximum load of X ′ is at most 3/2 times the maximum
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load of X. Since solution X is (1+ ε)-approximated we have
that the solution computed by the algorithm is (3/2 + ε)-
approximate. Thus, by Theorem 14 there exists a polytime
equilibria-truthful mechanism using this algorithm.

When we have more than 2 machines, we can use the same
algorithm as in Theorem 21, considering only to the two
fastest machines. Clearly we lose a factor of 1/m for each
ignored machine. For the cases of m = 3, 4, the approxi-
mation ratio is still better than the approximation of split.
Thus we get the following corollaries.

Corollary 22. For every ε > 0, there exists a polynomial-
time deterministic truthful ( 9

4
+ε)-approximation mechanism

for allocating jobs on three identical machines, when each
agent owns either a single job or an even number of jobs.

Corollary 23. For every ε > 0, there exists a polynomial-
time deterministic truthful (3+ε)-approximation mechanism
for allocating jobs on four identical machines, when each
agent owns either a single job or an even number of jobs.

6. EXTENSIONS AND OPEN PROBLEMS
We first observe that our results on m identical machines

and k = 1 can be combined with the results in [6] so to
obtain Nash equilibria w.r.t. the following generalization of
our (and also of the KP model) selfish routing game. Ini-
tially agents declare the weight of their jobs and a mecha-
nism schedules them and provide some payment. Then, each
agent can change machine if a better one exists. Equiva-
lently, the scheduler (i.e., mechanism) now suggests a schedul-
ing which the agents may not accept, unless it corresponds
to a Nash equilibria in the KP model. Theorem 7 combined
with the algorithm computing Nash equilibria of cost (1+ ε)
the optimal cost [6], yield a solution for our extended model
with the same approximation.
One of the main problem left open is to generalize this

result to the case of agents owning more than one job. This
may be of particular interests since providers (i.e., agents)
may not be forced to choose a certain link. We believe that
the situation in this case is much more intricate since solu-
tion at Nash equilibrium for the KP model are not at Nash
equilibria when considering an agent with more than one
job: it may be the case that one of her jobs can improve its
finish time, but this may also worsen other jobs from the
same agent.
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