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Abstract. We consider cost-sharing mechanisms for the Steiner tree
game. In this well-studied cooperative game, each selfish user expresses
his/her willingness to pay for being connected to a source node s in an
underlying graph. A mechanism decides which users will be connected
and divides the cost of the corresponding (optimal) Steiner tree among
these users (budget balance condition). Since users can form coalitions
and misreport their willingness to pay, the mechanism must be group
strategyproof : even coalitions of users cannot benefit from lying to the
mechanism.

We present new polynomial-time mechanisms which satisfy a stan-
dard set of axioms considered in the literature (i.e., budget balance,
group strategyproofness, voluntary participation, consumer sovereignty,
no positive transfer, cost optimality) and consider the free riders issue
recently raised by Immorlica et al. [SODA 2005]: it would be desirable
to avoid users that are connected for free. We also provide a number
of negative results on the existence of polynomial-time mechanisms with
certain guarantee on the number of free riders. Finally, we extend our
technique and results to a variant considered by Biló et al. [SPAA 2004]
with applications to wireless multicast cost sharing.

1 Introduction

Consider the typical scenario in which a set U of n users wishes to jointly buy
a certain service from some service providing company. Each user i ∈ U has a
private value vi representing his/her willingness to pay for the service offered:
vi is the maximum amount of money that user i is willing to pay for the ser-
vice or how much he/she would benefit from getting the service. The service
provider must then develop a so called mechanism, that is, a policy for deciding
(i) which users should be serviced and (ii) the price that each of them should pay
for getting the service. Developing a fair and economically viable cost-sharing
mechanisms is a central problem in cooperative game theory with many practical
applications (see e.g [18]). In particular, due to its application to multicast and
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bandwidth allocation, Steiner tree games (and some variants) received a lot of
attention [3, 7, 2, 15]. In this game(s), a network G = (U ∪ {s}, E, c) is given,
where U = {1, 2, . . . , n} corresponds to the set of users and s is a source node.
The weight ce of an edge e = (i, j) ∈ E denotes the cost of connecting i to j.
The (minimum) cost C(S) required to connect a subset S of users to the source
is the cost of a (optimal) Steiner tree containing s and S.

An important class of mechanisms is the class of budget-balanced mecha-
nisms, that is, the sum of the prices charged to all users is equal to the overall
cost C(S) of providing the service to the subset S of users that are selected for
being serviced. Observe that, given a subset of users S ⊂ U , computing the opti-
mal cost C(S) is NP-hard [5]. Also, practical applications require the mechanism
to output the optimal tree connecting S to s.

In addition, users cannot be assumed to be altruistic nor obedient. Therefore,
each user is considered a selfish agent reporting some bid value bi (possibly
different from vi); the true value vi is privately known to agent i. Based on the
reported values b = (b1, b2, . . . , bn) a mechanism M = (A,P ) uses algorithm A
to compute (i) a subset S(b) of users and (ii) a Steiner tree T (b) connecting
s to S(b) in G. Then, according to the payment vector P = (P 1, P 2, . . . , Pn),
each user i ∈ S(b) is charged an amount of money equal to P i(b). Selfish
agents are assumed to be rational and thus, knowing the mechanism M , an user
i could report bi �= vi whenever this increases his/her utility : given the bids
b−i = (b1, . . . , bi−1, bi+1, . . . , bn) of the other agents, the utility function of user
i is defined as

uM
i (bi,b−i) :=

{
vi − P i(b) if i ∈ S(b),
0 otherwise.

In [15] we provided the first mechanism for the Steiner tree game which meets
all of the following axioms (previously considered in e.g. [13, 7]):

Cost Optimality (CO). Let Copt(S(b)) denote the minimum cost required
to service all users in S(b). We require that the computed solution is an
optimal Steiner tree for connecting the set S(b) to the source s, that is,
COST(T (b)) = Copt(S(b)).

No Positive Transfer (NPT). No user receives money from the mechanism,
i.e., P i(·) ≥ 0.

Voluntary Participation (VP). We never charge an user an amount of
money greater than her reported valuation, that is, ∀bi,∀b−i bi ≥ P i(bi,b−i).
In particular, a user has always the option to not pay for being connected if
he/she is not interested. Moreover, P i(b) = 0, for all i /∈ S(b), i.e., only the
users getting connected will pay.

Consumer Sovereignty (CS). Every user is guaranteed to get the service
if she reports a high enough valuation, that is, ∀b−i, ∃bi such that i ∈
S(bi,b−i) = 1.
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Budget Balance (BB).
1. Cost recovery. The cost of the computed solution is recovered from all

the users being serviced, that is,
∑

i∈S(b)

P i(b) ≥ COST(T (b)).

2. Competitiveness. No surplus is created, that is,
∑

i∈(b)

P i(b) �> COST(T (b)).

If some surplus were created, then a competitor may offer the same
service at a better price.

Group Strategyproofness (GSP). We require that a user i ∈ U that mis-
report her valuation (i.e., bi �= vi) cannot improve her utility nor improve
the utility of other users without worsening her own utility (otherwise, a
coalition C containing i would secede). Consider a coalition C ⊆ U of users.
Let bj = vj for all j /∈ C. Let bC and b−C denote the bid vectors of those
users in C and in U \ C, respectively. The group strategyproofness requires
that, if the inequality

uM
i (bC ,v−C) ≥ uM

i (vC ,v−C) (1)

holds for all i ∈ C, then it must hold with equality for all i ∈ C as well.
It is easy to see that, since the above property must be fulfilled for every
possible v−C , then the GSP condition can be restated by replacing v−C by
b−C . In particular, the special case of C = {i} yields the weaker notion of
strategyproofness (or truthfulness with dominant strategies): for every user i,
∀bi and ∀b−i, it holds that uM

i (vi,b−i) ≥ uM
i (bi,b−i).

It is worth observing that the mechanism in [15] runs in polynomial time, in
spite of the NP-hardness of the problem of computing an optimal tree for a given
set of terminals [5]. Intuitively, the mechanism in [15] is always able to pick a set
S(b) for which the optimal Steiner tree can be computed in polynomial time,
thus ensuring the CO property.

Recently, Immorlica et al [6] considered cost-sharing games under the addi-
tional constraint of no free riders: no user should be serviced for free. This work,
among other results, contains a general scheme for obtaining mechanisms with
no free riders and satisfying all axioms above. For the Steiner tree game, their ap-
proach cannot lead to polynomial time mechanism, unless P = NP. By contrast,
our polynomial-time mechanism in [15] is far from the no-free-riders condition:
a single user will pay for the cost of the whole tree servicing the selected users
S and thus all other users are free riders.

In this work we investigate the existence of mechanisms for the Steiner tree
game (and some of its variants) that possibly reduce the number of free riders,
still running is polynomial time.
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1.1 Previous Work and Our Contribution

The breakthrough paper by Moulin and Shenker [13, 12] provided a natural
and powerful technique for building group-strategyproof mechanisms based on
the following tool: a cost-sharing function ξ(·) which specifies, for each sub-
set S of users, how the cost C(S) is shared among them, that is, ∀S ⊆ U ,∑

i∈S ξ(S, i) = C(S). They indeed considered a natural scheme for building
a mechanism M(ξ) depending on the cost-sharing function ξ(·) (see Fig. 1),
and proved that mechanism M(ξ) is group strategyproof if the function ξ(·) is
cross-monotonic, that is, for all S′ ⊂ S ⊆ U , and for all i ∈ S′, if holds that
ξ(S′, i) ≥ ξ(S, i).

Mechanism M(ξ)

1. S is initialized to U ;
2. If there exists an user i in S with vi < ξ(S, i) then drop i from S. Keep repeating

this step, in arbitrary order, until for every user i in S, vi ≥ ξ(S, i);
3. Charge each user i an amount equal to P i(b) := ξ(S, i).

Fig. 1. A general scheme to build a mechanism starting from a cost-sharing function
ξ(·) [13]

The existence of such functions was known for the MST game in a work
by Kent and Skorin-Kapov [8]. Jain and Vazirani [7] provided a more general
technique for building cross-monotonic cost-sharing methods for the MST game
and proved that this technique yields a polynomial-time 2-approximate budget-
balanced (BB) mechanism for the Steiner tree game. 1 The technique by Jain and
Vazirani [7] is based on a non-trivial use of primal-dual algorithms and inspired
several works which obtain polynomial-time α-approximate BB mechanisms for
other cost-sharing games (namely, metric TSP [7], facility location [14], single-
source rent-or-buy [14, 10], wireless multicast [2], Steiner forest [9]).

In a recent work, Immorlica et al [6] provided a number of lower bounds
on the approximation factor α that cross-monotonic functions can achieve for
some cost-sharing games. These lower bounds do not apply in general since
mechanisms not using cross-monotonic cost-sharing functions may exist [15, 6].
In particular, in [15] we provide a polynomial-time mechanism for the Steiner
tree game which achieves all axioms above. Unfortunately, this mechanism is
far from the no-free-rider condition since it always charges the cost to a single
user. 2

1 An α-approximate BB mechanism guarantees (only) that COST(T (b)) ≤∑
i P i(b) ≤ α · Copt(S(b)).

2 A similar mechanism for general cost-sharing games has been also presented in [6],
though their work does not investigate computational issues for the Steiner tree
game.
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In this work we provide a new mechanism which guarantees that, given its
computed multicast tree T and the subset ST of users connected to s, there are
at most |ST | − |leaves(T )| free riders, with leaves(T ) being the set of leaves of
tree T . This mechanism still runs in polynomial time and satisfies all axioms
above. We also achieve similar results for the wireless multicast game considered
in [2, 15]: for this game we obtain α-approximate BB mechanism with the same
bound on the number of free riders. The factor α is the same of a mechanism in
[15] which, however, has |ST | − 1 free riders. To the best of our knowledge, this
factor α is the best known for this game.

Since, in the worst case, our mechanisms yield |ST |−1 free riders, we investi-
gate the existence of polynomial-time mechanisms having a better guarantee. We
first prove that the scheme in [6] for budget-balanced mechanism does not apply
to either of our problems and, in the worst case, has the same bad guarantee (i.e.,
|ST | − 1 free riders). This negative result applies also to exponential-time mech-
anisms and it is due to the fact that the optimal cost function of our games are
not subadditive3, as required in [6]. Further, we show that any budget-balanced
mechanism which has no free riders must solve an NP-hard problem. The same
negative result holds for α-approximate BB mechanisms for the wireless multi-
cast game, for some α > 0. In particular, the (1+ε)-approximate BB mechanism
given in [6] turns out to be intractable for this game, for small ε > 0.

It is worth observing that, under certain hypothesis, α-approximate BB mech-
anisms with no free riders do not exist for the Steiner tree game, for α < 2. This
follows from previous results by Immorlica et al [6] and van Zwam [17]. The
mechanism proposed here satisfies these additional hypothesis and, therefore,
free riders cannot be avoided.

1.2 Preliminaries and Notation

Consider a graph G = (U ∪ {s}, E, c) where the set of terminals coincides with
the set of users U . Given a terminal set S ⊆ U , we let ST ∗(S) denote the
minimum-cost tree connecting s to the set S. The tree MST (S) is (any of) the
minimum spanning tree(s) over the subgraph of G induced by all and only the
vertices in S ∪ {s}. We consider any tree T connecting S to s as rooted at s
and we denote by leaves(T ) the set of leaves resulting from this orientation. We
consider every such a tree as the set of its directed edges (a, b), where a is the
parent of b. For any node a of tree T , we define leaves(T, a) as the set of all
leaf-nodes that are descendent of a.

A cost-sharing method for a cost function C(·) is a function ξ(·) which dis-
tributes this cost to the users that get the service. The function ξ(·) takes two
arguments: a set of users S and a user i and returns a nonnegative real number
satisfying the following:

if i /∈ S then ξ(S, i) = 0 and (2)

3 A cost function C(·) is subadditive if C(S ∪{i}) > C(S), for every S ⊂ U , i ∈ U \S.
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∑
i∈S

ξ(S, i) = C(S). (3)

A β-cost-sharing method ξ(·) satisfies Eq. 2 and the following relaxation of
Eq. 3: CA(S) ≤

∑
i∈S ξ(S, i) ≤ β ·CA(S). Given a function ξ : 2U×U → R+∪{0},

we define Pξ
0 := U , and Pξ

j := {S \ {i}| S ∈ Pξ
j−1 ∧ ξ(S, i) > 0}. Intuitively, Pξ

j

contains the family of all possible sets S that the scheme in Fig. 1 can generate
after j users have been dropped. Thus, the set Pξ :=

⋃
j≥0 P

ξ
j contains all

possible output sets S(b) of M(ξ). A function ξ : 2U×U → R+∪{0} is self cross-
monotonic if, for every S, S′ ∈ Pξ with S′ ⊂ S, it holds that ξ(S′, i) ≥ ξ(S, i),
for every i ∈ S′.

A mechanism M is upper continous if, fixed a vector b−i, if user i is serviced
for every bi > b, then it is also serviced for bi = b. Clearly, the mechanism M(ξ)
is upper continous. Let A denote an algorithm that, given a set S ⊆ U , returns
a tree connecting S to s. We plug this algorithm into the scheme in Fig. 1 by
adding a final step in which a tree T (b) := A(S(b)) is output, thus obtaining a
mechanism MA(ξ) for the Steiner tree game. This defines a cost function CA(·)
satisfying CA(S(b)) = COST(A(S(b))), for every subset S(b) ∈ Pξ.

The following result provides an useful tool for building polynomial-time
(approximate) budget-balanced group strategyproof mechanisms:

Theorem 1 ([15]). For any optimal (respectively, α-approximation) algorithm
A and any self cross-monotonic β-cost-sharing method ξ(·) for CA(·), the mecha-
nism MA(ξ) is group strategyproof, β-approximate BB (respectively, αβ-approxi-
mate BB) and satisfies NPT, VP and CS. Moreover, MA(ξ) runs in polynomial
time if A and ξ(·) are polynomial time.

Observe that, if A is optimal in Pξ only (i.e., CA(S) = Copt(S), for every
S ∈ Pξ) then mechanisms MA(ξ) and Mopt(ξ) will output exactly the same
solutions, for any optimal algorithm opt. Hence, the following holds:

Theorem 2. Let ξ(·) be a self-cross monotonic cost-sharing ξ(·) for CA(·) and let
A be optimal in Pξ. Then, the mechanism MA(ξ) is group strategyproof, budget-
balanced and satisfies CO, NPT, VP and CS. Moreover, MA(ξ) runs in polynomial
time if A and ξ(·) are polynomial time. Finally, MA(ξ) is upper continous.

2 Steiner Tree Game

We will develop a cost-sharing method which charges all and only the leaf nodes
of the computed solution T . In particular, each time one node is dropped, a new
tree is generated by removing the corresponding leaf. The possible trees that
this process can possibly generate starting from MST (U) is defined as follows:

Definition 1. We let Tn = MST (U) and Tn = {Tn}. Then, given Tj+1, we
define inductively Tj := {T | T ∪ {(a, b)} ∈ Tj+1 ∧ b ∈ leaves(T ∪ {(a, b)})}.
Moreover, for any T ∈ Tj, we let ST denote the set of all nodes of tree T other
than s.
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In the next section we prove that any of these trees is optimal, that is, its
cost equals the cost of the optimal Steiner tree connecting s to the same set of
nodes of the tree.

2.1 Cost Optimality

Observe that, by definition, a minimum spanning tree MST (U) is also an optimal
Steiner tree for the terminal set U , that is, COST(ST ∗(U)) = COST(MST (U)).
We next show that, starting from this tree, if we repeatedly remove any leaf
node, then the tree T that we obtain remains an optimal Steiner tree for the set
of nodes it contains:

Theorem 3. For any T ∈ Tj, COST(ST ∗(ST )) = COST(MST (T )), with 0 ≤
j ≤ n.

Proof. The proof is by induction on j, starting from j = n down to j = 0.

Base step (j = n). By Def. 1 we obtain T = Tn and STn
= U . In this case,

since there are no Steiner points, then the theorem clearly holds.
Inductive step (from j + 1 to j). Let T ∈ Tj , thus implying that there exists

an edge (a, b) such that T b := T ∪{(a, b)} ∈ Tj+1 and b is a leaf in T b. Hence,
a ∈ ST and ST b = ST ∪ {b}.
By contradiction assume COST(T ) > COST(ST ∗(ST )). We will show that
there exists a tree T ′ spanning ST b and whose cost is lower than the cost of
ST ∗(ST b), thus contradicting the optimality of ST ∗(ST b). The new tree T ′

is constructed as follows:

T ′ :=
{

ST ∗(ST ) ∪ {(a, b)} if b �∈ ST ∗(ST ),
ST ∗(ST ) otherwise.

We thus obtain

COST(T ′) ≤ COST(ST ∗(ST )) + c(a,b) < COST(T ) + c(a,b) = COST(T b).

Since a ∈ ST , then T ′ is a tree spanning ST ∪ {b} = ST b . By inductive
hypothesis, we have COST(T b) = COST(ST ∗(ST b)), and the above inequal-
ity yields COST(T ′) < COST(ST ∗(ST b)). This contradicts the optimality of
ST ∗(ST b).

This completes the proof.

2.2 Cost-Sharing Function

We first define a function ξT (·) that shares the cost of T among its leaves:

Definition 2. Given a tree T and any a ∈ leaves(T ), we let

ξT (a) :=
∑

(u,v)∈T :a∈leaves(T,u)

c(u,v)

|leaves(T, u)| . (4)
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Lemma 1. For any tree T , it holds that
∑

a∈leaves(T ) ξT (a) = COST(T ).

Proof. Since for every a ∈ leaves(T ) there exists (u, v) ∈ T such that a ∈
leaves(T, u), we simply observe that

∑
(u,v)∈T

∑
a∈leaves(T,u)

c(u,v)

|leaves(T, u)| =
∑

a∈leaves(T )

∑
(u,v)∈T :

a∈leaves(T,u)

c(u,v)

|leaves(T, u)|

The left hand side is COST(T ), while the right hand side is
∑

a∈leaves(T ) ξT (a).
The lemma thus follows.

We use the trees Tj and the associated functions ξT (·) for defining a self
cross-monotonic cost-sharing function ξleaves(·) as follows:

ξleaves(ST , a) =
{

ξT (a) if a ∈ leaves(T ),
0 otherwise, (5)

for every T ∈ Tj , with 0 ≤ j ≤ n.

Lemma 2. Let ξ = ξleaves. Then Pξ
j =

⋃
T∈Tj

ST , for every 0 ≤ j ≤ n.

Theorem 4. The function ξleaves(·) is self cross-monotonic.

Proof. It is easy to see that, since ξleaves(·) is non-zero only for the leaf nodes,
then starting from Tn = MST (U), at each step the mechanism M(ξleaves) will
consider a tree T ∈ Tj and remove some leaf b. Let T ′ = T \ (a, b) denote the
new tree obtained in this way. We prove that ξleaves(ST , i) ≤ ξleaves(ST ′ , i), for
every i ∈ ST ′ . Since ST ′ = ST \ {b}, it holds that i �= b. For every (u, v) ∈ T ′,
|leaves(T, u)| ≥ |leaves(T ′, u)|. Moreover, by definition of T ′, if i ∈ leaves(T, u)
for some edge (u, v), then i ∈ leaves(T ′, u). Therefore, if i ∈ leaves(T ), we obtain

ξleaves(ST , i) =
∑

(u,v)∈T :
i∈leaves(T,u)

c(u,v)

|leaves(T, u)| ≤
∑

(u,v)∈T :
i∈leaves(T,u)

c(u,v)

|leaves(T ′, u)|

=
∑

(u,v)∈T ′:
i∈leaves(T ′,u)

c(u,v)

|leaves(T ′, u)| = ξleaves(ST ′ , i).

Otherwise, that is i �∈ leaves(T ), it simply holds ξleaves(ST , i) = 0 ≤ ξleaves(ST ′ , i).
Now consider any two trees T ∈ Tj and T ′ ∈ Tj−k with ST ′ ⊂ ST . By

definition, there exists a sequence of trees T1, T2, . . . , Tk+1, with T1 = T and
Tk = T ′, which is obtained by repeatedly removing some leaf node of Tl, with
1 ≤ l ≤ k − 1. The above argument thus yields ξleaves(ST1 , i) ≤ ξleaves(ST2 , i) ≤
· · · ≤ ξleaves(STk

, i). The theorem thus follows from Lemma 2.
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2.3 Analysis

We first observe that Lemma 2 and Theorem 3 imply that MST is optimal on
Pξleaves . Hence, by applying Theorem 2 with ξ = ξleaves, we obtain the following
result:

Corollary 1. The Steiner tree game admits a mechanism MMST (ξ) which is
polynomial-time, group strategyproof, budget-balanced and satisfies CO, NPT,
VP and CS. The mechanism is upper continous and garantees that, if T is the
tree given in output, then there are at most |ST | − |leaves(T )| free riders.

3 Wireless Multicast Game

A variant of the Steiner tree problem considered in [2, 15] is the wireless multicast
which is defined as follows. Each node of the graph G corresponds to a station
of an ad-hoc network. Stations are located on a c-dimensional Euclidean plane
and, given the distance d(i, j) between i and j, the cost of connecting i to j is
c(i,j) := d(i, j)γ , for some γ > 1. This quantity represents the power that station
i must spend to transmit directly to j. Thus, given a multicast tree T , its cost
is the overall power consumption, that is,

POW(T ) :=
∑

i∈U∪{s}
max

(i,j)∈T
{c(i,j)},

that is, every node contributes as the cost of its longest outgoing edge in T . The
game is thus defined as the Steiner tree game with the only difference that the
cost function COST(·) is replaced by the function POW(·) above. As in [2, 15],
we will consider γ ≥ c, since for γ < c no approximation algorithm in known;
moreover, in many applications γ ≥ 2 and stations are located on the plane (i.e.,
c = 2).

Since POW(T ) < COST(T ) whenever T as at least two leaves, if we apply
the payment scheme for the Steiner tree game, the mechanism will create some
surplus, that is, users will pay more than the cost. We next modify the payment
scheme so to avoid this.

Given a tree T , and any node i, let e1(i), e2(i), . . . , ek(i) denote the list of
nodes in T outgoing from i and satisfying cej(i) ≤ cej+1(i) (ties are broken ar-
bitrarily). We define a function w(·) which weights the edges of T according to
their contribution to POW(T ). In particular, let mc(ej(i)) denote the marginal
contribution4 of edge ej(i), that is,

mc(ej(i)) :=
{

cej(i) − max{cel(i)| cel(i) < cej(i)} if j > 1,
cej(i) otherwise. (6)

4 A similar concept is employed in [2] for defining the Shapley value of a wireless
multicast tree.
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Finally, defined
equal(ej(i)) := |{el(i)|cel(i) = cej(i)}|

we let
wej(i) := mc(ej(i))/equal(ej(i)). (7)

By definition,
∑k

j=1 wej(i) = cek(i), thus implying POW(T ) =
∑

e∈T we. We
can share this cost by considering the graph G with edge costs ce replaced by
we, for every e ∈ T . This idea leads to the following result:

Theorem 5. Let we be defined as in Eq. 7 with respect to T = MST (U). Also
let ξwireless(·) be defined as in Eq.s 4-5 by replacing ce with we, for every e ∈ T .
Then, the function ξwireless(·) is a self-cross monotonic cost-sharing method for
CA(S) := POW(MST (S)).

We can modify the mechanism for the Steiner tree game by replacing ξleaves(·)
by ξwireless(·), thus obtaining a polynomial-time mechanism MMST (ξwireless) which
outputs a tree T ∈ T (see Def. 1) and that recovers the corresponding cost
POW(T ). In [4] the authors proved that, for any γ ≥ δ, the total weight of a
MST over a set S of points is at most (3c − 1) times the cost of the optimal
wireless broadcast tree for S. (For c = 2 ≤ γ the constant has been improved
down to 7.5 [4].) Thus, using an argument similar to [2, 15], Theorem 3 yields
the following result:

Corollary 2. The wireless multicast game admits a polynomial-time mechanism
MMST (ξ) which is group strategyproof, (3c − 1)-approximate BB and satisfies
NPT, VP and CS. The mechanism is upper continous and guarantees that, if T
is the tree given in output, then there are at most |ST | − |leaves(T )| free riders.
Additionally, for c = 2, mechanism MMST (ξwireless) is 7.5-approximate BB.

The above result improves over the mechanism in [15] since in this mecha-
nism there are always |ST | − 1 free riders. In the next section we compare our
mechanism with other mechanisms.

4 Negative Results and Open Questions

Immorlica et al [6] proposed two mechanisms for avoiding free riders in a cost-
sharing game with cost function C(·). The first mechanism is budget-balanced
and works for subadditive functions C(·):

Mechanism IMM-budget-balance

1. Initialize the set S of serviced users to the empty set and the amount of money
m that is already charged to 0;

2. For i from 0 to n, do the following: if bi ≥ min{C({i}), C(S ∪ {i, . . . , n}) − m},
then include i in S, and charge him/her min{C({i}), C(S ∪ {i, . . . , n}) − m}
(therefore, m will be increased by this quantity).
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The following fact shows that, in our games, the optimal cost function is not
subadditive and, more importantly, mechanism IMM-budget-balance does
not guarantee any bound on the number of free riders:

Fact 6. There exists an instance of the Steiner tree game for which the mech-
anism IMM-budget-balance yields n − 1 free riders. The same result holds
for the wireless multicast game.

Proof. Consider a clique Kn of n nodes and let any of its edges have cost 0. We
build a graph G by connecting a new node s to every node of Kn with an edge
of cost 1. Then, for every S ⊆ U , with S �= ∅, C(S) = 1. Hence, mechanism
IMM-budget-balance charges 0 to all but one user in the final set S.

A similar argument applies to the following instance of the wireless multicast
game: consider the star G connecting s to n ≥ 2 nodes at distance 1 from s. In
this case, there will be, in the worst case, n − 1 free riders.

We also mention that, for the Steiner tree game, a known result by Megiddo
[11], combined with a characterization of upper continous budget-balanced mech-
anisms without free riders [6–Th. 4.3], implies that the above (upper continous)
mechanism cannot guarantee the no-free-rider condition even if edges have non-
zero weight.

We next show that, unless P = NP, there exist no polynomial-time mechanism
satisfying all axioms above plus the no-free-rider condition.

Theorem 7. Let Copt(·) be a cost function which is NP-hard (to approximate
within a factor α). Then, no polynomial-time strategyproof mechanism M guar-
antees no free riders and satisfies NPT, VP, CS and (α-approximate) BB, unless
P = NP.

Proof Sketch. The strategyproofness, NPT, BB (no surplus part) and CS condi-
tions imply that, for every S ⊆ U , there exists a bid vector bS = (bS ,0−S) such
that S(bS) ⊇ S. The VP and the no-free-rider condition imply that S(bS) = S.
Hence, the (α-approximate) BB condition implies that M is able to compute
(an α-approximation of) the optimum Copt(S) in polynomial time, thus imply-
ing P = NP. (See Appendix 5 for the full proof of this theorem.) �

Since the Steiner tree problem cannot be approximated within some factor
α > 1, then it is not possible to have polynomial time α-approximate BB mecha-
nisms and no free riders. Hence, the following mechanism for (1+ε)-approximate
BB mechanisms [6] cannot run in polynomial time for small ε > 0:

Mechanism IMM-(1 + ε)-approximate-BB

1. Drop all users i such that bi ≤ δ and let R = {r1, r2, . . . , r|S|} be the (arbitrarily)
ordered set of remaining users; /* the value of δ depends on ε > 0 */

2. Find the first user ri ∈ R such that bri ≥ C({ri, ri+1, . . . , r|S|}) − nδ; The set
S := {ri, ri+1, . . . , r|S|} is serviced, user i pays C(S) − nδ, and every body else
in S pays δ.
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Observe that, for the wireless multicast game, the mechanism above would be
polynomial-time only if a polynomial-time (1 + ε)-approximation algorithm for
the wireless multicast optimization problem exists. To the best of our knowledge,
the best factor is achieved by a combination of the best known Steiner tree
algorithm [16] with the results in [4]. This combination (see [1]) yields an upper
bound which is larger than the approximation factor (3c − 1) for the wireless
broadcast [4]. Whether such bounds are tight is an interesting open problem.
Below we mention other questions that remain open.

4.1 Open Questions

In view of these negative results, one may try to improve our mechanisms along
two directions: (i) decrease the number of free riders and/or (ii) improve the
approximation factor of the mechanism for wireless multicast game.

As already mentioned, a result by Immorlica et al [6] characterizes the class of
upper continous α-approximate budget-balanced mechanisms with no free riders
as the mechanisms which can be obtained using α-cross-monotonic cost-sharing
methods. Hence, the lower bounds on cross-monotonic cost-sharing methods [11,
2] imply that, for the two games considered here, mechanisms without free riders,
if any, cannot be obtained directly from the scheme in Fig. 1 or from mechanism
IMM-budget-balance (both of them being upper continous). For the Steiner
tree game, a tight result by van Zwam [17], implies that the polynomial-time
2-approximate BB mechanisms by [7] are the best possible in the class of upper
continous one.

Concerning polynomial-time mechanisms and the free rider issue, the follow-
ing question is interesting to us: Is there any such mechanism which guarantees
that a constant fraction of the serviced set ST are not free riders? First of all,
it is well-known that every node in G of degree 2 cannot be a Steiner point if
G is metric. Hence, these nodes could also be charged and participate to the
payments. Unfortunately, nodes that in tree Tn = MST (U) have degree 2 can
be Steiner points and their removal could lead to suboptimal solutions.

Generally speaking, the main question left open is to find a trade off between
the number of free-riders and the approximation factor of the budget balance
for polynomial-time mechanisms.
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5 Proof of Theorem 7

We next show two useful lemmata which state some basic properties of strat-
egyproof mechanisms. Basically, these results concern how changing one bid in
the vector b can affect the outcome of the mechanism (i.e., the serviced set and
the computed payments). Given a mechanism M = (A,P ), we let σA

i (b) = 1
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if and only if i ∈ S(b), with S(b) being the subset of users that algorithm A
decides to service on input b.

The following lemma states “steady” conditions on strategyproof mecha-
nisms:

Lemma 3 (keep). Let M = (A,P ) be a strategyproof mechanism and let S(b)
denote the set of users serviced on input b. Then, the following conditions must
hold:

σA
i (bi,b−i) ⇒ ∀b′i > bi, i ∈ S(b′i,b−i); (8)

σA
i (bi,b−i) = σA

i (b′i,b−i) ⇒ P i(bi,b−i) = P i(b′i,b−i). (9)

Proof. (Eq. 8). By contradiction, if σA
i (b′i,b−i) = 0 and σA

i (bi,b−i) = 1, for
some b′i > bi and for some b−i, then consider the situation in which vi = b′i and
v−i = b−i. In this case, we obtain

vi ·σA
i (bi,v−i)−P i(bi,v−i) ≥ vi−bi = b′i−bi > 0 ≥ vi ·σA

i (vi,v−i)−P i(vi,v−i),

where the last inequality follows from the fact that σA
i (vi,v−i) = σA

i (b′i,v−i) = 0
and from the NPT condition. This contradicts the fact that M is strategyproof.

(Eq. 9). By contradiction, let us assume that σA
i (bi,b−i) = σA

i (b′i,b−i) and
P i(bi,b−i) < P i(b′i,b−i), for some bi, b′i and b−i. Consider the situation in
which vi = b′i, thus implying

vi · σA
i (bi,v−i) − P i(bi,v−i) > vi · σA

i (vi,v−i) − P i(vi,v−i),

thus contradicting the fact that M is strategyproof.

The following lemma states that, if users “compete” with each other for being
serviced, then the prices cannot be bounded from above by any constant:

Lemma 4 (drop). Let M = (A,P ) a strategyproof mechanism satisfying NPT
and CS. For every b = (b1, . . . , bn), if there exists i, j ∈ U and bj, such that

σA
i (b) = 1; (10)

σA
i (b) = 0, with b = (bj ,b−j). (11)

Then there exists a bi such that P i(b′) ≥ bi, where b′ = (bi,b−i).

Proof. From the CS condition, there exists bi such that σA
i (bi,b−i) = 1, where

b = (bj ,b−j). By contradiction, assume that P i(bi,b−i) < bi. Consider the case
in which vi = bi and v−i = b−i. Because of the NPT and Eq. 11, it holds
that uM

i (vi,v−i) = uM
i (bi,b−i) ≤ 0. Moreover, uM

i (bi,v−i) = uM
i (bi,b−i) =

vi−P i(bi,b−i) > 0, thus contradicting the fact that M = (A,P ) is strategyproof.

The above lemma easily implies the following result.

Lemma 5. Let M = (A,P ) a strategyproof mechanism satisfying NPT and CS.
For every S ⊆ U and for every b > 0, there exists a vector bS = (bS ,0−S) such
that, if mechanism M returns a set S(bS) of users with S �⊆ S(bS), then there
exists i ∈ U such that P i(b) > b.
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Proof. Simply increase the bids of users in S one by one, from 0 to a value bi ≥ b
such that the current user must be serviced. (This value exists because of the
CS condition.) If at some point, a user i ∈ S previously considered is dropped,
because of Lemma 4, there exists a bid vector b′ for which P i(b′) > b.

Let M = (A,P ) be a polynomial-time mechanism satisfying the hypothesis of
Theorem 7. By contradiction, let M run in polynomial time. The above lemma
and the (α-approximate) BB imply S ⊆ S(b). The no-free-rider and VP con-
ditions thus yield S(b) = S. Hence, the (α-approximate) BB condition implies
that M is able to compute (an α-approximation of) the optimum Copt(S) in
polynomial time, thus implying P = NP.
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