
On Designing Truthful Mechanisms for Online
Scheduling�

Vincenzo Auletta1, Roberto De Prisco1,2, and Paolo Penna1,
and Giuseppe Persiano1

1 Dipartimento di Informatica ed Applicazioni “R.M. Capocelli”,
Università di Salerno, via S. Allende 2, I-84081 Baronissi (SA), Italy

{auletta, robdep, penna, giuper}@dia.unisa.it
2 Faculty Group at Akamai Technologies, Cambridge, MA, USA

Abstract. We study the online version of the scheduling problem in-
volving selfish agents considered by Archer and Tardos [FOCS 2001]:
jobs must be scheduled on m parallel related machines, each of them
owned by a different selfish agent.

Our study focuses on general techniques to translate approxima-
tion/competitive algorithms into equivalent approximation/competitive
truthful mechanisms. Our results show that this translation is more prob-
lematic in the online setting than in the offline one. For m = 2, we
develop an offline and an online “translation” technique which, given
any ρ-approximation/competitive (polynomial-time) algorithm, yields
an f(ρ)-approximation/competitive (polynomial-time) mechanism, with
f(ρ) = ρ(1 + ε) in the offline case, for every ε > 0. By contrast, one
of our lower bounds implies that, in general, online ρ-competitive algo-
rithms cannot be turned into ρ(1+ ε)-competitive mechanisms, for some
ε > 0 and every m ≥ 2.

We also investigate the issue of designing new online algorithms from
scratch so to obtain efficient competitive mechanisms, and prove some
lower bounds on a class of “natural” algorithms. Finally, we consider the
variant introduced by Nisan and Ronen [STOC 1999] in which machines
can be verified. For this model, we give a O(1)-competitive online mech-
anism for any number of machines and prove that some of the above
lower bounds can be broken.

1 Introduction

Optimization problems dealing with resource allocation are classical algorithmic
problems and they have been studied for decades in several models. Typically,
algorithms are evaluated by comparing the (measure of) the solutions they re-
turn to the best possible one. In particular, one tries to estimate the loss of

� Work supported by the European Project IST-2001-33135, Critical Resource Sharing
for Cooperation in Complex Systems (CRESCCO).

A. Pelc and M. Raynal (Eds.): SIROCCO 2005, LNCS 3499, pp. 3–17, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

4 V. Auletta et al.

performance due to the lack of computational resources (approximation ratio)
or to the lack of information (competitive ratio).

In both settings, the underlying hypothesis is that the input is (eventually)
available to the algorithm (either from the beginning in off-line algorithms or
during its execution in on-line algorithms). This assumption cannot be consid-
ered realistic in the context of modern networks like the Internet where certain
information regarding the resources are not directly available to the “protocol”.
Indeed, since the resources are owned/controlled/used by different self-interested
entities (e.g., corporations, autonomous systems, etc.). Each of these entities,
or selfish agents, hold some private information which is needed in order to
compute an optimal resource allocation (e.g., routing the traffic over the Inter-
net requires routers of different autonomous systems to exchange information
on which routers can process traffic faster). Each agent can possibly misreport
his/her piece of information if this leads the system to compute a solution that
is more beneficial for him/her. This, in spite of the fact that such a solution may
not be not globally optimal.

The field of Mechanism Design is the branch of Game Theory and Microeco-
nomics that studies how to design complex auctions, also termed mechanisms,
which guarantee that no agents has an incentive in misreporting his/her piece
of information. Loosely speaking, a mechanism is a pair M = (A,P), where A
is an algorithm computing a solution, and P = (P 1, . . . , Pn) is the vector of
payment functions (see Sect. 1.1 for a formal definition). Selfish agents are sup-
pose to be rational and thus will deviate from the truth-telling strategy (in our
problem, to report ri = si) only if a better one exists. Therefore, one seeks for
truthful mechanisms, that is, mechanisms that guarantee that every agent i can
maximize his/her net profit or utility by playing the truth-telling strategy (see
Sect. 1.1).

In this work we consider the online version of a basic scheduling/routing
problem involving selfish agents, first addressed by Archer and Tardos [2]. We
will investigate the approximation/competitive ratio of truthful mechanisms for
this problem. Our goal is to quantify the (further) loss of optimality due to the
combination of selfish agents with the online setting. Central to our study is the
existence of general techniques that allow to translate ρ-approximation/competi-
tive algorithms into a f(ρ)-approximation/online mechanisms, for some function
f(·).

1.1 The Problem

Offline Selfish Version. Consider the problem of scheduling jobs on related ma-
chines (Q||Cmax): We are given a set of m machines with speed s1, s2, . . . , sm

and a set of n jobs of size J1, J2, . . . , Jn. We want to assign every job to a ma-
chine so to minimize the makespan, that is, the maximum over all machines
of wi/si, where wi is the sum of the job weights assigned to machine i. When
the set of machines m is fixed, this problem version is commonly denoted to as
Qm||Cmax.

On Designing Truthful Mechanisms 5

We study the selfish version of the Q||Cmax problem in which each machine
i is owned by a selfish agent and the corresponding speed si is known to that
agent only. In particular, any schedule S that assigns load wi to machine i is
valuated by agent i as vi(S), where

vi(S) def= −wi/si,

that is, the opposite of the completion time of machine i. Intuitively, vi(S)
represents how much user i likes solution S. This model has been first considered
by Archer and Tardos [2].

We stress that our goal is to compute a solution S which minimizes the
makespan with respect to the true machine speeds s1, . . . , sm. Hence, we need
to provide some incentive (e.g., a payment P i) to the each agent i in order to
let him/her truthfully report his/her speed. Formally, a mechanism is a pair
M = (A,PA), where PA = (P 1

A, . . . , Pm
A), and A is a scheduling algorithm. Each

agent i reports its type bi which is not necessarily the true type ti
def= 1/si.

Algorithm A gets in input the reported types b = (b1, . . . , bm), and each agent i
receives a payment equal to P i

A(b, J). Obviously, each agent i wants to maximize
the resulting net profit or utility defined as

uM
i (b, J) def= P i

A(b, J) + vi(A(b, J)).

Each agent knows both algorithm A and the payment function P i
A.

A mechanism is said to be truthful with dominant strategies (or simply truthful)
if the payments PA and the algorithm A guarantee that no agent obtains a larger
utility when reporting bi �= ti, independently of the other agents’ reported types;
that is, for all J , for all reported types b−i = (b1, . . . , bi−1, bi+1, . . . , bm) of all the
agents except i, and for all possible declarations bi of agent i, it holds that

uM
i ((ti, b−i), J) ≥ uM

i ((bi, b−i), J),

where the writing (x, b−i) denotes the vector (b1, . . . , bi−1, x, bi+1, . . . , bm). We
stress that no agent i has any advantage from knowing the true speeds t−i of
the other agents: indeed, the utility of agent i does not depend on the speeds
of the other agents (the work/payment assigned to machine/agent i depend on
the agent bids b only). If M guarantees that the utility is non-negative for all
agents i that report their true type, then we say that the mechanism enjoys the
voluntary participation property.

Online Selfish Version. In the online version of Q||Cmax, jobs arrive one-by-one
and must be scheduled upon their arrival. Moreover, jobs cannot be reallocated.
For any (possibly infinite) sequence of jobs J = J1J2 · · ·, we let Jk denote the
prefix J1J2 · · · Jk of the first k jobs, for 1 ≤ k ≤ |J |. Before any job appears,
each agent declares her type and we denote by b = (b1, . . . , bm) the vector of
declared types. An online mechanism for Q||Cmax is a pair M = (A,P) where
P is a sequence of payment functions P k

i , for i = 1, . . . ,m and k > 0 such that

6 V. Auletta et al.

– The algorithm A is an online algorithm for Q||Cmax; we denote by wA
i (b, Jk)

the sum of the job sizes assigned to machine i by the solution computed by
A on input Jk and vector b of declared types.

– When the k-th jobs arrives, it is assigned by A to a machine and each agent
i receives non-negative payment P k

i (b, Jk). That is, we are not allowed to
ask money back from the agents.

The total payment received by agent i after k jobs is equal to Pi(b, Jk) =
∑k

j=1 P j
i (b, Jj).

Definition 1 (online truthful mechanism). We say that an online mecha-
nism is truthful with respect to dominant strategies if for any prefix Jk of J ,
for all b−i, and for all types ti, the function uM

i ((bi, b−i), Jk) is maximized for
bi = ti.

Verifiable Machines. We also study the online version of the model proposed
by Nisan and Ronen [9] of verifiable machines. Here the payment for each job
is awarded after the job is released by the machine (we stress that a machine
cannot release a job assigned to it before the job has been executed). Intuitively,
if a machine has received positive load, the mechanism can verify whether the
machine lied declaring to be faster and, if so, the machine receives no payment.

1.2 Previous Results

Archer and Tardos [2] have characterized the (offline) algorithms A for Q||Cmax

for which there exist payment functions P such that (A,P) is a truthful mech-
anism. In particular they show that if an algorithm A is monotone (that is, it
satisfies wA

i ((b′i, b−i), J) ≤ wA
i ((bi, b−i), J), for all b′i > bi) then there exists a

payment function P such that (A,P) is truthful. Under mild assumptions on A,
it is possible to define the payment function to guarantee voluntary participation.
They also gave a monotone optimal (exponential-time) algorithm for Q||Cmax

and a (3 + ε)-approximate randomized (polynomial-time) monotone algorithm.
In [4] we gave a (4 + ε)-approximate deterministic (polynomial-time) monotone
algorithm for Qm||Cmax. Recently and independently from this work, Andel-
man et al [1] provided an elegant technique for turning any ρ-approximation
algorithm for Qm||Cmax into a ρ(1 + ε)-approximation monotone mechanism.
As a result, given any polynomial-time (1 + ε)-approximation algorithm for this
problem, one can obtain a (1 + ε)-approximation mechanism running in poly-
nomial time. They indeed settle the approximation guarantee of the Qm||Cmax

by obtaining a fully polynomial-time approximation scheme which is monotone.
Moreover, they provide a 5-approximation truthful mechanism for the Q||Cmax

problem, i.e., for any number of machines.
Nisan and Ronen [9] considered the case of unrelated machines and gave a

randomized 7/4-approximate truthful mechanism for two machines and a de-
terministic m-approximate truthful mechanism for any number of machines.
Moreover, they proved that no deterministic truthful mechanism can be (2− ε)-

On Designing Truthful Mechanisms 7

approximate for m ≥ 2 machines. Nisan and Ronen also considered the case of
verifiable unrelated machines and gave a polynomial-time (1 + ε)-approximate
truthful mechanism for any fixed number of machines. For the case of verifiable
related machines (that is Q||Cmax), in [6], we characterized the algorithms A for
which there exist payment functions P such that (A,P) is a truthful mechanism.
Based on this we developed a polynomial-time (1 + ε)-approximate truthful
mechanism for the offline version of Q||Cmax.

1.3 Our Contribution

A central question in (algorithmic) mechanism design is to translate approxi-
mation/online algorithms into approximation/online mechanisms: given an al-
gorithm A of approximation/competitive ratio ρ, can we obtain a monotone al-
gorithm A with the same approximation/competitive ratio? A general approach
to the design of approximation/competitive mechanisms might be that of devel-
oping general “monotonization” techniques: starting from any ρ-approximation/
competitive algorithm A, transform A into a monotone algorithm A with ap-
proximation/competitive ratio ρ depending on ρ. We first consider the Q2||Cmax

problem for which we provide the following two general results:

Offline Case: Every polynomial-time ρ-approximation algorithm can be trans-
formed into a monotone polynomial-time (ρ + ε)-approximation algorithm A,
for every ε > 0 (Theorem 3). This result is a special case of the one obtained
independently by Andelman et al [1]: indeed, their monotonization technique
extends our result to any fixed number of machines.

Online Case: Given an online ρ-competitive algorithm A, for every t > 0, it is
possible to obtain an online monotone algorithm At whose competitive ratio ρ
satisfies ρ ≤ max{ρ · t, 1 + 1/t} (Theorem 5). Moreover, the same bound holds if
A is a ρ-competitive algorithm (only) for identical speeds. The “monotonization”
of the greedy algorithm 1 thus yields and online mechanism whose competitive
ratio is at most 1 +

√
7/2 < 1.823 (Corollary 2).

It is natural to ask whether the loss of performance due to our “monotoniza-
tion” for the online setting is really necessary, and whether (some of the) existing
algorithms could preserve their competitive guarantee (after being turned into
a monotone one).

We first show a general lower bound on monotone online algorithms. Consider
the problem restricted to instances for which smax/smin = r, for any r > 0. Then,
no such algorithm can be less than ρ(r)-competitive, with ρ(r) ≥ min{r, 1+1/r}
(Theorem 6). This gives a general lower bound of φ � 1.62, which also holds for
sequences of two jobs (Corollary 3). At least for such sequences our technique is
optimal: indeed, since the greedy algorithm is 1-competitive, our method yields
a φ-competitive online algorithm (simply choose t = φ).

1 This algorithm, also known in the literature as ListScheduling, assigns the current
job Ji to the machine that minimize the completion time of Ji.

8 V. Auletta et al.

An underlying implicit assumption in designing scheduling algorithms is that,
for the same set of jobs, speed vectors s = (s1, s2) and sα = (αs2, αs1) lead to the
same solution (modulo a machine re-indexing). We show that this (apparently
natural) way of proceeding must necessarily lead to online monotone algorithms
whose competitive ratio is not smaller than 2. In particular, we isolate two
pathological facts that, each of them alone, prevent from having a non-trivial
competitive ratio (see Theorems 7-8): (i) the first job is always assigned to the
fastest machine, and (ii) solution for (s1, s2) is isomorphic (modulo a index
exchange) to that for (s2, s1).

It is worth observing that the lack of information plays a central role both in
the online and in the selfish setting of the problem. In the online setting we do
not know the “future;” when dealing with “selfish” agents we do not know part of
the input. Our results (see Table 1) show that the combination “online+selfish”
makes the Q2||Cmax problem harder than both the offline with selfish agents
and the online (without selfish agents) versions. In particular, for

√
2 < r ≤ φ,

it holds that (i) r is a lower bound for any online monotone algorithm (i.e., any
mechanism), while (ii) there is an upper bound ρ ≤ 1 + 1/(r + 1) < r provided
by the greedy for the online case (without selfish agents).

Table 1. Our and previous results for the case of two machines: all lower bounds also

apply to exponential-time algorithms, while upper bounds are obtained via polynomial-

time ones

Offline Online
Lower Bound Upper Bound Lower Bound Upper Bound

Non Selfish 1 1 + ε 1 + 1/(r + 1) 1 + 1/(r + 1), for r ≤ φ
[trivial] [8] [folklore] [3–greedy]

1 + 1/r, for r > φ
[3–greedy]

Selfish 1 1 + ε min{r, 1 + 1/r} 1 +
√

7/2 < 1.823
[trivial] [Cor. 1] or [Thm. 6] [Thm. 5 and Cor. 2]

[1]

All our lower bounds also apply to Qm||Cmax, for any m > 2. As for the
upper bounds, in Sect. 6 we present a 12-competitive algorithm for any num-
ber of verifiable machines. This is the first constant-competitive truthful online
algorithm for any number of machines (Q||Cmax).

The ability to “verify” machines has been proved to yield better approxi-
mation mechanisms in the offline case for other scheduling problems [9, 6]. The
results here show that the same happens also for the online version of Qm||Cmax,
for any m ≥ 2. By contrast, the results by Andelman et al [1] imply that in the
offline setting verification does not help for Qm||Cmax, for any m ≥ 2.

Due to lack of space, some of the proofs are omitted in this extended abstract.
We refer the interested reader to the full version of this work [5].

On Designing Truthful Mechanisms 9

Notation. Throughout the paper si will denote the speed of the i-th machine, ti
its type (i.e., ti = 1/si) and bi the type reported by agent i.

2 Characterization of Online Truthful Mechanisms

For the offline case, Archer and Tardos [2] characterized the class of algorithms
that can be used as part of a truthful mechanism. More precisely, we have the
following definition and theorem.

Definition 2 (monotone algorithm). An algorithm A is monotone if, for
every i, for every J , for every b−i, for every bi and b′i > bi it holds that

wA
i ((b′i, b−i), J) ≤ wA

i ((bi, b−i), J),

where wA
i ((bi, b−i), J) is the load assigned to machine i when J is the job sequence

and agents report types (bi, b−i).

Theorem 1 (offline characterization [2]). A mechanism M = (A,P) is
truthful if and only if A is monotone. Moreover, for every monotone algorithm
A, there exist payment functions P such that (A,P) is truthful and satisfies vol-
untary participation if and only if

∫ ∞
0

wA
i ((u, b−i), J) du < ∞ for all i, J, and

b−i. In this case, we can take the payments to be

Pi((bi, b−i), J) = bi · wA
i ((bi, b−i), J) +

∫ ∞

bi

wA
i ((u, b−i), J)du. (1)

Next, we translate the result above into the online setting. We will use the
characterization to obtain our upper and lower bounds.

Theorem 2 (online characterization). An online mechanism M = (A,P)
is truthful if and only if A is an online monotone algorithm. Moreover, for
every online monotone algorithm A, there exists a payment function P such
that (A,P) is truthful. In addition, there exist payment functions P k

i such that
P k

i ((bi, b−i), Jk) ≥ 0 for all J , k and (bi, b−i).

3 Monotonization Techniques

3.1 Offline Monotonization

In this section we give a general technique for transforming any ρ-approximate
algorithm A for Q2||Cmax into an offline (ρ+ε)-approximate monotone algorithm
A. Essentially, our monotonization technique goes thorough two steps: (i) we first
consider an algorithm Aγ which is noting but A running over speeds rounded
to the closest power of γ, and (ii) we inspect the solutions of Aγ by varying
only one of the two machine speeds over a polynomial number of values: indeed,
considering only instances (1, γi) will guarantee the monotonicity.

10 V. Auletta et al.

In the sequel we let A be any algorithm satisfying the following two properties:

wA
1 ((smin, smax), J) ≤ wA

2 ((smin, smax), J), (2)
A((smin, smax), J) = A((1, smax/smin), J). (3)

This is without loss of generality since any offline algorithm which violates any
of the two conditions above can be easily modified without any loss in the ap-
proximation guarantee.

Theorem 3. For algorithm A and every ε > 0, there exists a monotone algo-
rithm A such that, if A is a (polynomial-time) ρ-approximation algorithm for
Q2||Cmax, then algorithm A is a monotone (polynomial-time) (ρ + ε)-approxi-
mation algorithm.

Corollary 1. For every ε > 0, there exists a polynomial-time (1 + ε)-approxi-
mation mechanism for Q2||Cmax.

Remark 1. Recently and independently from this work, the above result has been
improved in [1]. The authors provided a more general technique for obtaining a
monotone algorithm A for the Qm||Cmax problem. In particular, Corollary 1 can
be improved so to obtain a monotone FPTAS for this problem version. Moreover,
for the case m = 2, their technique essentially leads to the same algorithm as
the one proposed here.

3.2 Online Monotonization

The basic idea is to output a “fixed” allocation that ignores the machine speeds
as long as they are “almost the same”: this allocation is based on the machine
indexes only. As soon as one machine becomes significantly faster than the other,
we assign all jobs to that machine. The algorithm template in Figure 1 imple-
ments this idea.

Algorithm A-asymmetric
1. fix a threshold t > 1;
2. smax := max{s1, s2}; smin := min{s1, s2};
3. if smax/smin ≤ t then

run online algorithm A on machine speeds s′1 = s′2 = 1;
1. else assign every job to machine of speed smax;

Fig. 1. An online monotone algorithm for two machines

Theorem 4. For every t > 1 and for every online algorithm A for Q2||Cmax,
algorithm A-asymmetric is an online monotone algorithm for Q2||Cmax.

On Designing Truthful Mechanisms 11

�

W (σ)

wA
1 ((1, 1), J)

s1

wA−as
1 ((s1, s2), J)

�

s2 · ts2/t

Fig. 2. The work curve wA−as
1 ((·, s2), J) of algorithm A-asymmetric

Proof. The algorithm A-asymmetric is clearly an online algorithm since the
choice of which strategy to use is done based on the machine speeds, which
do not change during the online phase (i.e., when jobs arrive).

Let wA−as
i ((s1, s2), J) denote the work assigned to machine i by A-asymmetric

on input J and speeds (s1, s2), for i = 1, 2. Also let W (J) =
∑|J|

a=1 Ja. Observe
that, by definition of A-asymmetric, we have that

wA−as
1 ((s1, s2), J) =

⎧
⎪⎪⎨

⎪⎪⎩

wA
1 ((1, 1), J) if s1 ≤ s2 and s1 ≥ s2/t,

wA
1 ((1, 1), J) if s1 > s2 and s1 ≤ s2 · t,

0 if s1 ≤ s2 and s1 < s2/t,
W (J) if s1 ≥ s2 and s1 > s2 · t.

(4)

Notice that, since t > 1, we have s2/t < s2. From the above equation we obtain
the allocation curve in Figure 2, which clearly implies the monotonicity w.r.t.
machine 1.

By using the same argument, we can prove the monotonicity of the function
wA−as

2 ((s1, ·), J). This completes the proof.

Theorem 5. For every ρ-competitive online algorithm A for Q2||Cmax, and for
every t > 1, algorithm A-asymmetric is ρas-competitive algorithm for Q2||Cmax

for ρas = max{ρ · t, 1 + 1/t}.

Corollary 2. There exists an online monotone algorithm for Q2||Cmax whose
competitive ratio is 1+

√
7

2 � 1.823.

Proof. Let us consider the greedy algorithm Agr whose competitive ratio on
two machines of identical speed is 3/2 [8]. Then, from Theorem 5 we have
that algorithm Agr-asymmetric has competitive-ratio bounded from above by
max{3t/2, 1 + 1/t}. We minimize this quantity by choosing t > 1 such that
3t/2 = 1 + 1/t. This corresponds to t = 1+

√
7

3 , thus yielding a competitive ratio
equal to 1+

√
7

2 � 1.823.

12 V. Auletta et al.

4 Lower Bound for Online Selfish Scheduling

In this section, we provide a general lower bound for online Q||Cmax with selfish
agents. This result proves that the selfish online version of this problem is more
difficult than the corresponding version of the problem with no selfish agents,
even for two machines.

Theorem 6. For every m ≥ 2 and every r > 1, no monotone online algorithm
can be less than ρr-competitive, where ρr = min{r, 1 + 1/r}. This holds even for
two jobs.

Proof. By contradiction, let A be an online monotone ρ-competitive algorithm
on m machines, for ρ < min{r, 1 + 1/r}. Let J = (J1, J2) = (1, r) and let s =
(1, . . . , 1). Observe that A(s, J) cannot allocate two jobs on the same machine
otherwise A would produce a solution of cost 1 + r, while the optimum costs r,
contradicting the hypothesis that A is ρ competitive. Without loss of generality,
assume wA

1 = 1 and wA
2 = r.

Suppose now that speed of machine 1 is increased to r. Since A is monotone
also with respect to the sequence J1, then it must be the case wA

1 ((r, s−1), J1) =
wA

1 (s, J1) = 1. Since we do not allow jobs to be reassigned, we have to consider
only two cases:

(wA
1 ((r, s−1), J) = 1 + r.) In this case, (1+1/r)/opt((r, s−1), J) = 1+1/r, thus
contradicting the hypothesis that A is ρ-competitive.

(wA
1 ((r, s−1), J) = 1.) This gives r/opt((r, 1), J) = r, contradicting the hypoth-
esis that A is ρ-competitive.

Hence the theorem follows.

Corollary 3. No monotone online algorithm for Q2||Cmax can be less than φ-
competitive. This holds even for two jobs, in which case the bound is tight since
there exists a φ-competitive online monotone algorithm.

Proof. The lower bound follows from Theorem 6 by taking r = φ = 1+1/r. As for
the upper bound, consider algorithm Agr-asymmetric with t = φ. For sequences
of two jobs Agr is 1-competitive. Theorem 5 thus implies a competitive ratio
ρ ≤ max{φ, 1 + 1/φ} = φ.

5 On Building Online Monotone Algorithms

Apparently, a good way to obtain online monotone algorithms is to guarantee
that faster machines receive more work. In particular, when dealing with the
case of only one job, a natural (optimal) solution is to assign it to the fastest
machine. This is also what a direct use of the so called Vickery auction [10] would
give for our problem. (These so called “sealed bid” auctions compute a solution
only based on the agents’ bids – see e.g. [9, 2].) This motivates the following
definition:

On Designing Truthful Mechanisms 13

Definition 3 (best-first algorithm). An algorithm A is best-first if the first
job is always assigned to the fastest machine.

In addition, it is natural to treat speeds (s1, s2) and (αs2, αs1) as essentially
the same instance: by rescaling, and reindexing machines we reduce both of them
to (1, s2/s1). Hence, the algorithm is supposed to produce the same solution. We
thus consider the following class of algorithms:

Definition 4 (symmetric algorithm). An algorithm A is symmetric if, for
any two speed vectors s and s′ such that, for a permutation π, s′ = π(s) it holds
that, for all i, wA

i (s, J) = wA
π(i)(s

′, J).

A simple argument shows that any monotone algorithm which is best-first
and symmetric cannot be less than 2-competitive, even for m = 2. There are,
however, algorithms which are best-first though not symmetric or vice versa.
Does any of these give a better performance? The next two results prove that
the answer to this question is no.

Theorem 7. For every m ≥ 2, no online monotone best-first algorithm for
Qm||Cmax can be better than 2-competitive. This holds even for two jobs.

Proof. By contradiction, let A be a best-first, monotone and (2−γ)-competitive
algorithm, for some γ > 0. Consider J = (1, 1+ε), for some ε > 0, and let s1 = 1,
s2 = 1+ε and si = ε, with 3 ≤ i ≤ m. Notice that, since A is (2−γ)-competitive
and best-first, it is possible to take ε sufficiently small so that A assigns the first
job to machine 2 and the second job to machine 1.

Suppose now that speed of machine 2 is reduced to 1 − ε. We observe that
A, on input J and (1, 1 − ε) assigns no jobs to machine 2. In fact, since it is
best-first, it assigns the first job to machine 1. Moreover, since it is monotone,
it has to assign a load to machine 2 not greater than 1. Thus, also the second
job is assigned to machine 1. However, this implies that the solution computed
by A has cost 2 + ε, while the optimum has cost 1 + ε. For ε sufficiently small,
this contradicts the hypothesis that A is (2 − γ)-competitive.

Theorem 8. For every m ≥ 2, no online monotone symmetric algorithm for
Q2||Cmax can be less than 2-competitive. This holds even for two jobs.

Proof. We prove the theorem for m = 2. The extension to m > 2 is straighfor-
ward. Let us assume by contraddiciton that A is a monotone, symmetric, and
(2 − γ)-competitive algorithm, for some 0 < γ < 1. Consider J = (1, 1 + ε), for
some ε > 0 and let s1 = 1 and s2 = 1 + ε. For sufficiently small ε, algorithm
A cannot allocate two jobs on the same machine. We thus have two possible
solutions for algorithm A:

solution machine 1 machine 2
s1 = 1 s2 = 1 + ε

SOL1 1 + ε 1
SOL2 1 1 + ε

14 V. Auletta et al.

Let ε be such that 2
1+ε > 2 − γ, that is, ε < γ

2−γ . We distinguish two cases:

(A((1, 1 + ε), J) = SOL1.) By monotonicity of A, wA
2 ((1, 1), J) ≤ wA

2 ((1, 1 +
ε), J) = 1. If wA

2 ((1, 1), J) = 0, then we have a solution of cost 2 + ε,
thus implying that A must be at least (2 + ε)/(1 + ε)-competitive. For
our choice of ε, this would contradict the hypothesis that A is (2 − γ)-
competitive. Thus, A((1, 1), J) must coincide with solution SOL1. Again, by
monotonicity, it must hold wA

1 ((1 + ε, 1), J) ≥ wA
1 ((1, 1), J) = 1 + ε. This

contradicts the hypothesis that A is symmetric: indeed, from Definition 4
it holds that wA

2 ((1, 1 + ε), J) = wA
1 ((1 + ε, 1), J) = 1 + ε, thus implying

wA
1 ((1, 1 + ε), J) = 1.

(A((1, 1 + ε), J) = SOL2.) Let us consider the allocation produced by A w.r.t.
the first job only, that is, J1 = J1 = 1. Observe that, since jobs cannot be
reassigned, it must hold wA

1 ((1, 1 + ε), J) = 1 = wA
1 ((1, 1 + ε), J1). Since A

must be monotone also w.r.t. J1, it holds that wA
2 ((1, 1), J1) ≤ wA

2 ((1, 1 +
ε), J1) = 0. This implies wA

1 ((1, 1), J1) = J1 = 1. By monotonicity, wA
1 ((1 +

ε, 1), J1) = 1. When the second job arrives, algorithm A can assign it to one
of the two machines. If wA

1 ((1+ε, 1), J) = J1 +J2 = 2+ε, then A cannot be
(2−γ)-competitive because of our choice of ε. Therefore, it must be the case
that wA

1 ((1+ε, 1), J) = 1 and wA
2 ((1+ε, 1), J) = J2 = 1+ε. This contradicts

the hypothesis that A is symmetric: indeed, we have wA
1 ((1, 1 + ε), J) = 1 �=

wA
2 ((1 + ε, 1), J1) = 1 + ε.

Remark 2. Observe that our monotonization technique for offline algorithms re-
quires the algorithm to be “monotonized” to be both best-first and symmetric.
Thus, we implicity require the resulting algorithm to be best-first and symmetric
as well.

6 Online Mechanisms with Verification

In this section we consider online mechanisms with verification [6]: the pay-
ments to an agent can be provided after the corresponding machine
terminates; in this case, the mechanism can compute the payments as a func-
tion of such finish time(s). In the online setting, once machine j releases a
job Ji, the mechanism observes a release time r(Ji). However, machine j could
declare to be slower (i.e., bj > sj) and release all jobs accordingly (i.e.,
r(Ji) = Ji/bj).

In [6] we provide a sufficient condition to design truthful mechanisms:

Definition 5 (weakly monotone algorithm [6]). An algorithm A is weakly
monotone if, for every job sequence J , for every i, for every s−i it holds that

wA
i ((si, s−i), J) = 0 ⇒ ∀s′i < si, w

A
i ((s′i, s−i), J) = 0.

We will make use of the following result:

On Designing Truthful Mechanisms 15

Theorem 9 ([6]). An algorithm A admits a payment function p such that M =
(A, p) is truthful for the case of verifiable machines if and only if A is weakly
monotone.

We first observe that the greedy algorithm is weakly monotone. Therefore,
we have the following result on the “power” of verification for the Q2||Cmax

problem:

Theorem 10. Let us consider the Q2||Cmax problem. There exists two functions
UBv(·) and LB(·), such that (i) no truthful mechanism can be less than LB(r)-
competitive if machines cannot be verified, (ii) there is an UBv(r)-competitive
truthful mechanism for the case of verifiable machines, and (iii) if r satisfies√

2 < r ≤ φ, then UBv(r) < LB(r).

Proof. Consider r such that
√

2 < r ≤ φ, thus implying r < 1 + 1/r. Theorem 6
implies that no online monotone algorithm can be less than LB(r)-competitive,
with LB(r) = min{r, 1 + 1/r} = r. On the contrary, if verification is allowed,
then the greedy algorithm is weakly monotone. Theorem 9 thus implies that its
competitive ratio ρgr satisfies (see Table 1)

UBv(r) ≤ ρgr ≤ 1 + 1/(r + 1).

For r >
√

2, it holds that r > 1 + 1/(r + 1), thus implying UBv(r) < LB(r).

In [3] an 8-competitive algorithm Assign-R has been given. The algorithm
assumes that the optimum opt(s, J) is known in advance and assigns a new job
to the least capable machine, that is, the slowest machine such that the cost
of the resulting assignment stays below Λ

def
= 2 · opt(s, J). A simple doubling

technique is then used to remove this assumption at the cost of losing a factor
of 4 in the approximation.

A simple observation shows that algorithm Assign-R is not weakly monotone.
We next modify it so to obtain a weakly-monotone algorithm having a constant
competitive ratio for the Q||Cmax problem, i.e., for any (even non-constant)
number of machines.

Algorithm Monotone-Assign-R(s, Λ):
/* s1 ≤ s2 · · · ≤ sm; */
initialize w′

j := 0 and w′′
j := 0 for every machine j;

1. upon arrival of new job Ji do begin
2. let l be the slowest machine such that

((w′′
l + Ji)/sl ≤ 2Λ) ∧ ((w′

l > 0) ∨ (w′
l+1 > 0));

3. assign Ji to machine l;
4. if w′

l > 0 then w′′
l := w′′

l + Ji else w′
l := Ji; end.

Fig. 3. An online weakly monotone algorithm for any number of machines

16 V. Auletta et al.

Algorithm Monotone-Assign-R (see Fig. 3) receives a threshold Λ. In assigning
the kth job to a machine, the algorithm considers the slowest machine i for which
the makespan of the resulting schedule, computed considering only the real jobs,
does not exceed 2Λ. Then two cases are possible:

1. At least one machine faster than j has not received any load yet. Then job
k is assigned to the fastest such machine and is considered a ghost job.

2. All machines faster than j have been assigned at least one job. In this case,
job k is assigned to machine j and is considered a real job.

Lemma 1. For every speed vector s and for every Λ ≥ 2 · opt(s, J), algo-
rithm Monotone-Assign-R does not fail in assigning any newly arrived job in
J . Moreover, if algorithm Monotone-Assign-R fails in assigning a job Ji, then
opt(s, J) ≥ opt(s, J i) ≥ Λ.

Proof. Let J ′ denote the set of jobs that Monotone-Assign-R assigns to a machine
which is currently empty, and J ′′ def

= J \ J ′. Jobs in J ′′ are assigned according
to algorithm Assign-R. Hence, if Monotone-Assign-R fails, then Assign-R fails as
well. Therefore, opt(s, J i) ≥ Λ and the lemma follows.

Using a doubling technique (see e.g. [7]) one can obtain an algorithm
Monotone-Assign-R which, starting from Λ = 1, doubles the value of Λ each
time Monotone-Assign-R(s, Λ) fails: in this case we assign Ji, and jobs that pos-
sibly arise subsequently, by running Monotone-Assign-R with a new parameter
Λ′ = 2Λ. (We continue doubling the value of Λ until it is possible to assign Ji

to some machine.) Notice that every time we double the value of Λ, we ignore
the assignment performed in the previous phases (i.e., for smaller values of Λ).

Theorem 11. Algorithm Monotone-Assign-R is at most 12-competitive.

Proof. Let J ′ denote the set of jobs that Monotone-Assign-R assigns to a machine
which is currently empty, and J ′′ def

= J \ J ′. Let Λ(s, J) denote the last value
for which Monotone-Assign-R does not fail. Algorithm Monotone-Assign-R assigns
jobs in J ′′ as algorithm Assign-R. Moreover, each machine has at most one extra
job from J ′. Hence, given the values w′

j and w′′
j defined as in algorithm Monotone-

Assign-R (see Fig. 3), we have w′
j ≤ Λ and w′′

j ≤ Λ. From Lemma 1 we obtain
w′′

j ≤ 8 · opt(s, J ′) and w′
j ≤ 4 · opt(s, J ′′). Hence, at each time step, the cost C

of the solution satisfies C ≤ max1≤j≤m{w′
j + w′′

j } ≤ 12 · opt(s, J).

Theorem 12. Algorithm Monotone-Assign-R is weakly-monotone.

Proof. Given the speed vector s, let s′ = (s′i, s−i) with s′i < si. We denote by
Λ(s, i) the value of Λ for which Monotone-Assign-R allocates job Ji. We will prove
by induction on i that Λ(s, i) = Λ(s′, i) and that Monotone-Assign-R produces the
same allocation. The base step i = 1 is trivial. As for the inductive step, since Ji is
not allocated to machine with speed si, let l be the index of the machine to which
Ji is allocated to. If (w′′

l + Ji)/sl ≤ Λ(s, i − 1), then, by inductive hypothesis,

On Designing Truthful Mechanisms 17

the same holds with respect to s′, thus implying that Ji is also allocated to
machine l on input s′. Clearly, in this case, Λ(s′, i) = Λ(s′, i − 1) = Λ(s, i).
Otherwise, let l(s) and l(s′) denote the index of the machine to which job Ji is
assigned to on input s and s′, respectively. In the two cases, we must increase
the corresponding threshold up to a value such that (w′′

l(s) + Ji)/sl(s) ≤ Λ(s, i)
and (w′′

l(s′) + Ji)/sl(s′) ≤ Λ(s′, i). Hence, Λ(s′, i) = Λ(s, i) and l(s′) = l(s). (The
latter equality follows from Step 2 in Monotone-Assign-R(s, Λ)). By inductive
hypothesis, the allocation of J i−1 is the same, thus implying that also job Ji is
allocated to the same machine.

Finally, using the payment functions for weakly monotone algorithms of [6],
we can obtain the following:

Corollary 4. The Q||Cmax problem with verifiable machines admits an online
truthful polynomial-time mechanism which is 12-competitive.

Acknowledgements. We are grateful to the authors of [1] for providing us with
a copy of their work.

References

1. N. Andelman, Y. Azar, and M. Sorani. Truthful approximation mechanisms for
scheduling selfish related machines. In Annual Symposium on Theoretical Aspects
of Computer Science (STACS), volume 3404 of LNCS, pages 69–82, 2005.

2. A. Archer and E. Tardos. Truthful mechanisms for one-parameter agents. In Proc.
of the IEEE Symposium on Foundations of Computer Science (FOCS), pages 482–
491, 2001.

3. J. Aspnes, Y. Azar, A. Fiat, S. A. Plotkin, and O. Waarts. On-line routing of virtual
circuits with applications to load balancing and machine scheduling. Journal of
the ACM, 44(3):486–504, 1997.

4. V. Auletta, R. De Prisco, P. Penna, and G. Persiano. Deterministic truthful ap-
proximation mechanisms for scheduling related machines. In Annual Symposium
on Theoretical Aspects of Computer Science (STACS), volume 2996 of LNCS,
pages 608–619. Springer, 2004.

5. V. Auletta, R. De Prisco, P. Penna, and G. Persiano. On designing truthful mech-
anisms for online scheduling. Technical report, European Project CRESCCO,
http://www.ceid.upatras.gr/crescco/, 2004.

6. V. Auletta, R. De Prisco, P. Penna, and G. Persiano. The power of verification for
one-parameter agents. In International Colloquium on Automata, Languages, and
Programming (ICALP), volume 3142 of LNCS, 2004.

7. Y. Azar. Online load balancing. Springer, 1998. In Online algorithms - the state
of the art, pag. 178-195.

8. R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Tech-
nical Journal, 45:1563–1581, 1966.

9. N. Nisan and A. Ronen. Algorithmic Mechanism Design. In Proc. of the 31st
Annual ACM Symposium on Theory of Computing (STOC), pages 129–140, 1999.

10. W. Vickrey. Counterspeculation, Auctions and Competitive Sealed Tenders. Jour-
nal of Finance, pages 8–37, 1961.

	Introduction
	The Problem
	Previous Results
	Our Contribution

	Characterization of Online Truthful Mechanisms
	Monotonization Techniques
	Offline Monotonization
	Online Monotonization

	Lower Bound for Online Selfish Scheduling
	On Building Online Monotone Algorithms
	Online Mechanisms with Verification

