
On Designing Truthful Mechanisms for Online
Scheduling?

Vincenzo Auletta1, Roberto De Prisco1,2, Paolo Penna1, and
Giuseppe Persiano1

1 Dipartimento di Informatica ed Applicazioni “R.M. Capocelli”,
Università di Salerno, via Ponte Don Melillo, I-84084 Fisciano (SA), Italy,

e-mail: {auletta, robdep, penna, giuper}@dia.unisa.it
2 Faculty Group at Akamai Technologies, Cambridge, MA, USA

Abstract. We study the online version of the scheduling problem Q||Cmax

involving selfish agents, considered by Archer and Tardos in [FOCS 2001],
where jobs must be scheduled on m related machines, each of them owned
by a different selfish agent.

We present a general technique for transforming competitive online al-
gorithms for Q||Cmax into truthful online mechanisms with a small loss
of competitiveness.

We also investigate the issue of designing new online algorithms from
scratch so to obtain efficient competitive mechanisms, and prove some
lower bounds on a class of “natural” algorithms. A “direct” use of such
natural algorithms to construct truthful mechanisms yields only trivial
upper bounds for the case of two machines.

Finally, we consider mechanisms with verification introduced by Nisan
and Ronen [STOC 1999] for offline scheduling problems. We present the
first constant-competitive online truthful mechanism with verification for
any number of machines.

1 Introduction

Optimization problems dealing with resource allocation are classical algorithmic
problems and they have been studied for decades in several models. Typically,
algorithms are evaluated by comparing the (measure of) the solutions they re-
turn to the best possible one. In particular, one tries to estimate the loss of
performance due to the lack of computational resources (approximation ratio)
or to the lack of information (competitive ratio).

In both settings, the underlying hypothesis is that the input is (eventually)
available to the algorithm, either from the beginning in off-line algorithms or
during its execution in on-line algorithms. This assumption cannot be consid-
ered realistic in the context of modern networks like the Internet where certain
information regarding the resources are not directly available to the “protocol”.

? Work supported by the European Project IP-FP6-015964 Aeolus – Algorithmic Prin-
ciples for Building Efficient Overlay Computers.

Indeed, the resources are owned/controlled/used by different self-interested en-
tities (e.g., corporations, autonomous systems, etc.). Each of these entities, or
selfish agents, hold some private information which is needed to the protocol in
order to compute an optimal resource allocation (e.g., routing the traffic over
the Internet requires routers of different autonomous systems to exchange in-
formation on which routers can process traffic faster). Each agent can possibly
misreport his/her piece of information if this leads the system to compute a so-
lution that is more beneficial for him/her. This, in spite of the fact that such a
solution may not be globally optimal.

Let us consider the following basic routing/scheduling problem (first intro-
duced by Nisan and Ronen [9]). We want to route one packet of size w over
one of m parallel links with different speeds: link i takes w/si units of time to
process this packet and the value of si is known to agent i only (this is the speed
of his/her link). Why should agent i report si, instead of a different value ri?
Given that 1/si represents the cost for agent i of processing a packet of unit size,
reporting a “very high” value ri could let the algorithm to select some other link
to route the packet. In this way agent i would have a benefit, since he/she will
have no cost, but the resource allocation produced by the algorithm could be
sub optimal.

The field of Mechanism Design is the branch of Game Theory and Microeco-
nomics that studies how to design complex auctions, also termed mechanisms,
which guarantee that no agent has an incentive in misreporting his/her piece of
information. Loosely speaking, a mechanism is a pair M = (A,P), where A is an
algorithm computing a solution, and P = (P1, . . . , Pn) is the vector of payment
functions (see Sect. 1.1 for a formal definition) given to the agents. Selfish agents
are supposed to be rational and thus will deviate from the truth-telling strategy
(in the previous case, to report ri = si) only if a better one exists. Therefore,
one seeks for truthful mechanisms, that is, mechanisms that guarantee that every
agent i can maximize his/her net profit or utility by playing the truth-telling
strategy (see Sect. 1.1).

1.1 The Problem

Offline Selfish Scheduling. Consider the problem of scheduling jobs on related
machines (Q||Cmax): We are given a set of m machines with speed s1, s2, . . . , sm

and a set of n jobs of size J1, J2, . . . , Jn. We want to assign every job to a machine
so to minimize the makespan, that is, the maximum over all machines of wi/si,
where wi is the sum of the job weights assigned to machine i. The version of the
problem where the number m of the machines is fixed is commonly denoted as
Qm||Cmax.

We study the selfish version of the Q||Cmax problem considered by Archer
and Tardos [2]. In this model each machine i is owned by a selfish agent and the
corresponding speed si is known to that agent only. We call ti

def= 1/si the type
of agent i. Agent i reports to the algorithm a value bi, not necessarily equal to
ti, and the algorithm computes a schedule S that minimizes the makespan with
respect to the values reported by the agents.

Each agent i is rational and he/she has his/her own valuation vi(X) for each
possible schedule X. Intuitively, vi(X) represents how much user i likes schedule
X. More specifically, a schedule X that assigns a total amount of work wi to
machine i is valuated by agent i of type ti as vi(X), where

vi(X) def= −wi · ti,

that is, the opposite of the completion time of machine i.
We remark that agent i selects the value bi to be reported to the algorithm

in such a way to have the algorithm output a schedule that he/she likes more.
We stress that our goal is to compute a solution S which minimizes the

makespan with respect to the true machine speeds s1, . . . , sm. Hence, we need
to provide some incentive (e.g., a payment) to the each agent i in order to let
him/her truthfully report his/her speed.

Formally, a mechanism is a pair M = (A,P), where P = (P1, . . . , Pm), and
A is a scheduling algorithm. Algorithm A gets in input the list of jobs to process
J and the types b = (b1, . . . , bm) reported by the agents, not necessarily equal to
the true types and computes a schedule A(b, J). Moreover, each agent i receives
a payment equal to Pi(b, J). Obviously, each agent i decides his/her strategy in
such a way to maximize the resulting net profit or utility defined as

uM
i (b, J) def= Pi(b, J) + vi(A(b, J)).

Each agent knows both algorithm A and the corresponding payment function
Pi.

A mechanism is said to be truthful with dominant strategies (or simply truth-
ful) if the payments P and the algorithm A guarantee that no agent obtains a
larger utility when reporting bi 6= ti, independently of the other agents’ reported
types; that is, for all J , for all reported types b−i

def= (b1, . . . , bi−1, bi+1, . . . , bm)
of all the agents except i, and for all possible declarations bi of agent i, it holds
that

uM
i ((ti, b−i), J) ≥ uM

i ((bi, b−i), J),

where the writing (x, b−i) denotes the vector (b1, . . . , bi−1, x, bi+1, . . . , bm). We
stress that in this case no agent i has any advantage from knowing the true
speeds t−i of the other agents. Indeed, the utility of agent i does not depend on
the speeds of the other agents (i.e., the work and the payment assigned to agent
i depend only on his own bid b). If M guarantees that the utility for all agents
that report their true type is non-negative, then we say that the mechanism
enjoys the voluntary participation property.

Online Selfish Scheduling. In the online version of Q||Cmax, jobs arrive one-
by-one and must be scheduled upon their arrival. Moreover, jobs cannot be
reallocated. For any (possibly infinite) sequence of jobs J = J1J2 · · ·, we let Jk

denote the prefix J1J2 · · · Jk of the first k jobs, for 1 ≤ k ≤ |J |. Before the first
job appears, each agent declares her type and we denote by b = (b1, . . . , bm)

the vector of declared types. We remark that declared types cannot be changed
during the processing of the algorithm. An online mechanism for Q||Cmax is a
pair M = (A,P) where A is an online algorithm for Q||Cmaxand P is a sequence
of payment functions P k

i , for i = 1, . . . , m and k > 0 such that

– wA
i (b, Jk) is the sum of the sizes of the jobs assigned to machine i by the

solution computed by A on input Jk and the vector b of declared types;
– P k

i (b, Jk) is the non-negative payment assigned to agent i after the k–th job
is arrived and it has been assigned to a machine by algorithm A.

Observe that the mechanism is not allowed to ask money back from the agents.
The total payment received by agent i after k jobs are processed is equal to
Pi(b, Jk) =

∑k
j=1 P j

i (b, Jj).
The property of truthfulness is naturally extended to the online setting.

Definition 1 (online truthful mechanism). We say that an online mecha-
nism is truthful with respect to dominant strategies if for any prefix Jk of the
sequence of jobs J , for all b−i, and for all types ti, the function uM

i ((bi, b−i), Jk)
is maximized for bi = ti.

Mechanisms With Verification. We also study the online version of a different
model of mechanisms, proposed by Nisan and Ronen [9]. Here the payment for
each job is awarded after the job is released by the machine (we stress that a
machine cannot release a job assigned to it before the job has been executed).
Intuitively, if a machine has received positive work, the mechanism can verify
whether the machine lied declaring to be faster and, if so, the machine receives
no payment. These mechanisms are usually termed mechanisms with verification.
Mechanisms that always provide an agent the associated payment are sometimes
called mechanisms without verification or simply mechanisms.

1.2 Previous Results

Archer and Tardos [2] have characterized the (offline) algorithms A for Q||Cmax

for which there exist payment functions P such that (A,P) is a truthful mech-
anism. In particular, they show that if an algorithm A is monotone (see Def-
inition 2) then there exist payment functions P such that (A,P) is truthful.
Under mild assumptions on A, it is possible to define the payment functions
to guarantee also the voluntary participation property. They also gave a mono-
tone optimal (exponential-time) algorithm and a (3+ε)-approximate randomized
(polynomial-time) monotone algorithm for Q||Cmax. Andelman et al [1] provided
an elegant technique for turning any ρ-approximate algorithm for Qm||Cmax into
a ρ(1+ε)-approximate monotone mechanism. As a result, given any polynomial-
time (1 + ε)-approximate algorithm for this problem, one can obtain a (1 + ε)-
approximate mechanism running in polynomial time. They indeed settle the
approximation guarantee of the Qm||Cmax by obtaining a fully polynomial-time
approximation scheme which is monotone. A 3-approximate truthful mechanism
for any number of machines has been presented by Kovacs [8].

Nisan and Ronen [9] considered the case of unrelated machines and gave a
randomized 7/4-approximate truthful mechanism for two machines and a de-
terministic m-approximate truthful mechanism for any number of machines.
Moreover, they proved that, for any ε > 0, no deterministic truthful mecha-
nism can be (2 − ε)-approximate for m ≥ 2 machines. Nisan and Ronen also
introduced mechanisms with verification and gave a polynomial-time (1 + ε)-
approximate truthful mechanism for any fixed number of unrelated machines
whose execution times are bounded by some constant. This result also holds for
any (non-constant) number of related machines [4]. Truthful mechanisms with
verification for related machines have been characterized in [4].

1.3 Our Contribution

A central question in (algorithmic) mechanism design is how to translate ap-
proximation/online algorithms into approximation/online mechanisms. A gen-
eral approach to the design of approximation/competitive mechanisms might
be that of developing general “monotonization” techniques: starting from any
ρ-approximation/ competitive algorithm A, transform A into a monotone algo-
rithm A with approximation/competitive ratio ρ depending on ρ. The follow-
ing question is of interest: given an algorithm A of approximation/competitive
ratio ρ, can we obtain a monotone algorithm A with the same approxima-
tion/competitive ratio? In this paper, we try to give answers to this question
using the Q||Cmax problem as case of study.

We first consider online mechanisms for Q2||Cmax. We show that any online
ρ-competitive algorithm A can be turned into a ρ-competitive online monotone
algorithm A such that ρ ≤ max{ρ · t, 1 + 1/t}, for every t ≥ 1. Actually, we
prove a stronger result since algorithm A needs to be ρ-competitive only for the
case of identical speeds (Theorem 4). In particular, the “monotonization” of the
greedy algorithm 3 yields an online mechanism whose competitive ratio is at
most 1 +

√
7/2 < 1.823 (Corollary 1).

Concerning the issue of designing new online monotone algorithms and/or
adapting existing ones, we observe that there is a common idea in the design of
several approximation/online algorithms that is used also in the Vickrey auction
(see e.g. [9]): speed vectors s = (s1, s2) and sα = (αs2, αs1) lead to the same
solution (modulo a machine re-indexing). We show that this (apparently natural)
way of proceeding must necessarily lead to online monotone algorithms whose
competitive ratio is not smaller than 2. A similar negative result applies to all
algorithms which assign the first job to the fastest machine. These results show
that, if one wants to obtain non-trivial upper bounds for two machines, then one
has to design “unnatural” algorithms.

We also consider the case of an arbitrary number of machines. First of all, ob-
serve that all our lower bounds given for the case m = 2 also apply to Qm||Cmax,
for any m > 2. As for the upper bounds, in Sect. 5 we present a 12-competitive

3 This algorithm, also known in the literature as ListScheduling, assigns the current
job Jk to the machine that minimizes the completion time of Jk.

online mechanism with verification for any number of machines. This is the first
constant-competitive truthful online algorithm for a non-constant number of
machines, albeit with verification.

Notation. Throughout the paper si will denote the speed of the ith machine, ti is
its type (i.e., ti = 1/si) and bi is the type reported by agent i to the mechanism.
We denote by cost(X, (s, J)) the cost of the schedule X of the jobs in J with
respect to the speed vector s and we denote by opt(s, J) the cost of an optimal
schedule of jobs in J with respect to the speed vector (s.

All definitions of game theoretic concepts in the rest of the paper are to be
intended for the Q||Cmax problem.

2 Characterization of Online Truthful Mechanisms

For the offline case, Archer and Tardos [2] characterized the class of algorithms
that can be used as part of a truthful mechanism. More precisely, we have the
following definition and theorem.

Definition 2 (monotone algorithm). An algorithm A is monotone if, for
every i, for every J , for every b−i, for every bi and b′i > bi it holds that

wA
i ((b′i, b−i), J) ≤ wA

i ((bi, b−i), J),

where wA
i ((bi, b−i), J) is the work assigned to machine i when J is the job se-

quence and agents report types (bi, b−i).

Theorem 1 (offline characterization [2]). A mechanism M = (A,P) is
truthful if and only if A is monotone. Moreover, for every monotone algorithm
A, there exist payment functions P such that (A,P) is truthful and satisfies vol-
untary participation if and only if

∫∞
0

wA
i ((u, b−i), J) du < ∞ for all i, J, and

b−i. In this case, we can take the payments to be

Pi((bi, b−i), J) = bi · wA
i ((bi, b−i), J) +

∫ ∞

bi

wA
i ((u, b−i), J)du. (1)

Next, we translate the above result into the online setting. We will use this
characterization to obtain our upper and lower bounds.

Theorem 2 (online characterization). An online mechanism M = (A,P) is
truthful if and only if A is an online monotone algorithm. Moreover, for every on-
line monotone algorithm A, there exist payment functions P such that (A,P) is
truthful. Moreover, there exist payment functions P k

i such that P k
i ((bi, b−i), Jk) ≥

0 for all J , k and (bi, b−i).

Proof Sketch. We only prove the last part of the theorem. The remaining of the
proof can be obtained from proof of Theorem 1 in [2].

Define P k+1
i ((bi, b−i), Jk+1) as

P k+1
i ((bi, b−i), Jk+1)

def
= Pi((bi, b−i), Jk+1)− Pi((bi, b−i), Jk).

Observe that, since we do not allow to reassign jobs, it holds that, for every bi,

wA
i ((bi, b−i), Jk) ≤ wA

i ((bi, b−i), Jk+1).

Thus, by Eq. (1) we have that

P k+1
i ((bi, b−i), Jk+1) = bi · wA

i ((bi, b−i), Jk+1)− bi · wA
i ((bi, b−i), Jk) ≥ 0.

2

3 Online Monotonization

In this section, we give a general technique for transforming an online algorithm
for Q2||Cmax into an online monotone algorithm for Q2||Cmax. Based on this
transformation, we present an online truthful mechanism whose competitive ratio
is about 1.823.

Let A be an online algorithm for the Q2||Cmax problem. The basic idea
to obtain a monotone online algorithm from A is to distinguish two cases: if a
machine is significantly faster than the other we assign all jobs to that machine; if,
instead, machines speeds are “almost the same”, we run algorithm A to produce
a fixed schedule that does depends only on the machine indexes and not on their
speeds. The algorithm template in Figure 1 implements this idea.

Algorithm t-A-mon((s1, s2), J)
1. smax := max{s1, s2}; smin := min{s1, s2};
2. if smax/smin ≤ t then

run online algorithm A((1, 1), J);
1. else assign every job to machine of speed smax;

Fig. 1. An online monotone algorithm for two machines.

Theorem 3. For every t > 1 and for every online algorithm A for Q2||Cmax,
algorithm t-A-mon is an online monotone algorithm for Q2||Cmax.

Proof. Observe that when algorithm t-A-mon starts, depending on the machine
speeds and on the parameter t it selects to process all the jobs either with the
online algorithm A or with the online algorithm that assigns all jobs to the
fastest machine. Thus t-A-mon is an online algorithm too.

-

W (J)

wA
1 ((1, 1), J)

s1

wA−as
1 ((s1, s2), J)

6

s2 · ts2/t

Fig. 2. The curve of the work wt−A−mon
1 ((s1, s2), J) assigned by algorithm t-A-mon to

machine 1.

Let wt−A−mon
i ((s1, s2), J) denote the work assigned to machine i by t-A-mon

on input J and (s1, s2). Also let W (J) =
∑|J|

a=1 Ja be the sum of all jobs’ sizes.
Observe that, by definition of t-A-mon, we have that

wt−A−mon
1 ((s1, s2), J) =





wA
1 ((1, 1), J) if s1 ≤ s2 and s1 ≥ s2/t,

wA
1 ((1, 1), J) if s1 > s2 and s1 ≤ s2 · t,

0 if s1 ≤ s2 and s1 < s2/t,
W (J) if s1 ≥ s2 and s1 > s2 · t.

(2)

Notice that, since t > 1, we have s2/t < s2. From the above equation we obtain
the curve in Figure 2 that gives the work allocated to machine 1 by the algorithm.
The figure clearly implies the monotonicity w.r.t. machine 1. The very same
argument shows the monotonicity w.r.t. machine 2. Hence the theorem follows.

Theorem 4. Let A be an online algorithm for Q2||Cmax which is ρ-competitive
for the special case where machines have identical speeds. Then, for every t > 1,
the resulting online algorithm t-A-mon is ρ-competitive for Q2||Cmax, where ρ =
max{ρ · t, 1 + 1/t}.

Proof. Assume that the speeds of the two machines are s1 = 1 and s2 = r ≥ 1.
We first observe that assigning all jobs to the fastest machine yields a solution
of cost at most 1+1/r times the cost of an optimal solution. Therefore, if r > t,
algorithm t-A-mon is (1 + 1/t)-competitive. If r ≤ t, instead, algorithm t-A-mon
runs algorithm A and computes a solution XA whose makespan is at most ρ times
the cost of an optimal scheduling of the same set of jobs J on two machines with
identical speeds, that is cost(XA, ((1, r), J)) ≤ ρ · opt((1, 1), J). We next show
that cost(XA, ((1, r), J)) ≤ ρ · r · opt((1, r), J).

First observe that for any scheduling X we have that

cost(X, ((1, 1), J)) ≥ cost(X, ((1, r), J)) ≥ cost(X, ((1, 1), J))
r

.

Moreover, if X∗ denotes an optimal solution for the instance ((1, s), J), then we
have that

opt((1, s), J) ≥ cost(X∗, ((1, 1), J))
s

≥ opt((1, 1), J)
s

.

From the above inequality and using the fact that the algorithm A is ρ-competitive,
we obtain

cost(XA, ((1, r), J)) ≤ cost(XA, ((1, 1), J))
≤ ρ · opt((1, 1), J)
≤ ρ · r · opt((1, r), J). (3)

Suppose now that machine speeds are s1 and s2 ≥ s1. Using a simple rescaling
argument, we have that

cost(XA, ((s1, s2), J)) =
cost(XA, ((1, s2/s1), J))

s1

and

opt((s1, s2), J) =
opt((1, s2/s1), J)

s1
.

Then, using Eq. (3), we have that algorithmA-mon is (ρ · r)-competitive. Since
we are in the case r ≤ t, the theorem follows.

Corollary 1. There exists an online truthful mechanism for the Q||Cmax2 prob-
lem whose competitive ratio is 1+

√
7

2 ' 1.823.

Proof. The greedy algorithm on is 3/2-competitive for the special case of Q2||Cmax

where machines have identical speeds [7]. From Theorem 4, using the greedy
algorithm in the algorithm t-A-mon we obtain a monotone algorithm whose
competitive-ratio is at most max{3t/2, 1 + 1/t}, where t > 1 can be chosen ar-
bitrarily. In particular, for t = 1+

√
7

3 , the competitive ratio is equal to 1+
√

7
2 '

1.823.

4 On Building Online Monotone Algorithms

In this section we show that a large class of “natural” monotone algorithms,
including most of the known algorithms for scheduling, cannot achieve a com-
petitive ratio smaller than 2. This lower bound implies that, for m = 2, these
algorithms cannot improve over the trivial 2-approximation monotone algorithm
that assigns all the jobs to the machine that declares to be faster.

Apparently, a good way to obtain online monotone algorithms is to guarantee
that faster machines receive more work. In particular, when dealing with the case
of only one job, a natural (optimal) solution is to assign it to the fastest machine.
This is also what a direct use of the so called Vickery auction [10] would give
for our problem. (These so called “sealed bid” auctions compute a solution only
based on the agents’ bids – see e.g. [9, 2].) This motivates the following definition:

Definition 3 (best-first algorithm). A scheduling algorithm A is best-first
if it always assigns the first job to the fastest machine.

In addition, for each s1 and s2 ≥ s1, it is natural to treat speed vectors
s′ = (s1, s2) and s′′ = (αs2, αs1) as essentially the same instance: by rescaling,
and reindexing machines we can reduce both of them to the instance (1, s2/s1).
Hence, an algorithm is supposed to produce the same solution for all the three
instances. We thus consider the following class of algorithms:

Definition 4 (symmetric algorithm). A sceduling algorithm A is symmetric
if, for any two speed vectors s′ and s′′ such that there exists a permutation π
and s′′ = π(s′) it holds that, for all i, wA

i (s′, J) = wA
π(i)(s

′′, J).

We prove now that each algorithm which is either best-first or symmetric
cannot be less than 2-competitive.

Theorem 5. No online monotone best-first algorithm can be better than 2-
competitive. This holds even for the case of two jobs and two machines.

Proof. By contradiction, let A be a best-first, monotone and (2−γ)-competitive
algorithm, for some γ > 0. Consider instance (s, J), where J = (1, 1 + ε), for
some ε > 0, and let s1 = 1, s2 = 1 + ε, and si = ε for 3 ≤ i ≤ m. Notice that,
since A is (2 − γ)-competitive and best-first, it is possible to take ε sufficiently
small so that A assigns the first job to machine 2 and the second job to machine
1.

Consider now a new instance (s′, J), where s′ is equal to s except for s′2 =
1− ε. We observe that for this instance algorithm A assigns no jobs to machine
2. In fact, since it is best-first, it assigns the first job to machine 1. Moreover,
since it is monotone, it has to assign a work to machine 2 not greater than 1.
Thus, also the second job is assigned to machine 1. However, this implies that
cost(A(s′, J) = 2 + ε, while the optimum has cost 1 + ε. For ε sufficiently small,
this contradicts the hypothesis that A is (2− γ)-competitive.

Theorem 6. No online monotone symmetric algorithm can be better than 2-
competitive. This holds even for the case of two jobs and two machines.

Proof. We prove the theorem for m = 2. The extension to m > 2 is straight-
forward. Let us assume by contradiction that A is a monotone, symmetric, and
(2 − γ)-competitive algorithm, for some γ > 0. Consider the three instances
((1, 1 + ε), J), ((1 + ε, 1), J) and ((1, 1), J), where J = (1, 1 + ε), for some ε > 0.
It can be easily seen that for ε sufficiently small (ε < γ

2−γ) with respect to all the
three instances algorithm A cannot allocate both the jobs to the same machine,
otherwise it contradicts the hypothesis that it is 2− γ-competitive.

Thus, for each instance algorithm A can output one of two possible solutions:

solution machine 1 machine 2
SOL1 1 + ε 1
SOL2 1 1 + ε

Consider now the solutions produced on input the instance ((1, 1 + ε), J). We
distinguish two cases:

– A((1, 1 + ε), J) = SOL1

Since A is symmetric, from Definition 4 it holds that

wA
1 ((1 + ε, 1), J) = wA

2 ((1, 1 + ε), J) = 1. (4)

Observe that wA
2 ((1, 1), J) = 1: indeed, since A is monotone, we have that

wA
2 ((1, 1), J) ≤ wA

2 ((1, 1+ε), J) = 1; since A is (2−γ)-competitive, wA
2 ((1, 1), J) >

0. Thus, algorithm A on input ((1, 1), J) must give in output the solution
SOL1.
Moreover, by the monotonicity of A, it must also hold that wA

1 ((1+ε, 1), J) ≥
wA

1 ((1, 1), J) = 1 + ε. contradicting Eq.4.

– A((1, 1 + ε), J) = SOL2

Observe that algorithm A assigns the job J1 to machine 1 and, since reas-
signment of jobs is not allowed, it will assign this job to the same machine
even if we consider the sequence of jobs J1 = (J1). By the monotonicity
of algorithm A we have that wA

2 ((1, 1), J1) ≤ wA
2 ((1, 1 + ε), J1) = 0 which

implies that wA
1 ((1, 1), J1) = 1. Again, by the monotonicity of algorithm A,

wA
1 ((1 + ε, 1), J1) = 1.

Consider now the assignment of the job J2 with respect to the speed vector
(1 + ε, 1). This job cannot be assigned to machine 1, otherwise the solution
returned by A would have cost equal to 2+ε and the competitive ratio would
be 2+ε

1+ε > 2− γ, contradicting the hypothesis that A is (2− γ)-competitive.
Therefore, it must be the case that wA

1 ((1 + ε, 1), J) = 1 and wA
2 ((1 +

ε, 1), J) = J2 = 1 + ε, contradicting the hypothesis that A is symmetric.

5 Online Mechanisms with Verification

In this section we consider online mechanisms with verification [9, 4]. In these
mechanisms the payment to an agent can be provided after the corresponding
machine terminates; in this case, the mechanism can compute the payment as
a function of such finish time(s). In the online setting, once machine j releases
a job Ji, the mechanism observing its release time r(Ji) can compute the time
taken by the machine to process the job and compare it with the type reported
by the agent at the beginning of the processing: if the agent declared to be
faster than it really is (bj < sj), the mechanism recognizes it lied and assigns
no payment to the agent. However, agent j could still declare to be slower (i.e.,
bj > sj), release all jobs accordingly (i.e., r(Ji) = Ji/bj) and be not caught by
the mechanism.

In [4] we show that truthful mechanisms with verification allow to use algo-
rithms which satisfy a weaker form of monotonicity:

Definition 5 (roughly monotone algorithm [4]4). An algorithm A is roughly
monotone if, for every job sequence J , for every i, for every s−i it holds that

wA
i ((si, s−i), J) = 0 ⇒ ∀s′i < si, w

A
i ((s′i, s−i), J) = 0.

The following result has been proved for offiline algorithms/mechanisms for
Q||Cmax. Its extension to the online case is straightforward and it uses the same
arguments as in the proof of Theorem 2.

Theorem 7 (essentially due to [4]). If M = (A, P) is an online truthful
mechanism with verification then A is roughly monotone. Moreover, for every
roughly monotone, constant competitive algorithm A, there exists a payment
function P such that (A,P) is an online truthful mechanism with verification
satisfying the voluntary participation.

5.1 Online Mechanisms for Arbitrary Number of Machines

In [3] an 8-competitive algorithm Assign-R has been given for the online Q||Cmax

problem. Let s be the speed vector and let J be the list of jobs already scheduled.
The algorithm receives an extra parameter Λ and for each new job assigns it

to the least capable machine, that is, the slowest machine such that the cost of
the resulting assignment stays below 2Λ. The following lemma is a reformulation
of the result proved in [3].

Lemma 1 (essentially due to [3]). For every speed vector s and for every
Λ ≥ opt(s, J), algorithm Assign-R does not fail in assigning any newly arrived job
in J . Moreover, if algorithm Assign-R fails in assigning a job Jk, then opt(s, J) ≥
opt(s, Jk) > Λ.

Then, if the optimum is known in advance we can run algorithm Assign-R with
Λ = opt(s, J) and obtain a 2-competitive assignment. Using a simple doubling
technique (see e.g. [5]) one can obtain an algorithm Assign-R which, starting with
Λ = 1, doubles the value of Λ each time Assign-R(s, Λ) fails in assigning a job Ji.
In this case a new instance of Assign-R with a new parameter Λ′ = 2Λ is run to
assign job Jk and jobs that possibly arise after it. (We continue doubling the value
of Λ until it is possible to assign Jk to some machine.) Each instance of Assign-R
computes a new assignments independently from the assignments computed by
the previous instances. This technique can increment the competitive ratio of
the algorithm by at most a factor of 4: a factor of 2 is due to the work assigned
in all the previous phases except for the last; another factor of 2 is due to the
approximation of Λ.

Theorem 8 (due to [3]). Algorithm Assign-R is at most 8-competitive.

4 The conference version of [4] uses the term ‘weakly monotone’ in place of ‘roughly
monotone’ employed in the full version.

Observe that algorithm Assign-R is not roughly monotone. In fact, since jobs
are assigned to least capable machines, a machine can receive no jobs to process
when it declares its real speed but it can receive some jobs when it declares to be
slower. To avoid this, we have to guarantee that if a machine j receives a positive
work all machines faster than j receive positive work too. In the following, we
show how to modify algorithm Assign-R in order to obtain a roughly monotone
algorithm for Q||Cmax having a constant competitive ratio.

Algorithm Monotone-Assign-R(s, Λ):
/* s1 ≤ s2 · · · ≤ sm; */
initialize w′i := 0 and w′′i := 0 for every machine i;
1. upon arrival of new job Jk do begin
2. let j be the slowest machine such that

((w′′j + Jk)/sj ≤ 2Λ);

3. if there exists a machine l faster than j with w′l = 0
4. let l∗ be the fastest machine with w′l∗ = 0;
5. assign Jk to machine l∗ and set w′l∗ = Jk;
6. else assign Jk to machine j and set w′′j := w′′j + Jk;
7. end.

Fig. 3. An online roughly monotone algorithm for any number of machines.

We partition jobs in two sets: the real jobs that are jobs assigned to machines
using algorithm Assign-R, and the ghost jobs that are assigned to machines ac-
cording to a different rule, to guarantee that the roughly monotonicity condition
holds. For each machine j let w′j and w′′j be the sums of weights of ghost and
real jobs assigned to this machine, respectively.

Algorithm Monotone-Assign-R (see Fig. 3) receives a threshold Λ. In assigning
a new job, the algorithm considers the slowest machine i for which the makespan
of the resulting schedule, computed considering only the real jobs, does not
exceed 2Λ (step 2). Then, two cases can occur:

1. if there exists a machine faster than j that has received no work yet, job Jk

is assigned to the fastest of such machines and it is considered as a ghost
job, that is it will not be considered by algorithm Assign-R (step 5);

2. if all machines faster than j have been assigned at least one job, then job Jk

is assigned to machine j and it is considered as a real job (step 6).

Lemma 2. For every speed vector s and for every Λ ≥ opt(s, J), algorithm
Monotone-Assign-R does not fail in assigning any newly arrived job in J . More-
over, if algorithm Monotone-Assign-R fails in assigning a job Jk, then opt(s, J) ≥
opt(s, Jk) > Λ.

Proof. Let J ′ denote the set of ghost jobs, and J ′′
def
= J\J ′ be the set of real jobs.

We remark that the partition in ghost and real jobs depends on the algorithm.

Notice that algorithm Monotone-Assign-R can fail only in step 2, if it cannot find
any machine that can schedule next job in time not greater than 2Λ. Observe
that in this step the algorithm considers only the work due to real jobs already
assigned to machines. Thus, we can restrict our analysis only to real jobs.

Real jobs are assigned according to algorithm Assign-R, without considering
ghost jobs. Hence, by Lemma 1, if Λ ≥ opt(s, J) ≥ opt(s, J ′′) we have that
algorithm Assign-R never fails in allocating jobs in J ′′, and this implies that
algorithm Monotone-Assign-R never fails in allocating jobs in J .

If, instead, Monotone-Assign-R fails in allocating a job Jk, then Assign-R fails
as well in allocating all real jobs in Jk. Therefore, by Lemma 1 opt(s, Jk) ≥ Λ.
Since opt(s, J) ≥ opt(s, Jk) the lemma follows.

Using a doubling technique as in [5] one can obtain an algorithm Monotone-
Assign-R which, starting from Λ = 1, doubles the value of Λ each time Monotone-
Assign-R(s, Λ) fails: in this case we assign Ji, and jobs that possibly arise sub-
sequently, by running Monotone-Assign-R with a new parameter Λ′ = 2Λ. (We
continue doubling the value of Λ until it is possible to assign Ji to some machine.)
Notice that the assignemnt made for a particular value of Λ, is independent from
the assignments computed for smaller values of Λ).

Theorem 9. Algorithm Monotone-Assign-R is at most 12-competitive.

Proof. Let J ′ denote the set of ghost jobs, and J ′′ = J \ J ′ be the set of real
jobs. Moreover, let Λ(s, J) denote the last value for which Monotone-Assign-R
does not fail. By Lemma 1 we have that Λ(s, J) ≤ 2opt(s, J).

Observe that algorithm Monotone-Assign-R assigns real jobs in J ′′ according
to the algorithm Assign-R and, by Theorem 8 we have that for each j the time
necessary to process all the real jobs assigned to machine j is

w′′j /sj ≤ 8opt(s, J ′′) ≤ 8opt(s, J).

Moreover, the algorithm Monotone-Assign-R assigns at most one ghost job to
machine j, having weight w′j . Notice that this job is assigned to machine j while
using the bound Λ′ ≤ Λ(s, J) if there exists at least a machine slower than j
that can finish to process this job, and all the jobs previously assigned to it, in
at most 2Λ′. Thus, we have that

w′j/sj ≤ 2Λ′ ≤ 2Λ(s, J) ≤ 4opt(s, J).

Let X be the cost of the solution computed by Monotone-Assign-R(s, J). We
can state that

cost(X, (s, J)) ≤ max
1≤j≤m

{w′j + w′′j
sj

} ≤ 12 · opt(s, J)

and the Theorem follows.

Theorem 10. Algorithm Monotone-Assign-R is roughly monotone.

Proof. Consider two instances (s, J) and (s′, J) such that J = J1, J2, · · · is a
sequence of jobs and s = (sj , s−j) and s = (s′j , s−j) are speed vectors with
s′j < sj . With a little abuse of notation we denote by wj(s, J) the work assigned
by algorithm Monotone-Assign-R to machine j on input the instance (s, J) and by
Λ(s, k) the value of Λ for which Monotone-Assign-R allocates job Jk with respect
to the speed vector s. To prove the Theorem we have to show that for each job
sequence J , if wj(s, J) = 0 then wj(s′, J) = 0. As a matter of fact, we will prove
a stronger result. In fact, we will prove by induction on k that Λ(s, k) = Λ(s′, k)
and that Monotone-Assign-R produces the same allocation for the two instances.

The base step k = 1 is trivial. Let l 6= j be the machine that receive job J1

with respect to s. This means that there exists no machine (in particular j) that
can process this job in time Λ(s, 0) and l is the fastest machine that can process
it in time not greater than 2Λ(s, 0). Obviously, both these two properties are
still true if we reduce speed of machine j from s to s′.

Suppose now by inductive hypothesis that Λ(s, k− 1) = Λ(s′, k− 1) and the
allocations of the jobs in Jk−1 computed with respect to s and s′ are equal.
Let l 6= j be the machine that receive job Jk with respect to s. We distinguish
two cases. If Λ(s, k) = Λ(s, k − 1) then either j cannot process job Jk in time
2Λ(s, k) or it can but l is faster than j and it has no work. In both cases the
same allocation will be chosen even if we reduce the speed of machine j. If
Λ(s, k) > Λ(s, k− 1), instead, we have that no machine is able to process job Jk

in time Λ(s, k), and thus Jk/sj > Λ(s, k), but there exists a machine l, distinct
from j, that is able to process the job within time 2Λ(s, k). Obviously, this is
still true if we reduce speed of machine j. Thus Λ(s, k) = Λ(s′, k). Moreover,
the algorithm does not assign the job Jk to machine j since either it is too slow
to process it or there exists a machine faster than j that can process it and it
received no job in previous steps. In both the cases the algorithm will compute
the same assignment if we reduce the speed of machine j. This concludes the
proof.

By combining the previous theorems with Theorem 7 we obtain the following:

Corollary 2. There exists an online truthful mechanism with verification which
is 12-competitive for any number of machines.

5.2 Lower Bounds for Mechanisms With Verification

We conclude by observing that the lower bound we proved in Theorem ?? applies
also to mechanisms with verification. Indeed, the same proof holds if we replace
‘monotone’ with ‘roughly monotone’ and, for sequences of just one job, roughly
monotone algorithms are also monotone. We can thus argue, as in the proof of
Theorem ??, that the first job must be allocated to the same machine when its
speed is increased from 1 to r > 1. The rest of the proof goes according to the
same line and thus the following holds:

Corollary 3. No online truthful mechanism with verification can be less than
ρ(r)-competitive, where r is the maximum ratio between machine speeds and

ρ(r) = min{r, 1 + 1/r}. Hence, if no assumption is made on r then no such
mechanism can be less than φ-competitive. These bounds hold even for the case
of two jobs and two machines.

Observe that the greedy algorithm provides a matching upper bound for the
case of two machines (see Table ??):

Corollary 4. There exists an online truthful mechanism with verification for
the problem Q2||Cmax which is φ-competitive. If the speeds ratio r is at least φ,
then the mechanism is (1 + (1/r))-competitive.

Acknowledgements. We are grateful to the authors of [1] for providing us with
a copy of their work.

References

1. N. Andelman, Y. Azar, and M. Sorani. Truthful approximation mechanisms for
scheduling selfish related machines. In Annual Symposium on Theoretical Aspects
of Computer Science (STACS), volume 3404 of LNCS, pages 69–82, 2005.

2. A. Archer and E. Tardos. Truthful mechanisms for one-parameter agents. In Proc.
of the IEEE Symposium on Foundations of Computer Science (FOCS), pages 482–
491, 2001.

3. J. Aspnes, Y. Azar, A. Fiat, S. A. Plotkin, and O. Waarts. On-line routing of virtual
circuits with applications to load balancing and machine scheduling. Journal of
the ACM, 44(3):486–504, 1997.

4. V. Auletta, R. De Prisco, P. Penna, and G. Persiano. The power of verification for
one-parameter agents. In International Colloquium on Automata, Languages, and
Programming (ICALP), volume 3142 of LNCS, 2004.

5. Y. Azar. Online load balancing. Springer, 1998. In Online algorithms - the state
of the art, pag. 178-195.

6. Y. Cho and S. Sahni. Bounds for list schedules on uniform processors. SIAM J.
on Computing, 9(1):91–103, 1980.

7. R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Tech-
nical Journal, 45:1563–1581, 1966.

8. A. Kovács. Fast monotone 3-approximation algorithm for scheduling related ma-
chines. In Annual European Symposium on Algorithms (ESA), volume 3669 of
LNCS, pages 619–627, 2005.

9. N. Nisan and A. Ronen. Algorithmic Mechanism Design. In Proc. of the 31st
Annual ACM Symposium on Theory of Computing (STOC), pages 129–140, 1999.

10. W. Vickrey. Counterspeculation, Auctions and Competitive Sealed Tenders. Jour-
nal of Finance, pages 8–37, 1961.

