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Abstract

We investigate the problem of sharing the cost of a multicast transmission in a
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to a (set of) user(s) potentially interested in receiving the transmission. As in the
model considered by Feigenbaum et al. [2001], users may act selfishly and report a
false “level of interest” in receiving the transmission trying to be charged less by
the system. We consider the issue of designing so called truthful mechanisms for the
problem of maximizing the net worth (i.e., the overall “satisfaction” of the users
minus the cost of the transmission) for the case of wireless networks. Intuitively,
truthful mechanisms guarantee that no user has an incentive in reporting a false
valuation of the transmission. Unlike the “wired” network case, here the cost of a set
of connections implementing a multicast tree is not the sum of the single edge costs,
thus introducing a complicating factor in the problem. We provide both positive and
negative results on the existence of optimal algorithms for the problem and their
use to obtain VCG truthful mechanisms achieving the same performances.
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1 Introduction

In many practical situations, one is given a communication network and a
special node called the source that, potentially, can broadcast messages to
any other node in the network. Whenever the source has to transmit to a
certain subset of nodes, a suitable multicast tree is computed so to reduce
the overall cost of transmitting (e.g., there is a cost for using each link and
the cost of a multicast tree is the sum of the costs of its links). In several
applications, the source can “offer” some kind of transmission (say a movie or
a sport event) to users located at other nodes of the network. A user located
at node j can receive the transmission only if that node does and, naturally,
the larger the set of receivers the higher the costs for transmitting. Hence,
one would like to find a good trade-off between transmitting costs and the
overall users “satisfaction”. Each user j may have her own valuation of the
transmission which could be quantified according to some value vj (i.e., how
worth is the transmission for user j). If the source transmits to a subset S of
users and this costs C, then the resulting net worth is equal to


∑

j∈S

vj


− C.

Intuitively speaking, the summation represents the worth associated to the
subset S, i.e., the overall satisfaction obtained if users in S receive the trans-
mission. The net worth is computed by subtracting the overall cost for trans-
mitting. In the context of multicast transmission described above, each mul-
ticast tree determines a net worth in which S is the set of users located in
some node of the tree and C is the cost of the tree (see below for formal
definitions). Finding a multicast tree which maximizes the net worth can be
difficult problem because of the following:

(1) A tree of minimal cost could be NP-hard to compute. If the cost of a
tree is the sum of the costs of its links, then we would have to optimally
solve the well-known Steiner tree problem which, on general networks, is
NP-hard.

(2) The values vj are not known to the source and they will have to be
communicated by the users. Users j may act selfishly and lie about her
vj so to be included in the tree: if the underlying algorithm optimizes the
net worth, then user j will be included whenever reporting a “very high”
value bj.

Feigenbaum et al. [13] considered a game theoretic approach in which users are
charged for receiving the transmission. Whether a user j receives the trans-
mission and at which price depends on her reported valuation bj (and also on
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those reported by the other users). The solution by Feigenbaum et al. [13] has
two interesting features:

(1) No user has an incentive in misreporting her valuation (i.e., the case
bj 6= vj);

(2) The underlying algorithm returns a tree of maximal net worth if all users
report their valuations correctly (i.e., bj = vj for every user j).

The work by Feigenbaum et al. [13] is tailored for a “wired” network model
in which the cost of a multicast tree is the sum of the costs (i.e., weights) of
all of its links.

The main goal of this work is to investigate the scenario in which transmissions
are performed over wireless (ad-hoc) networks. This type of networks is partic-
ularly attractive because of the possibility of communicating without any fixed
infrastructure: Messages are sent by one node to another one by transmitting
radio signals with a “sufficiently high” power. Implementing a multicast tree
over a wireless network costs proportionally to the overall energy that must
be spent by the stations for implementing the links in the tree, that is, as the
overall power consumption of the network. Since energy is crucial in wireless
networks, this turns out to be an important and well-studied metric.

Unfortunately, the construction of optimal (i.e., minimal cost) multicast trees
for wireless networks departs significantly from that of the “wired” counter-
part, i.e., the model used by Feigenbaum et al. [13]. Hence, the results in [13]
do not apply to our model. In this work, we prove a number of new positive
and negative results for the wireless network model which parallel with those
in [13]. Our model, which we describe in detail in the remaining of this section,
accounts for the same basic requirements of the model by Feigenbaum et al.
[13].

Cost of Wireless Links. In a wireless (ad-hoc) network, each node is
a radio transmitter/receiver also called station. Station i is able to directly
transmit a message to station j if and only if the power Pi used by station i
satisfies

Pi

d(i, j)α
≥ γ,

where d(i, j) is the Euclidean distance between i and j, α ≥ 1 is the attenuation
parameter depending on the environmental conditions [25] (e.g., in the empty
space α = 2), and γ is the transmission quality parameter : station j will
receive the message with attenuated power equal to P ′ = Pi/d(i, j)α, and the
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message can be correctly interpreted if P ′ ≥ γ. We let w(i, j) be the minimal
power required to establish the direct link (i, j), that is, w(i, j) := γ · d(i, j)α.
(Typically γ is normalized to be 1.)

In general, because of different environmental conditions occurring at differ-
ent places (e.g., an obstacle between two stations), there can be a different
attenuation parameters αij for every pair (i, j). Each station can adjust its
transmission power Pi to any value not larger than its maximum transmission
power Pmax

i , which depends on the (limited) battery capacity of station i. To
model these aspects, we need to consider a directed weighted graph consisting
of all possible wireless links that stations can implement, given their maxi-
mum transmission powers and the environmental conditions, along with the
power required to implement each of these links. More precisely, we have a
communication (directed) graph G = (S, E , w) where

• S is the set of stations and |S| = n.
• E contains all possible wireless links: (i, j) ∈ E if and only if the max-

imum power of station i suffices for transmitting to station j, that is,
Pmax

i /d(i, j)αij ≥ γ.
• w(i, j) is the minimum power required for station i to directly transmit to

station j, that is, the weight of link (i, j) satisfies w(i, j) = γ · d(i, j)αij .

Stations use so called omnidirectional antennae which radiate in all directions.
That is, if station i transmits with power Pi, then every station j for which
w(i, j) ≤ Pi receives this transmission. In other words, the minimal power
that station i must spend for implementing a set Ei of links directed to other
stations is

max
(i,j)∈Ei

w(i, j).

Given any set of links E ⊆ E , we define its cost as the overall power consump-
tion required to implement all these links, that is,

Cost(E) :=
∑

i∈S
max

j:(i,j)∈E
w(i, j). (1)

Observe that we do not sum up all edge weights in E. In terms of graphs, the
cost of any E ⊆ E is the sum, over all nodes i, of the maximum edge weight
among all edges in E that are directed from i to some other node.

Figure 1 shows an example of a wireless network in the two-dimensional Eu-
clidean space with attenuation parameter α constant everywhere. Disks repre-
sent the regions where the attenuated power of the corresponding signal is not
smaller than γ: station s transmits with power d(s, 3)α and reaches stations 1,

4



sr
r

r

s
1

2

3

4

:
9

N rN

Fig. 1. An example of wireless network in the two-dimensional Euclidean space with
constant attenuation parameter.

2 and 3, while transmission from s to 4 is performed in two hops via station
3.

Net Worth of a Multicast Transmission. In this work we are inter-
ested in sets E ⊆ E which guarantee that, given a distinguished source node
s, the set E connects s to a suitable set D(E, 〈G, s〉) ⊆ S of destination nodes,
that is, there is a directed path from s to any node in D(E, 〈G, s〉) consisting
of edges of E. (For the sake of readability, from now on D(E, 〈G, s〉) will be
denoted simply as D(E) as the input 〈G, s〉 will be clear from the context.)

Each user is located close to some of the nodes in S. The source s can send
the transmission to a user j only if j is close to some of the destination
nodes D(E). In addition, every user j has a valuation vj of the transmission
representing how much she would benefit from receiving it (i.e., how much
she would pay for it). As in the model of [13], we consider the situation in
which each user j is sitting close to one station, say i; the latter represents the
router of the network at distance one hop from user j. So, user j can receive
the transmission only if node i does. Observe that, we can always reduce the
case of several users located close to the same node to the case of (at most) one
user close to one node (consider each user as a node with no outgoing edges
and one ingoing edge of cost 0). The latter models the situation of ad-hoc
networks in which every user is the owner of one node of the network. Given a
subset E of edges, its worth is the sum of the vis of the nodes/users receiving
the transmission:

Worth(E,v) :=
∑

i∈D(E)

vi, (2)

where v = (v1, v2, . . . , vn) is the vector of the agents’ valuations. Then, the
net worth is given by

NetWorth(E,v) := Worth(E,v)− Cost(E). (3)

The cost sharing problem asks for a E ⊆ E that, for a given source s, maximizes
the net worth function above. Observe that we can always assume E to form a

5



±°
²¯

±°
²¯

±°
²¯

±°
²¯

) z

?

1 4

2

3

1

s

2

3

2 4

3

±°
²¯node

vi

user valuation

-edge in E

Fig. 2. An instance whose communication graph is a tree.

tree connecting s to a subset of the node (otherwise, we can find in polynomial
time a subset T ⊂ E which forms a multicast tree with the same worth and a
non-larger cost). In the sequel we will thus consider algorithms which return
subsets T of edges which form a multicast tree. For convenience, we will denote
any multicast tree as the set of its edges.

In Figure 2, we show an example where the optimal net worth solution for
the wired case is different from the wireless one, even when the commu-
nication graph G is a tree. The optimal solution for wireless networks is
T = {(s, 1), (s, 2), (2, 3)}. The user at node 2 would receive the transmis-
sion also when reporting ‘3’ (instead of her true valuation 4) to an optimal
algorithm. If all connections would be payed, as for the “wired” case, then
edge (s, 1) should not be included since the user at node 1 cannot recover for
its cost.

Observe that, we will always produce some solution T for which

NetWorth(T,v) ≥ 0,

since otherwise it is not worth to perform the transmission. We also would
like to charge some amount of money to the receivers so to recover the cost
of the transmission, unless the solution consists of the empty tree which does
not connect the source to any node (by definition, this solution yields a non-
negative net worth). More importantly, payments should provide an incentive
for the users to report their valuations vi correctly since this is essential for
optimizing the net worth (see Equations 2-3).

Selfish Users and Economical Constraints. The users, knowing that
they will be charged for receiving the transmission, may act selfishly and re-
port false values trying to get the transmission at lower prices. 1 In particular,
associated to each node there is a selfish agent reporting some (not necessarily
true) valuation bi ≥ 0; the true valuation vi is non-negative and is privately
known to agent i. Based on the reported values b = (b1, b2, . . . , bn) a mech-
anism M = (A, P ) uses algorithm A in order to construct a multicast tree,

1 Interestingly, users may also lie if the transmission would be given for free to a
subset of them. Indeed, each user i would try to get it by declaring a very high
interest bi.
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i.e., T = A(b) and charges, to each agent i, an amount of money to pay for
receiving the transmission equal to P i(b), with P = (P 1, P 2, . . . , P n). Notice
that, for every agent i, both the computed solution and the amount of money
charged to this agent depend on her reported valuation bi. To stress this de-
pendency, throughout the paper we use the following standard notation in
mechanism design: For every agent i, we let

b−i := (b1, b2, . . . , bi−1, bi+1, . . . , bn)

denote the vector of the valuations reported by all agents but i and

(bi,b−i) := (b1, b2, . . . , bi−1, bi, bi+1, . . . , bn) = b.

There is a number of natural constraints/goals that we would like a mechanism
M = (A,P ) to satisfy/meet:

(1) Truthfulness (or Strategyproofness). 2 The utility of agent i when
she reports bi, the other agents report b−i, and her valuation is vi, is
equal to

ui(bi,b−i|vi) :=





vi − P i(bi,b−i) if T = A(bi,b−i) and i ∈ D(T ),

0 otherwise.

We require that, for every v = (v1, v2, . . . , vn), for every i, for every b−i,
and for every bi, it holds that

ui(vi,b−i|vi) ≥ ui(bi,b−i|vi).

In other words, whatever strategy the other agents follow, agent i has no
incentive to lie about her true valuation vi. A mechanism satisfying this
property is called truthful.

(2) Efficiency. The computed solution T = A(b) ⊆ E maximizes the net
worth relatively to the reported valuations. That is,

NetWorth(T,b) = max
E⊆E

{NetWorth(E,b)}.

Therefore, if all agents are truthtelling, i.e., b = v, then the computed
solution optimizes the net worth with respect to the true valuations.

(3) No Positive Transfer (NPT). No user receives money from the mech-
anism, that is, for every i, for every bi, and for every b−i, it holds that
P i(bi,b−i) ≥ 0.

2 In Section 2.1 we provide a more general definition of truthfulness which applies
to a wide class of problems involving selfish agents.
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(4) Voluntary Participation (VP). We never charge a user an amount of
money greater than her reported valuation, that is, for every i, for every
bi, and for every b−i, it holds that P i(bi,b−i) ≤ bi. In particular, a user
has always the option on not paying for a message for which she is not
interested in.

(5) Consumer Sovereignty (CS). Every user is guaranteed to receive the
message if she reports a high enough valuation for the transmission.

(6) Budget Balance (BB).
∑

i P
i(b) = Cost(A(b)), i.e., the cost of broad-

casting the message is recovered from all users and no surplus is created.
(7) Cost Optimality (CO). The computed solution T = A(b) ⊆ E is

optimal with respect to the set of receivers D(T ), that is,

Cost(T ) = min
E⊆E,D(T )=D(E)

{Cost(E)}.

In other words, there is no cheaper solution (i.e., of smaller cost) which
yields the same set of receivers of the solution T = A(b).

It is important to observe that a mechanism M = (A,P ) receives in input a
vector b of reported valuations and it is not aware of the true valuations v.
Truthfulness guarantees that all agents will report their true valuations (i.e.,
b = v). Then, the Efficiency requirement implies that the mechanism returns
a solution maximizing the net worth with respect to the true valuations.

Notice that, the Efficiency requirement implies the Cost Optimality: If T is
not cost optimal, then there exits E ⊆ E such that Cost(E) < Cost(T ) and
D(E) = D(T ). Clearly, this implies Worth(E,b) = Worth(T,b) and thus
NetWorth(E,b) < NetWorth(T,b).

Unfortunately, in some cases it is impossible to achieve efficiency, so we will
relax it to r-efficiency, that is,

r ·NetWorth(T,b) ≥ max
E⊆E

{NetWorth(E,b)},

where r ≥ 1. Similarly, we will relax CO to r-CO, that is,

Cost(T ) ≤ r · min
E⊆E,D(T )=D(E)

{Cost(E)}.

1.1 Previous Work

Power Consumption and Range Assignment Problems. Assigning
transmission powers to the stations which (i) guarantee a “good” communi-
cation between the stations, and (ii) minimize the overall power consumption
of the network gives rise to interesting algorithmic questions. In particular,

8



[17,11,7,31] address the issue of computing a broadcast tree of minimal cost.
Although this problem, in the case of “wired” networks, is clearly equivalent
to the problem of computing an MST (all edges are counted in the cost func-
tion), in the case of wireless networks things are more complicated. Indeed, [17]
proved that the problem is NP-hard to approximate within logarithmic fac-
tors, while it remains NP-hard even when considering geometric 2-dimensional
networks [7]. In [21,10,11,7,31] other variants of this problem have been con-
sidered (see also [8] for a survey). However, to the best of our knowledge, no
algorithmic solution for optimizing the net worth has been given so far.

Recently, the design of truthful mechanisms for the range assignment problem
in presence of “selfish transmitters” (i.e., selfish agents that want to minimize
the energy their station has to use) has been investigated in [1] for the strongly
connectivity problem, and in [3] for point-to-point transmissions, respectively.

Mechanism Design and Cost-Sharing Mechanisms in Wired Net-
works. The theory of mechanism design dates back to the seminal papers
by Vickrey [30], Clarke [6] and Groves [16]. Their celebrated VCG mecha-
nism is still the prominent technique to derive truthful mechanisms for many
problems (e.g., shortest path, minimum spanning tree, etc.). In particular,
when applied to combinatorial optimization problems (see e.g., [23,29]), the
VCG mechanisms guarantee the truthfulness under the hypothesis that the
mechanism is able to compute the optimum and the optimization function is
utilitarian (see Section 2.1 for a formal definition of utilitarian problem).

This technique is employed in [13] (and in this work) where the authors con-
sider the wired networks case: in this case, every connection of a solution
E ⊆ E contributes to the corresponding cost Costwrd(E), that is

Costwrd(E) =
∑

(i,j)∈E

w(i, j).

They indeed provide a distributed optimal algorithm for the case in which the
communication graph is a directed tree. This yields a distributed mechanism 3

which, for this problem version, satisfies all requirements mentioned above
(truthfulness, efficiency, etc.) except for budget balance.

Noticeably, a classical result in game theory [15,28] implies that, for this model,
budget balance and efficiency are mutually exclusive. Additionally, in [12] (see
also Theorem 5 in [5]) it is shown that no α-efficiency and β-efficiency can be
guaranteed simultaneously, for any two α, β > 1. So, the choice is to either

3 The mechanism is able to compute both the solution and the payments in dis-
tributed fashion.
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optimize the efficiency (as in [13]) or to meet budget balance (as in [18,19,5]).
In the latter case, it is also possible to obtain so called group strategyproofness,
a stronger notion of truthfulness which can also deal with coalitions. On the
other hand, if we insist on efficiency, NPT, VP, and CS, then there is essentially
only one such mechanism: the marginal-cost mechanism [22], which belongs
to the VCG family.

Also notice that all such negative results also apply to our problem (i.e.,
wireless networks). Indeed, a simple observation is that every instance of the
“wired” case can be reduced to the wireless one using the following trick: re-
place every edge (i, j), with two edges (i, x(i, j)) and (x(i, j), j) whose weights
are w(i, x(i, j)) = 0 and w(x(i, j), j) = w(i, j). So, also for our problem we
have to choose between either budget balance or efficiency.

1.2 Our Results

We consider the problem of designing mechanisms that satisfy truthfulness,
efficiency, NPT, VP, CS, and CO in the case of wireless networks. We first
show that, even though the problem is not utilitarian, it is possible to adapt
the VCG technique so to obtain truthful mechanisms based on exact algo-
rithms (Section 2). We stress that our result is constructive. Indeed, we define
a (polynomial-time computable) payment scheme leading to a truthful mecha-
nism with a given exact (polynomial-time) algorithm. Hence, if the algorithm
runs in polynomial time, then the entire mechanism is polynomial time as well
(see Theorem 3).

Unfortunately, exact algorithms may be hard to find as the underlying opti-
mization problem turns out to be NP-hard in several cases (Section 3). We
indeed show that no polynomial-time algorithm can guarantee r-efficiency, for
any r > 0, unless P = NP. This result, which holds even if assuming the
communication graph to be a layered graph (see Theorem 5), rules out the
possibility of polynomial-time mechanisms with a “reasonable” efficiency in
general (e.g., O(n)-efficiency is impossible for layered communication graphs).
The use of VCG mechanisms requires exact algorithms (i.e., 1-efficiency) which
cannot be obtained even for geometric Euclidean instances in which stations
are locates on the plane (and in general on the `-dimensional Euclidean space
with ` ≥ 2 – see Theorem 6).

The positive results on the construction of truthful mechanisms and the hard-
ness results motivate the study of interesting topologies for which exact poly-
nomial-time algorithms exist (Section 4). We first consider the problem re-
stricted to communication graphs that are trees and prove that, in this case,
the optimal net worth can be computed via an O(n)-time distributed algo-
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rithm (Section 4.1). This is the analogous of the result for wired networks in
[13] and its importance is threefold:

• It shows that the difficulty of the problem is confined in the choice of a
“good” multicast tree, and not in its use: if an “oracle” provides us with a
tree containing an optimal multicast tree, then we can compute the opti-
mum in polynomial-time. This result cannot be obtained from the analogous
result for wired networks in [13] since, in general, the optimal solutions differ
in the two cases (see Figure 2).

• It is used to obtain a truthful distributed O(n)-time mechanism satisfying
NPT, VP, CS, and efficiency when the given communication graph is a
tree. In this case, both the solution and the payments can be computed
in distributed fashion using two messages per link (Corollary 10). Again,
the resulting payments are different from the once in [13] and, thus, the
algorithm departs significantly from the one in [13].

• It can be used to approximate the problem in some situations for which
a good “universal” tree exists, i.e., a tree containing a set of connections
of cost not much larger than the optimal solution and reaching the same
set of nodes. This approach is similar to that of several wireless multicast
protocols 4 which construct a multicast tree by pruning a broadcast tree T
(e.g., MIP, MLU and MLiMST in [11]). In all such cases, one can assume
that the communication graph G is the tree T .

We extend our positive result to a class of graphs denoted as trees with metric
free edges (Section 4.2): basically, the set of possible links to choose from is a
tree, but a chosen link may induce other links from a graph which is not a tree;
the induced links are specified in terms of distance between nodes in the given
tree (see Section 4.2.1 for a formal definition). Our technical contribution here
is a non-trivial algorithm extending the technique and some of the results for
trees (Section 4.2.2).

We complement our negative results on geometric Euclidean instances for
` ≥ 2, by showing that the case ` = 1 can be efficiently solved, even with
the additional constraint of multicast trees of bounded depth (Section 4.3). We
build a polynomial-time mechanism satisfying truthfulness, efficiency, NPT,
VP, CS and CO, with the additional property of ensuring multicast trees of
depth at most h, for any 1 ≤ h ≤ n − 1 given in input. This mechanism
exploits an exact polynomial-time algorithm for building optimal broadcast
trees (i.e., D(T ) = S) of bounded depth in [9].

In Section 5, we investigate mechanisms for general communication graphs
which are obtained by fixing a “universal” multicast tree (i.e., a tree chosen
independently from the agents reported valuation and which spans all nodes).

4 In this case the set of destination nodes, also termed multicast group, is given in
input.
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We first observe that a shortest-path tree can be used as universal tree so
to obtain a polynomial-time mechanism satisfying truthfulness, NPT, VP,
CS, and O(n)-CO, for the case of any communication graph. In addition,
this mechanism guarantees |D(T ∗)|-efficiency, for all instances that admit an

optimal solution T ∗ satisfying |D(T ∗)| ≤ ϕWorth(T ∗,v)
Cost(T ∗) , for some constant ϕ < 1

(Section 5). Theorem 5 implies that this result cannot be obtained in general,
unless P = NP (although it might be possible to relax our assumption). The
mechanism based on a universal shortest-path tree can be improved in the
case of geometric Euclidean distances, where O(1)-CO can be also achieved
whenever the mechanism services all users (see Theorem 33).

1.3 Further Related Work

Independently from our work, Biló et al. [4] gave an alternative proof of the
existence of a truthful mechanism for the case in which the communication
graph is a tree. Their proof exploits a result by Moulin and Shenker [22] and
goes through a property of the cost function Cost(·) when restricted to trees.
Their mechanism is the same as ours (i.e., the marginal-cost mechanism which
belongs to the VCG family). Though this mechanism is well-defined, the au-
thors of [4] do not provide any polynomial-time algorithm for computing the
required solution (a multicast tree of maximizing the net worth) and the as-
sociated payments, nor a distributed implementation of such a mechanism.
Biló et al. [4] also mention that this mechanism could be used to solve a more
general case in which the communication graph is not a tree and observe that,
in general, this approach does not guarantee any constant approximation. For
the one-dimensional Euclidean case, they provide a polynomial-time truth-
ful mechanism (the marginal-cost mechanism) which is efficient, and satisfies
NPT, VP, CS and CO. This mechanism does not solve the case of bounded
hops though. The work [4] also focuses on (approximate) budget-balance mech-
anisms: a mechanism is α-approximate BB if the total amount of money col-
lected from the agents recovers the cost Cost(A(b)) of the computed solution
A(b) and does not exceed αC∗(D(A(b))), where C∗(D(A(b))) is the optimal
cost of connecting s to D(A(b)). In particular, for the `-dimensional Euclidean
case, the authors give a polynomial-time 2(3`−1)-approximate BB group strat-
egyproof mechanism satisfying NPT, VP and CS. Though their mechanism is
not efficient, it guarantees 2(3`− 1)-CO. Moreover, the work [4] shows how to
obtain a polynomial-time BB mechanism for the one-dimensional Euclidean
case. Recently, the result in [4] for Euclidean instances has been improved in
[27] so to obtain a polynomial-time group strategyproof (3` − 1)-approximate
BB mechanism (and thus (3`−1)-CO) satisfying NPT, VP and CS. The tech-
nique developed in the same work [27] also allows for a non-polynomial-time
BB mechanism for the same problem. Finally, an experimental analysis of the
mechanism based on universal multicast trees obtained with LASTs has been

12



performed in [26].

2 Optimal Algorithms Yield Truthful Mechanisms

For the sake of completeness, we first recall the classical technique to ob-
tain truthful mechanisms for utilitarian problems known as VCG mechanism
[30,6,16]. We then show how to adapt this technique to our (non-utilitarian)
problem.

2.1 Utilitarian Problems and Truthful VCG Mechanisms

Let us first consider a more general situation in which each agent i has a
private piece of information vi (sometimes called the type of agent i – see
e.g. [23,29]). Each agent associates a monetary valuation to every feasible
outcome. In particular, for every feasible solution X and for every i, agent
i associates a monetary valuation equal to V aluationi(X, vi) to solution X,
where V aluationi(·, ·) is an arbitrary function known to the mechanism. Notice
that the mechanism cannot directly compute the value V aluationi(X, vi) since
vi is known to agent i only. A mechanism asks to each agent i to report the
value vi and this agent can misreport this piece of information to any value
bi. Although the set of feasible solutions is known to the mechanism and
independent of the vis, these values are needed in order to output a feasible
solution which maximizes a function g(X,v), where v = (v1, v2, . . . , vn). In
this section we consider so called utilitarian problems in which the goal is to
maximize the function

g(X,v) =
n∑

j=1

V aluationj(X, vj). (4)

Intuitively speaking, the word “utilitarian” denotes those problems for which
the goal is to maximize the sum of all agents’ valuations (see e.g. [23,29]).
Utilitarian problems are appealing since there is a general technique for con-
structing truthful mechanisms (mechanisms based on this technique are com-
monly known as VCG mechanisms [30,6,16]). We next describe this technique
before adapting it to our non-utilitarian problem.

In the sequel we adopt the standard notation used in mechanism design
literature: Given a vector x = (x1, x2, . . . , xn), let x−i denote the vector
(x1, . . . , xi−1, xi+1, . . . , xn) and (y,x−i) := (x1, . . . , xi−1, y, xi+1, . . . , xn).
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Let Alg denote an optimal algorithm for the utilitarian problem in question.
That is, on input v = (v1, v2, . . . , vn), the computed solution Alg(v) max-
imizes, over all feasible solutions, the function in Equation 4. Notice that,
since the set of feasible solutions is independent from v, algorithm Alg re-
turns always a feasible solution (i.e, even when its input is different from v).
Let b = (b1, b2, . . . , bn) denote the vector of values reported by the agents.
Then, VCG payments are defined as follows:

P i
V CG(b) := hi(b−i)−

n∑

j=1,j 6=i

V aluationj(X
∗, bj), (5)

where X∗ := Alg(b) and hi(·) is any function independent of bi. Observe
that, by the hypothesis on algorithm Alg, solution X∗ maximizes the function
g(X,b) =

∑n
j=1 V aluationj(X, bj).

The combination of such an optimal algorithm Alg with the VCG payments
above yields the so called VCG mechanism M = (Alg, PV CG). The following
is a classical result in mechanism design (for completeness, we also provide its
proof):

Theorem 1 [16] If Alg is an optimal algorithm for a utilitarian problem Π,
then the mechanism M = (Alg, PV CG) is truthful for Π.

PROOF. Observe that, on input a vector b = (b1, b2, . . . , bn) of values re-
ported by the agents, the mechanism computes a solution X∗ = Alg(b) and
charges each agent i an amount equal to P i

V CG(b). 5 Since V aluationi(X
∗, vi)

is the monetary valuation that agent i associates to solution X∗, the corre-
sponding utility is equal to

ui(bi,b−i|vi) := V aluationi(X
∗, vi)− P i

V CG(b),

From Equations 4 and 5 we obtain

ui(bi,b−i|vi) = V aluationi(X
∗, vi)− hi(b−i)

+ g(X∗,b)− V aluationi(X
∗, bi)

=−hi(b−i) + g(X∗, (vi,b−i))

=−hi(b−i) + g(Alg(bi,b−i), (vi,b−i)).

5 As in our problem, we define the payments as the amount of “money” that an
agent must pay to the mechanism. Clearly, this is without loss of generality since
negative values of P i

V CG(·) can model the case in which agent i receives money from
the mechanism.
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Since Alg is optimal, we have that

g(Alg(vi,b−i), (vi,b−i)) ≥ g(X ′, (vi,b−i)),

for every other solution X ′. In particular, we have

g(Alg((vi,b−i), (vi,b−i)) ≥ g(Alg(bi,b−i), (vi,b−i)),

thus implying ui(vi,b−i|vi) ≥ ui(bi,b−i|vi). This completes the proof. 2

2.2 Reducing the Problem to a Utilitarian One

In our problem the valuation of a solution T of agent i is equal to

V aluationi(T, vi) :=





vi if i ∈ D(T ),

0 otherwise.

However, the optimization function NetWorth(·) does not satisfy the defini-
tion of utilitarian problems, since

NetWorth(T,v) 6=
n∑

i=1

V aluationi(T, vi) =
∑

i∈D(T )

vi = Worth(T,v).

Nevertheless, we next show that the VCG technique can be adapted to our
problem. The main idea is to initially charge each node by the cost of its
ingoing edge in the tree (computed as in the wireless network case) so to
“reduce” our problem to a utilitarian one. Towards this end, we first define
the following indicator function which tells us whether an edge (i, k) is counted
in the function Cost(·) of a solution T :

Definition 2 For any tree T ⊆ E and for any node i, let e(T, i) be the edge
connecting i with its parent in T . Also let

FreeEdges(i, j) := {(i, k) ∈ E|w(i, k) ≤ w(i, j) ∧ k < j} .

Charge(T, i) :=





0 if e(T, i) ∈ FreeEdges(l, m) with (l,m) ∈ T

w(e(T, i)) otherwise.

Notice that, when the solution contains more than one outgoing edge of max-
imal length, then we consider the cost of the one connecting to the node j of
higher index.
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Every rooted tree T contains one ingoing edge e(T, i) for each non-root node
i ∈ D(T ). Thus from Definition 2 and Equation 1 we have that

∑

i∈D(T )

Charge(T, i) =
∑

i∈S
max

j:(i,j)∈T
w(i, j) = Cost(T ). (6)

Theorem 3 Let A be a (polynomial-time) exact algorithm for maximizing the
NetWorth(·) function. Then the cost sharing problem on wireless networks
admits a (polynomial-time) mechanism M = (A,P ) satisfying truthfulness,
efficiency, NPT, VP, CS and CO.

PROOF. Truthfulness. Let T ⊆ E be any subtree of G rooted at s, and
let Servicedi(T ) = 1 if i ∈ D(T ), and 0 otherwise. Let us first consider the
problem in which each agent i has a valuation equal to

V aluation′i(T, vi) := Servicedi(T )(vi − Charge(T, i)). (7)

Intuitively, we start by charging to each agent receiving the transmission the
cost of its ingoing edge, if that edge is not “for free” in T . We next show
that, when considering functions V aluation′i(·, ·), maximizing NetWorth(·) is
a utilitarian problem (see Equation 4). That is, for any solution T ⊆ E ,

NetWorth(T,v) =
n∑

i=1

V aluation′i(T, vi), (8)

where NetWorth(·) is defined in Equations 2 and 3.

Since NetWorth(T,v) = Worth(T,v)− Cost(T ), Equations 7 and 6 imply

NetWorth(T,v) =
∑

i∈D(T )

vi −
∑

i∈D(T )

Charge(T, i) (9)

=
∑

i∈D(T )

V aluation′i(T, vi) =
n∑

i=1

V aluation′i(T, vi). (10)

We have thus proven Equation 8. Notice that, any optimal algorithm A for
NetWorth(·) returns a directed subtree of G rooted at s. Moreover, on input
the true valuations v = (v1, v2, . . . , vn), the solution A(v) maximizes the func-
tion in Equation 8, which satisfies the definition of utilitarian problem (see
Equation 4) with respect to the valuation functions V aluation′i(·, ·). We can
thus apply the VCG paradigm (see Theorem 1) and define payments P i

V CG(·)
such that M = (A,PV CG) is truthful for agents whose valuation functions
are V aluation′i(·, ·). That is, for every i, for every bi, and for every b−i, the
following inequality holds:
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V aluation′i(A(vi,b−i), vi)− P i
V CG(vi,b−i)≥ (11)

V aluation′i(A(bi,b−i), vi)− P i
V CG(bi,b−i)

where P i
V CG(·) is defined as in Equation 5.

We next modify the payments so that the resulting mechanism is truthful for
the original valuation functions V aluationi(T, vi) = Servicedi(T ) · vi. For any
agent i, let us consider the following payment function:

P i(b) := P i
V CG(b) + Servicedi(A(b)) · Charge(A(b), i), (12)

where P i
V CG(·) is defined as above. Let us observe that

ui(bi,b−i|vi) := V aluationi(A(bi,b−i), vi)− P i(bi,b−i)

= Servicedi(A(bi,b−i)) · vi − P i(bi,b−i)

= Servicedi(A(bi,b−i)) · vi − P i
V CG(bi,b−i)

− Servicedi(A(bi,b−i)) · Charge(A(b), i)

= Servicedi(A(bi,b−i)) · (vi − Charge(A(b), i))

− P i
V CG(bi,b−i)

= V aluation′i(A(bi,b−i), vi)− P i
V CG(bi,b−i).

From the above identities and from the inequality in Equation 11 we obtain

ui(vi,b−i|vi) = V aluation′i(A(vi,b−i), vi)− P i
V CG(vi,b−i)

≥V aluation′i(A(bi,b−i), vi)− P i
V CG(bi,b−i) = ui(bi,b−i|vi).

This proves the truthfulness.

In order to guarantee NPT and VP, we have to define a suitable function
hi(b−i), where hi(b−i) is the function used in the definition of P i

V CG(·) in
Equation 5. Towards this end, we let

(0,b−i) := (b1, b2, . . . , bi−1, 0, bi+1, . . . , bn).

For any E ⊆ E , let us consider

NetWorth(E, (0,b−i)) =


 ∑

j 6=i,j∈D(E)

bj


− Cost(E),

that is, the net worth of E computed with respect to (0,b−i). We define

hi(b−i) := NetWorth(A(0,b−i), (0,b−i)).
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NPT. Let us observe that

n∑

j 6=i,j=1

V aluation′j(A(b), bj) =
∑

j 6=i,j∈D(A(b))

bj − Cost(A(b))

+ Servicedi(A(b)) · Charge(A(b), i)

= NetWorth(A(b), (0,b−i))

+ Servicedi(A(b)) · Charge(A(b), i).

The definition of hi(b−i), Equation 5 and Equation 12 imply the following
chain of equalities:

P i(bi,b−i) = P i
V CG(b) + Servicedi(A(b)) · Charge(A(b), i)

= hi(b−i)−
n∑

j 6=i,j=1

V aluation′j(A(b), bj)

+ Servicedi(A(b)) · Charge(A(b), i)

= NetWorth(A(0,b−i), (0,b−i))−NetWorth(A(b), (0,b−i)).

(13)

Since A is an exact algorithm, T = A(0,b−i) is an optimal solution for the
instance modified by letting the user valuations be equal to (0,b−i). Thus,
NetWorth(T, (0,b−i)) ≥ NetWorth(E, (0,b−i)), for every E ⊆ E . In partic-
ular, for E = A(b), Equation 13 implies that P i(bi,b−i) ≥ 0.

VP. By contradiction, let us assume that P i(b) > bi, for some i and for some
b = (bi,b−i). By the identities in Equation 13 and since Servicedi(·) is either
0 or 1, we have

P i(bi,b−i) = NetWorth(A(0,b−i), (0,b−i))−NetWorth(A(b), (0,b−i))

>bi ≥ bi · Servicedi(A(b)).

From this inequality, from the fact that Servicedi(A(b)) = 1 only if i ∈
D(A(b)), and from the definition of NetWorth(·), we obtain

NetWorth(A(0,b−i), (0,b−i)) >bi · Servicedi(A(b))

+ NetWorth(A(b), (0,b−i))

= bi · Servicedi(A(b))

+


 ∑

j 6=i,j∈D(A(b))

bj


− Cost(A(b))

=


 ∑

j∈D(A(b))

bj


− Cost(A(b))
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= NetWorth(A(b),b). (14)

From the definition of NetWorth(·) we also obtain

NetWorth(A(0,b−i),b) =


 ∑

j∈D(A(0,b−i))

bj


− Cost(A(0,b−i))

≥

 ∑

j 6=i,j∈D(A(0,b−i))

bj


− Cost(A(0,b−i))

= NetWorth(A(0,b−i), (0,b−i)). (15)

By combining (14) with (15) we have

NetWorth(A(0,b−i),b) > NetWorth(A(b),b),

thus implying that solution A(b) in not optimal for b. This contradicts the
fact that A is an exact algorithm. Hence, it must be the case P i(b) ≤ bi for
all i and all b = (bi,b−i).

Efficiency, CO, CS. The efficiency follows from the fact that A is an exact
algorithm for maximizing the NetWorth(·) function. Since Efficiency implies
CO (see discussion at page 8) the latter condition is also satisfied. Moreover,
for a sufficiently large bi, since A is an exact algorithm, it must eventually
send the transmission to the corresponding user. Thus the CS property holds.
2

We will sometimes restrict the output of the algorithm to fixed subset of
feasible solutions. These solutions are either given by some problem variant
we consider (e.g., trees with a bounded height – see Section 4.3), or they
are introduced to “approximate” the net worth in polynomial time when the
problem is NP-hard (see Sections 3 and 5). It turns out that the proof of the
above theorem extends to such cases:

Remark 4 [24] The mechanism of Theorem 3 satisfies truthfulness, NPT,
VP, and CS also for algorithms that optimize the net worth function only
with respect to a fixed family F of subsets of edges such that, for every i, the
family F contains a subset of edges for which i is serviced. The mechanism
satisfies efficiency and the CO with respect to the set of solutions in F (i.e.,
net worth and cost are optimized over all solutions in F). When F is given
by the problem, we simply say that the mechanism satisfies the efficiency and
the CO conditions.
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3 Hardness Results

In this section we show that, unless P = NP, it is impossible to optimize the
net worth on general communication graphs. In particular, we show that the
problem is even hard to approximate within any “reasonable” factor and that
it remains NP-hard for geometric Euclidean instances. Our negative results
hold even when considering polynomial-time algorithms that (somehow) are
provided with the true agents’ valuation. So, our hardness results apply to
polynomial-time mechanisms as well.

Theorem 5 For any r > 0, no polynomial-time r-approximation algorithm
(mechanism) exists, unless P = NP. This also holds for three-layer graphs in
which layer 1 contains s only.

PROOF. Our proof is a simple modification of the proof in [13]. We reduce
3-SAT to our problem as follows. Let f = (x1, . . . , xn; C1, . . . , Cm) be a SAT
instance. W.l.o.g., let us assume that f contains all clauses (xi ∨ xi), i =
1, . . . , n. Consider a three-level graph Gf defined as follows:

• the first level contains only the source s, the second level contains all 2n
literals and the third level all m clauses;

• s is connected to every node in the second level and the weight of each of
these edges is m ·K − n− 1, where K À m;

• every literal node li in the second level is connected to every clause node cor-
responding to those clauses containing li; the weight of every edge between
the second and the third level is 1;

• s has valuation ε, every clause node has valuation K, and literal nodes have
all valuation 0.

We first observe that Gf has a trivial solution of NetWorth equal to ε: take s
only.

In order to obtain a better NetWorth we must include at least one of the edges
from s to the second level. This will include all such edges since they all have
the same weight. This yield a Cost of m ·K−n−1, which forces us to reach all
nodes of level three (otherwise NetWorth ≤ ε+(m−1)·K−m·K+n+1 < ε).
Since f contains all clauses (xi ∨ xi), between the second and the third level,
we must pick all edges of xi or all edges of xi. Thus, we must pay a Cost of at
least n. If this cost is at least n + 1, then the resulting net worth is at most
ε + m · K − m · K + n + 1 − n − 1 = ε. So, solutions of NetWorth better
than ε correspond to satisfiable formulas f ; in this case NetWorth∗(Gf ) =
ε + m · K − n − m · K + n + 1 = 1 + ε, where NetWorth∗(Gf ) denotes the
optimum for the instance Gf . If f is unsatisfiable, then NetWorth∗(Gf ) = ε.

20



If f is satisfiable, then any r-approximate algorithm for our problem returns a
solution of net worth N , with N satisfying N ≥ NetWorth∗(Gf )/r = (1+ε)/r.
By choosing, in the above reduction, ε sufficiently small we can guarantee that
1+ε

ε
> r, thus implying (1+ε)/r > ε. So, our r-approximate algorithm would be

able to distinguish whether the optimum is ε (i.e., f unsatisfiable) or greater
(i.e., f satisfiable). This implies that approximating the optimal net worth
within any factor r > 0 is NP-hard. Thus the theorem follows. 2

We next consider the restriction in which stations are located on the `-dimen-
sional Euclidean space and each station has a maximum transmission range
which suffices to directly transmit to any other station. In this case, the com-
munication graph is a complete graph with w(i, j) := d(i, j)α, where α ≥ 1 is
a fixed constant and d : R` → R+ is the Euclidean distance. The problem of
maximizing the net worth is NP-hard even when stations are located on the
plane:

Theorem 6 The problem of maximizing NetWorth(·) is NP-hard, even when
restricted to geometric wireless networks, for any ` ≥ 2 and any α > 1.

PROOF. We reduce from the Minimum Energy Consumption Broadcast
Subgraph (MECBS) problem: the input of the problem is the same as in
our problem, and the goal is to construct a tree T such that D(T ) = S and
Cost(T ) is minimized. Notice that the vis play no role in this problem. In
[7] it has been proved that the problem remains NP-hard even for ` = 2 and
for any α > 1. The reduction works as follows. Given an instance IMECBS of
MECBS, we consider the instance INW of the cost sharing problem having
the same set of stations and every vi equal to a sufficiently large L. So, any
optimal solution T ∗ for INW must guarantee D(T ∗) = S. Because of this, the
optimum is reached when the cost is minimized, that is, when a minimum cost
solution for IMECBS is computed. This completes the proof. 2

4 Special Communication Graphs

In this section, we will focus on restrictions of the problem which admits exact
polynomial-time algorithms, and thus, truthful exact polynomial-time mech-
anisms. In particular, we consider several families of communication graphs
for which the problem of computing a tree with optimal net worth becomes
tractable.
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Fig. 3. An example explaining why the recursion is possible for trees and why
in general graph instances it is not. On the left side we have a tree in which the
optimal solution involves the optimum of the subtree rooted at node 1 (the optimum
is obtained by transmitting to all nodes and this is also optimal when restricting to
the subtree rooted at 1). Notice that the only way to reach the children of node 1
is by transmitting to this node. On the right side an instance obtained by adding
an edge (s, 4) with w(s, 4) = 6. The optimal solution of the resulting graph does
not use any edge in the subtree rooted in 1 since node 4 can be reached using edge
(s, 4) which is for free. Indeed, using edge (1, 5) would cost 5 and increase the worth
only by v5 = 4.

4.1 Trees

We proceed similarly to [13] and assume that the communication graph is a
directed tree T . This has interesting consequences on the set of “free edges”:
a solution containing an edge (i, j) also contains all edges (i, k) such that
w(i, k) ≤ w(i, j). More importantly, since T is a tree, this is the only case in
which an edge (i, k) is “for free”.

Definition 7 For every i ∈ T , let ci be the weight of the edge connecting i to
its parent in T , i.e., ci = w(e(T , i)) and cs = 0. We denote by Children(i)
the set of nodes children of i in T . Ti denotes the subtree rooted at i. Finally,
NetWorth∗(i,v) denotes the optimal net worth of Ti, that is, the optimum for
the instance in which i is the source node, the tree is Ti, and v is the vector
of users valuations.

In the remaining of this section, we fix an arbitrary vector v = (v1, . . . , vn) of
agents valuations and show how to compute the optimum w.r.t. this vector.
For the sake of readability, we omit ‘v’ in the definitions and notation used
throughout this section.

Intuitively speaking, once choosing an edge (i, j), the problem breaks down
into subproblems in which:

• every child k of i, such that w(i, k) ≤ w(i, j), becomes a new root;
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• every node in Tk can be reached only via node k.

This gives us the possibility of using a recursive algorithm. On the contrary, if
we consider general graph instances, then a simple argument shows that this
approach does not lead to optimal solutions (see the examples in Figure 3).

The next lemma provides the basic recursion rule to be used in our algorithm.

Lemma 8 For every node i, it holds that

NetWorth∗(i) = vi + max





0

maxj∈Children(i) {PayEdge(i, j)}
(16)

where

PayEdge(i, j) := −cj +
∑

k∈Children(i),

ck≤cj

NetWorth∗(k).

PROOF. The proof is by induction on the hight h of Ti. For h = 1, since i is
a leaf node, then NetWorth∗(i) = vi. Let us now assume that the lemma holds
for any h′ ≤ h−1, and let us prove it for h. Let T ∗

i denote an optimal solution
for Ti. Let us first observe that, if NetWorth∗(i) = NetWorth(T ∗

i ) > vi, then
T ∗

i must contain at least one outgoing edge from node i. Let (i, j) be the
longest such edge in T ∗

i . For any node k ∈ Ti, let T ∗
i,k denote the subtree of T ∗

i

rooted at k. Since (i, j) ∈ T ∗
i , then every edge (i, k), with w(i, k) ≤ w(i, j),

is for free. Hence, k ∈ D(T ∗
i ), for all k ∈ Children(i) such that ck ≤ cj.

Therefore,

Cost(T ∗
i ) = cj +

∑

k∈Children(i),

ck≤cj

Cost(T ∗
i,k), (17)

Worth(T ∗
i ) = vi +

∑

k∈Children(i),

ck≤cj

Worth(T ∗
i,k). (18)

Let us now suppose, by contradiction, that there exists a l ∈ Children(i),
with cl ≤ cj and NetWorth(T ∗

i,l) < NetWorth∗(l). Let T ′
l denote the sub-

tree of Tl yielding an optimal net worth w.r.t. Tl, that is, NetWorth(T ′
l ) =

NetWorth∗(l). Let T ′
i be the solution obtained by replacing, in T ∗

i , T ∗
i,l with

T ′
l . Since T ′

i still contains all edges (i, k), with w(i, k) ≤ w(i, j), we have that

Worth(T ′
i ) ≥ Worth(T ′

l ) + vi +
∑

k∈Children(i),

ck≤cj ,k 6=l

Worth(T ∗
i,k). (19)
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Algorithm Wireless Trees at node i
(1) After receiving a message µj from each child j ∈ Children(i)

do
(a) Add(j) := −cj +

∑
k∈Children(i),ck≤cj

µk;
(b) T (i) := ∅;
(c) if maxj∈Children(i) Add(j) < 0 then µi := vi

(d) else do
(i) Add := maxj∈Children(i) Add(j);
(ii) µi := vi + Add;
(iii) j∗ := max{j ∈ Children(i)|Add(j) = Add};
(iv) T (i) := {(i, j)|w(i, j) ≤ w(i, j∗)};

(2) send µi to parent p(i);

Fig. 4. The distributed algorithm for trees computing an optimal solution in bot-
tom-up fashion.

Clearly, Cost(T ′
i ) = Cost(T ∗

i ) − Cost(T ∗
i,l) + Cost(T ′

l ). This, combined with
Equation 19, yields

NetWorth(T ′
i ) ≥ NetWorth(T ∗

i )−NetWorth(T ∗
i,l) + NetWorth(T ′

l ).

From the hypothesis NetWorth(T ∗
i,l) < NetWorth∗(l) = NetWorth(T ′

l ), we
obtain NetWorth(T ′

i ) > NetWorth(T ∗
i ), thus contradicting the optimality of

T ∗
i . So, for every k ∈ Children(i) with ck ≤ cj, it must hold NetWorth(T ∗

i,k) =
NetWorth∗(k). From Equations 17-18 we obtain

NetWorth∗(i) = NetWorth(T ∗
i ) = vi − cj +

∑

k∈Children(i),

ck≤cj

NetWorth(T ∗
i,k)

= vi − cj +
∑

k∈Children(i),

ck≤cj

NetWorth∗(k). (20)

The optimality of T ∗
i implies that, if NetWorth∗(i) > vi, then j must be the

node in Children(i) maximizing the right quantity in Equation 20. The lemma
thus follows from the fact that NetWorth∗(i) ≥ vi: taking no edges in Ti yield
a net worth equal to vi. This completes the proof. 2

Theorem 9 For any communication graph T which is a tree, algorithm Wire-
less Trees in Fig. 4 computes the optimal net worth in O(n) time, using O(n)
total messages and sending one message per link.

PROOF. We first observe that every node i 6= s sends exactly one message
to its parent. This implies the message complexity. As for the running time, we
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Algorithm Wireless Trees Pay at node i = p(j)
(1) After receiving the message (NetWorth∗, λi) from parent p(i), for each

child j ∈ {j| (i, j) ∈ T (i)} do
/* compute the payments for all j ∈ Children(i) that receive the trans-
mission */
(a) λj=0 := NetWorth∗−vj; /* compute NetWorth(A(v), (0,v−j))

*/
(b) x := maxk∈Children(i),k 6=j{−ck +

∑
l∈Children(i),

cl≤ck

µl};
(c) λ−j := NetWorth∗ − µi + vi + max {0, x}; /* compute

NetWorth(A(0,v−j), (0,v−j)) */
(d) λj := λ−j − λj=0;
(e) send (NetWorth∗, λj) to child j;

Fig. 5. The distributed algorithm for computing the payments in top-down fashion.
The code refers to a non-source node; the computation is initialized by s which, at
the end of the bottom-up phase of Algorithm Wireless Trees, has computed the value
NetWorth∗ = µs and it executes the instructions 1a-1e for every j ∈ Children(s)
that receive the transmission.

observe that every node requires a time linear in the number of its children.
So, the overall running time is linear in n, since Wireless Trees proceeds in
bottom-up fashion. Finally, let T be the solution obtained by considering the
component of ∪n

i=1T (i) connected to s (this can be easily obtained in top-down
fashion), where T (i) is defined in Wireless Trees (in Step 1b and modified in
Step 1d.iv in case i has at least one child). The optimality of T can be proved
by induction on the hight of i. In particular, we show that, for every node i,
the net worth of T w.r.t. Ti is equal to µi and that µi = NetWorth∗(i), where
NetWorth∗(i) is defined as in Definition 7. The base step (i.e., when i is a leaf)
is trivial. Let us assume that, for every child j of i, µj = NetWorth∗(j). The
case µi = vi is trivial since T (i) = ∅. As for the other case, let j∗ be defined as
in Wireless Trees. Then, by inductive hypothesis and by the definition of T (i),
the net worth of T w.r.t. Ti is equal to

vi − cj +
∑

k∈Children(i),

ck≤cj∗

µk = vi − cj +
∑

k∈Children(i),

ck≤cj∗

NetWorth∗(k)

= vi + Add(j∗) = µi.

From the definition of j∗, from the “if then else” instructions, and by Lemma 8,
we obtain that the above quantity coincides with NetWorth∗(i). This com-
pletes the proof. 2

In Figure 5 we show a distributed top-down algorithm for computing the
payments P j(·) of Theorem 3. Using the algorithm in Figure 5, from Theorem 9
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Fig. 6. If the power that a station can transmit with is predetermined so to form a
tree, the subgraph containing the connections obtained for free may not be a tree.

and from Theorem 3 we obtain the following:

Corollary 10 If the communication graph is a tree, then the cost sharing
problem on wireless networks admits a distributed O(n)-time truthful mecha-
nism M = (A,P ) satisfying efficiency, NPT, VP, CS and CO. Moreover, M
requires a total of O(n) messages and 2 messages per link.

4.2 Trees with Metric Free Edges

Let us consider the geometric instance in Figure 6 with the following additional
constraint. Station 1 can choose only between two powers: either to reach 2 or
5; all other stations have maximum power only sufficient to reach the closest
one. Thus, the set of possible edges that we can use to build a solution is a tree
(the set of all straight-line edges in Figure 6). However, if station 1 directly
transmits to station 5, then it also reaches all other stations. So, when adding
the corresponding free edges, the resulting graph is no longer a tree.

A simple argument shows that our algorithm for trees does not always compute
an optimal solution for instances like the one in Figure 6. However, in the
sequel we will define a class of instances, termed trees with metric free edges,
for which an exact polynomial-time algorithm exists. This yields a truthful
polynomial-time mechanism satisfying also NPT, VP, CO and CS.

4.2.1 Defining Trees with Metric Free Edges

We consider the case in which the set of edges of the communication graph
G = (S, E) is partitioned into two sets T ∪FreeEdges∗. Similarly to the case
considered in Section 4.1, T induces a directed spanning tree of G rooted at
s, i.e., D(T ) = S. The tree is directed downward and, for every node i, we
must select a set of outgoing edges in the set T . However, each edge (i, j) in
T induces an additional set of “free edges” FreeEdges∗(i, j), defined below.
Adding all such connections to the solution does not increase its cost. These
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connections are specified as follows:

Definition 11 For every node i, we let Ti denote the subtree rooted at i and
Si denote its subset of nodes. Let w∗(i, j) denote the weight of the path in T
connecting the node i to one of its descendants j ∈ Si. Also, for any (i, j) ∈ T ,
let

FreeEdges∗(i, j) := {(i, k) 6∈ T | k ∈ Si, w∗(i, k) ≤ w(i, j)}.

Moreover, for every T ⊆ T , let FreeEdges∗(T ) :=
⋃

(i,j)∈T FreeEdges∗(i, j).
An instance of trees with metric free edges is a tree T and its set of feasible
solutions consists of

Metric(T ) := {T ∪ F | T ⊆ T , F ⊆ FreeEdges∗(T )}.

By referring to the example in Figure 6, we have

T = {(1, 2), (2, 3), (3, 4), (1, 5)}

and FreeEdges∗(1, 5) = {(1, 3), (1, 4)} = FreeEdges∗(T ). Hence, Defini-
tion 11 captures the example in Figure 6 when α = 1. (When α = 1 the
problem is only known to be in P when the source station has enough power
to reach directly all other stations.)

Since we do not allow for all possible subset of edges but only those in
Metric(T ), we adapt the definitions of efficiency and CO in the natural way.
That is, by considering only these feasible subsets of edges and thus by re-
placing ‘E ⊆ E ’ with ‘E ∈ Metric(T )’.

Notice that, for every feasible E ⊆ Metric(T ), no edge in FreeEdges∗(T )
can appear as the longest outgoing edge of a node. Thus, we have

Cost(E) = Cost(E ∩ T ).

For trees with metric free edges, we can always restrict to solutions that build
a subtree T of T and then add all possible edges in FreeEdges∗(T ):

Remark 12 For every instance T of trees with metric free edges and for every
feasible solution S ∈ Metric(T ) it is possible to construct, in polynomial time,
another feasible solution E ∈ Metric(T ) such that E = T ∪ F , T is a subtree
of T , F = FreeEdges∗(T ), and NetWorth(E,v) ≥ NetWorth(S,v).
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4.2.2 The Algorithm

We next provide a recursive way of optimizing the function NetWorth(·) in
the case of trees with metric free edges. In the remaining of this section, we
fix an arbitrary vector v = (v1, . . . , vn) of agents valuations and show how to
compute the optimum w.r.t. this vector. For the sake of readability, we omit
‘v’ in the definitions and notation used throughout this section.

We will restrict to feasible solutions E ∈ Metric(T ) as in Remark 12. Essen-
tial in characterizing and computing such an optimal E ⊆ Metric(T ) will be
the concept of credit of a node. Intuitively, if node i is already reachable from
s, and E contains an edge (i, j), then we distribute w(i, j)− w∗(i, k) units of
credit to each descendent k of i. As we will see, a nonnegative credit encodes
the fact that a descendent k, such that w∗(i, k) ≤ w(i, j), can be connected to
s via the edge (i, k) ∈ FreeEdges∗(i, j).

Let us now proceed formally.

Definition 13 For every tree E ∈ Metric(T ), we let w(E, i) be the maxi-
mum weight among the edges outgoing from i in E (if no such an edge exists,
we simply let w(E, i) = 0). We define the credit at node i, denoted to as
Credit(E@i), as follows. We let Credit(E@s) := 0. Moreover, for every node
i 6= s, we let

Credit(E@i) := max
j∈Ancestors(i)∩D(E)

{w(E, j)− w∗(j, i)}, (21)

where Ancestors(i) is the set of nodes ancestors of i in T . Finally, we let
PossibleCredits(i) :=

⋃
E∈Metric(T ) Credit(E@i).

Lemma 14 For every tree E ∈ Metric(T ), and for every node i, it holds
that i ∈ D(E) if and only if Credit(E@i) ≥ 0. Moreover, if Credit(E@i) < 0,
then Credit(E@j) < 0 for all j ∈ Si.

PROOF. We first show that Credit(E@i) ≥ 0 implies i ∈ D(E). By defini-
tion, Credit(E@i) ≥ 0 implies that there exists an ancestor j of i such that
j ∈ D(E) and

w(E, j)− w∗(j, i) = Credit(E@i) ≥ 0.

Since E is feasible, there exists an edge (j, k) ∈ E with w(E, j) = w(j, k) and
such that (j, k) ∈ T . Since Credit(E@i) ≥ 0, we have w(j, k) − w∗(j, i) ≥ 0,
and thus E also contains the edge (j, i) ∈ FreeEdges∗(T ). By j ∈ D(E), we
conclude that i ∈ D(E) as well.

As for the other direction, observe that, if i ∈ D(E), then there must exist
an ancestor j of i such that j ∈ D(E) and (j, i) ∈ E. By definition, we have
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w∗(j, i) ≤ w(E, j) = Credit(E@i) + w∗(j, i).

We conclude by proving the second part of the lemma. In particular, we show
that, if Credit(E@i) < 0, then Credit(E@j) < 0 for all j ∈ Children(i).
By contradiction, assume Credit(j) ≥ 0, for some j ∈ Children(i). Then, by
definition of credit, there exists (k, l) ∈ E such that k ∈ Ancestors(j)∩D(E),
and Credit(j) = w(k, l)−w∗(k, j). We have seen above that, for Credit(i) < 0,
it holds that i 6∈ D(E), and thus k 6= i. Since j ∈ Children(i), we have
k ∈ Ancestors(i) and, since w∗(k, j) = w∗(k, i) + cj ≥ w∗(k, i), it holds that
Credit(i) ≥ w(k, l) − w∗(k, i) ≤ w(k, l) − w∗(k, j) = Credit(j) ≥ 0. This
contradicts the hypothesis Credit(i) < 0. 2

Definition 15 For every tree E ∈ Metric(T ), and for every node i, we define

NetWorth(E@i) :=


 ∑

j∈D(E)∩Si

vj


− Cost(E ∩ Ti).

Moreover, for every c ∈ PossibleCredits(i), we let

NetWorth∗(i, c) := max
E∈Metric(T ),

Credit(E@i)=c

{NetWorth(E@i)} .

Lemma 16 For every node i and for every c ∈ PossibleCredits(i), with
c < 0, it holds that NetWorth∗(i, c) = 0.

PROOF. Let E∗ be optimal with respect to node i and credit c < 0. Lemma
14 implies that, for every j ∈ Si, j 6∈ D(E). Hence,

NetWorth(E∗@i) =


 ∑

j∈D(E)∩Si

vj


− Cost(E∗ ∩ Ti) =

−Cost(E∗ ∩ Ti) ≤ 0.

If Cost(E∗ ∩ Ti) = 0, then the lemma holds. Otherwise, if Cost(E∗ ∩ Ti) > 0,
then we consider E ′ := E∗ \ (E∗ ∩ Ti). Observe that, by Definition 13 and by
construction of E ′, we have Credit(E ′@i) = Credit(E∗@i) = c < 0. Moreover,
since E ′∩Ti = ∅, we have Cost(E ′∩Ti) = 0. By reasoning as for E∗, we obtain
NetWorth(E ′@i) = 0, thus contradicting the optimality of E∗ for i and c. This
concludes the proof. 2

The next lemma provides the basic recursive equation to be used in our dy-
namic programming algorithm:
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Lemma 17 For every node i and for every c ∈ PossibleCredits(i), with
c ≥ 0, it holds that

NetWorth∗(i, c) = vi + max





∑
j∈Children(i),

c≥cj

{NetWorth∗(j, c− cj)}

maxj∈Children(i),
c<cj

{PayEdge(i, j)}
(22)

where

PayEdge(i, j) :=−cj +
∑

k∈Children(i),

ck≤cj

NetWorth∗(k, cj − ck). (23)

In order to prove this lemma, we need some intermediate results.

Lemma 18 For every tree E ∈ Metric(T ), and for every node i such that
Credit(E@i) ≥ 0, it holds that

NetWorth(E@i) = vi − w(E, i) +
∑

j∈Children(i)

NetWorth(E@j).

PROOF. Observe that

Cost(E ∩ Ti) = w(E, i) +
∑

j∈Children(i)

Cost(E ∩ Tj).

Since Credit(E@i) ≥ 0, Lemma 14 implies i ∈ D(E). Hence,

NetWorth(E@i) =


 ∑

k∈D(E)∩Si

vk


− Cost(E ∩ Ti)

= vi +
∑

j∈Children(i)


 ∑

k∈D(E)∩Sj

vk


− Cost(E ∩ Ti)

= vi +
∑

j∈Children(i)


 ∑

k∈D(E)∩Sj

vk




−w(E, i)− ∑

j∈Children(i)

Cost(E ∩ Tj).

= vi − w(E, i) +
∑

j∈Children(i)

NetWorth(E@j).

This completes the proof. 2
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Lemma 19 Let E, E ′ ∈ Metric(T ) be two trees such that Credit(E@i) =
Credit(E ′@i), for some node i. Then, there exists a tree E ′′ ∈ Metric(T )
such that Credit(E ′′@i) = Credit(E@i) and

NetWorth(E ′′) = NetWorth(E) + NetWorth(E ′@i)−NetWorth(E@i).

PROOF. We start by observing that if NetWorth(E ′@i)−NetWorth(E@i) ≤
0 the lemma easily follows by setting E ′′ = E.

Since E ∈ Metric(T ), there are T ∈ T and F ⊆ FreeEdges∗(T ) such
that E = T ∪ F . Similarly, we let E ′ = T ′ ∪ F ′ with T ′ ⊆ T and F ′ ⊆
FreeEdges∗(T ′). We define a new solution E ′′ = T ′′ ∪ F ′′ by replacing the
edges in the subtree of T rooted at i with those in T ′. In particular, we let
T ′′ := (T \ Ti) ∪ (T ′ ∩ Ti) and F ′′ := FreeEdges∗(T ′′).

We next prove the following:

Credit(E ′′@j) =





Credit(E@j) if j 6∈ Si

Credit(E ′@j) otherwise
(24)

Observe that, for j 6∈ Si and for every k ∈ Ancestors(i), we have w(E ′′, k) =
w(E, k), thus implying Credit(E ′′@j) = Credit(E@j). Now we prove that,
for j ∈ Si, Credit(E ′′@j) = Credit(E ′@j). We start by observing that, for
every ancestor a of j with a ∈ Ti, the solution E ′′ contains all and only
the edges of T ′ which have a as the first endpoint. Otherwise, for a 6∈ Ti,
the solution E ′′ contains all edges of T which have a as the first endpoint.
These two facts, and the fact that Credit(E@i) = Credit(E ′@i) imply that
Credit(E ′′@j) = Credit(E ′@j).

From Equation 24 and by Lemma 14 we obtain

D(E ′′) ∩ (S \ Si) = D(E) ∩ (S \ Si). (25)

D(E ′′) ∩ Si = D(E ′) ∩ Si, (26)

Equation 26 implies

∑

j∈D(E′′)∩Si

vj =
∑

j∈D(E′)∩Si

vj.

This and Equation 25 imply the following:
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Worth(E ′′) =
∑

i∈D(E′′)
vj =

∑

j∈D(E′′)∩(S\Si)

vj +
∑

j∈D(E′′)∩Si

vj

=
∑

j∈D(E)∩(S\Si)

vj +
∑

j∈D(E′)∩Si

vj.

From above equations we obtain the following:

Worth(E ′′)−Worth(E) =
∑

j∈D(E)∩(S\Si)

vj +
∑

j∈D(E′)∩Si

vj +

− ∑

j∈D(E)∩(S\Si)

vj −
∑

j∈D(E)∩Si

vj

=
∑

j∈D(E′)∩Si

vj −
∑

j∈D(E)∩Si

vj. (27)

By definition of E ′′ and T ′′ we have that

Cost(E ′′) = Cost(T ′′) = Cost(T \ Ti) + Cost(T ′ ∩ Ti)

= Cost(E \ Ti) + Cost(E ′ ∩ Ti). (28)

Similarly

Cost(E) = Cost(E \ Ti) + Cost(E ′ ∩ Ti).

This and Equation 28 imply

NetWorth(E ′′)−NetWorth(E) =∑

j∈D(E′)∩Si

vj −
∑

j∈D(E)∩Si

vj + Cost(E ∩ Ti)− Cost(E ′ ∩ Ti) =

NetWorth(E ′@i)−NetWorth(E@i).

This proves the second part of the lemma. The first part follows from Equa-
tion 24. This concludes the proof. 2

Lemma 20 Let E∗ be an optimal solution with respect to node i and credit
c ∈ PossibleCredits(i), that is, NetWorth∗(i, c) = NetWorth(E∗@i) and
Credit(E∗@i) = c. Then, for every j ∈ Si, it holds that

NetWorth(E∗@j) = NetWorth∗(j, Credit(E∗@j)).

PROOF. By definition of NetWorth∗(j, Credit(E∗@j)), it holds that

NetWorth(E∗@j) ≤ NetWorth∗(j, Credit(E∗@j)), (29)
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for all j ∈ Si. We proceed by way of contradiction and show that, if Inequality
29 is strict for some j ∈ Si, then there exists a feasible solution E ′ such that
Credit(E ′@j) = Credit(E∗@j) and NetWorth(E ′@j) > NetWorth(E∗@j).
Lemma 19 implies the existence of a feasible solution E ′′ such that

Credit(E ′′@j) = Credit(E∗@j)

and

NetWorth(E ′′) = NetWorth(E∗) + NetWorth(E ′@j)−NetWorth(E∗@j)

> NetWorth(E∗).

From the proof of Lemma 19 we have that E ′′ differs from E∗ only in the
subtree Ti, thus implying

NetWorth(E ′′)−NetWorth(E ′′@i) = NetWorth(E∗)−NetWorth(E∗@i).

This combined with the previous inequality yields

NetWorth(E ′′@i) > NetWorth(E∗@i)

contradicting the optimality of E∗ with respect to node i and credit c. 2

We are now in a position to prove Lemma 17.

PROOF of Lemma 17. Let E∗ be an optimal solution with respect to node
i and credit c ∈ PossibleCredits(i), with c ≥ 0.

We next consider two cases:

E∗ contains no outgoing edge from i. In this case, we have w(E, i) = 0.
Moreover, for every j ∈ Children(i), we also have Credit(j) = Credit(i)−
cj = c− cj. We then have

NetWorth(E∗@i) = (from Lemma 18)

vi +
∑

j∈Children(i)

NetWorth(E∗@j) = (from Lemma 20)

vi +
∑

j∈Children(i)

NetWorth∗(j, c− cj) = (from Lemma 16)

vi +
∑

j∈Children(i),

cj≤c

NetWorth∗(j, c− cj). (30)
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E∗ contains at least one outgoing edge from i. Let (i, j) be the longest
such an edge. We first observe that it must be the case that cj > c, since
otherwise the solution without (i, j) would give the same credit for node i
and it would also be better, thus contradicting the optimality of E∗. We thus
have w(E, i) = cj and, for every k ∈ Children(i), Credit(E@k) = cj − ck.
Hence,

NetWorth(E∗@i) = (from Lemma 18)

vi − cj +
∑

k∈Children(i)

NetWorth(E∗@k) = (from Lemma 20)

vi − cj +
∑

k∈Children(i)

NetWorth∗(j, cj − ck) = (from Lemma 16)

vi − cj +
∑

k∈Children(i),

ck≤cj

NetWorth∗(k, cj − ck) = (from Equation 23)

vi + PayEdge(i, j).

Since NetWorth(T ∗@i) = NetWorth∗(i, c), it follows that j must be the
child of i, with c < cj, maximizing PayEdge(i, ·). That is

NetWorth∗(i, c) = max
j∈Children(i)

c<cj

PayEdge(i, j). (31)

Finally, since NetWorth(E∗@i) = NetWorth∗(i, c), E∗ must be such that the
best between the two cases above (Equations 30 and 31) is computed. This
easily implies Equation 22 and the lemma thus follows.

Lemma 17 implies the following result:

Theorem 21 For every instance T of metric free edges, the optimal net worth
can be computed in O(n2) time.

PROOF. Observe that, we need to compute, for each node i ∈ S, the function
NetWorth∗(i, c) only for c ∈ PossibleCredits(i). These values are at most
n − 1, that is, one for each edge in the tree T . By proceeding in bottom-up
fashion, from Lemma 17, the computation of NetWorth∗(i, c) requires a time
linear in the number of children of i, for a fixed c (once NetWorth∗(·, ·) has
been computed for each i’s child). Since we need to consider at most n − 1
different values of c the overall running time is O(n2). 2

In the case of trees with metric free edges we are given a set of feasible solutions
Metric(T ), for a given tree T connecting s to all nodes. Recall that we are
interested in maximizing the net worth over all feasible solutions in Metric(T )
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and that the definitions of efficiency and CO are modified in the natural way
by considering only E ∈ Metric(T ). We can thus apply Theorem 3 also to
this problem (see Remark 4). Hence, the above result implies the following:

Corollary 22 The cost sharing problem on wireless networks, in the case of
trees with metric free edges, admits a polynomial-time mechanism M = (A,P )
satisfying truthfulness, efficiency, NPT, VP, CS and CO.

4.3 The One-Dimensional Euclidean Case

We consider now the problem restricted to the Euclidean case with ` = 1. We
consider a set S = {s1, . . . , sn} of stations located on a line, from left to right.
For sake of simplicity, we denote si simply as i.

Definition 23 For any 1 ≤ i < j ≤ n, let I = {i, i + 1, . . . , j} be the set of
consecutive stations from i to j. We denote I as the interval of stations [i, j].

We start with a simple fact. It is easy to see that if the source s reaches a set
of stations in at most h hops then the set is an interval:

Fact 24 Given any multicast tree T of a one-dimensional Euclidean network,
D(T ) is an interval of stations [iT , jT ] for some iT and jT .

In the case of one-dimensional Euclidean networks, one can optimally solve
the problem of computing the optimal net worth even when imposing that a
node must be connected to the root s via a path of at most h hops:

Definition 25 The h net worth of a solution E ⊆ E is the net worth obtained
by considering only the nodes i that, according to E, are connected to s via a
path of at most h edges.

Lemma 26 For each X ⊂ S interval of stations, the solution Sol minimizing
the cost of reaching X from s in at most h hops uses only the stations in X.

PROOF. Let X = [x1, xk]. Thus in X we have a leftmost station x1 and
a rightmost station xk. Because of Fact 24 reaching both x1 and xk implies
reaching X. Therefore, we only prove that the stations to the left (respectively
right) of x1 (respectively xk) are not useful in reaching x1 nor xk. Let x be a
station on the left of x1. By contradiction, let us suppose that Sol uses x: this
means that s reaches x in at most h hops. If x is useful to reach x1 then we
can delete the edge ingoing in x (thus yielding a lower cost) because we have
already reached x1 in at most h hops. The other case we have to consider is
if x is useful to reach xk to the right of s. In such a case we can change the
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edge (x, xk) with the edge (s, xk) and obtain a lower cost feasible solution.
This contradicts the optimality of Sol. The proof is similar if x is on the right
of xk. 2

Finally we have the main result of this section:

Theorem 27 The optimal h net worth of any given communication graph
G corresponding to a one-dimensional Euclidean network can be computed in
O(h · n4) time.

PROOF. We use as subroutine the algorithm in [9] for computing the mini-
mum cost of an h-hop range assignment on a one-dimensional Euclidean wire-
less network. We denote the algorithm in [9] as CDS. From Lemma 26 we can
restrict to instances X = [xl, xr], for some xl and xr. For every pair (xl, xr), by
using algorithm CDS, we compute the optimal cost for the interval [xl, xr],
say Cost(X). Fact 24 implies that, when xl = iT ∗ and xr = jT ∗ , for some
optimal solution T ∗, this yields the optimal net worth. Since CDS runs in
O(h · n2) time and we have to consider only O(n2) different pairs, then the
resulting algorithm runs in O(h · n4) time. 2

Theorem 3 and Theorem 27 imply the following result (the last part follows
from Remark 4):

Corollary 28 The cost sharing problem on one-dimensional Euclidean wire-
less networks admits a polynomial time mechanism M = (A,P ) satisfying
truthfulness, efficiency, NPT, VP, CS, and CO. This holds also with the ad-
ditional constraint of computing multicast trees of depth at most h.

5 Mechanisms Based on Universal Multicast Trees

In this section we propose an application of our optimal algorithm given in
Section 4.1. In particular, we consider mechanisms that pre-compute some
broadcast tree T , that is, D(T ) = S, and then solve the problem by comput-
ing an optimal subtree T of T . Notice that the first step is performed inde-
pendently of the (declared) agent valuations, while the second one computes
an optimal solution for the instance (T , v). Let Algun denote this algorithm.
Then the following result is a simple generalization of Corollary 10.

Theorem 29 There exists a payment function Pun such that the mechanism
Mun = (Algun, Pun) satisfies truthfulness, NPT, VP and CS. Moreover, if
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Algun runs in polynomial time, then the payment functions Pun are computable
in polynomial time as well.

PROOF. Consider the mechanism Mun = (Algun, Pun). Let A be the optimal
algorithm used in the definition of Algun to select a subtree of T . Let M =
(A,P ) be the mechanism obtained with the payments P of Theorem 3. Then,
M satisfies truthfulness, NPT, VP and CS when restricting the problem to
T . Let P i

un(bi,b−i) := P i(bi,b−i). Clearly, (Algun, Pun) satisfies NPT and VP.
Let us observe that, by definition, A(b) = Algun(b). For any T ⊆ E , let
ServicedTi (T ) = 1 if node i is reachable from s using the edges in T ∩T (i.e., i
is in the set of destination nodes of T also when restricting the problem to the
communication graph T ), and ServicedTi (T ) = 0 otherwise. Since A(b) ⊆ T ,
it holds that ServicedTi (A(b)) = Servicedi(A(b)). This implies that the utility
of agent i w.r.t. M and T is equal to the utility of agent i w.r.t. Mun and G,
that is

vi · ServicedTi (A(b))− P i(bi,b−i) = vi · Servicedi(A(b))− P i
un(bi,b−i).

This implies that, since M is truthful, then Mun is truthful as well. Finally,
CS follows from the fact that D(T ) = S. 2

The next result provides an upper bound on the approximability of the cost
sharing problem when the input communication graph is not a tree. The idea
is to pre-compute a shortest-path tree of it and then extract the best multicast
tree out of this tree.

Theorem 30 There exists a polynomial-time mechanism Mun = (Algun, Pun)
satisfying truthfulness, NPT, VP, CS and O(l)-CO, where l = |D(T )| and T
is the computed solution. Additionally, for any ϕ < 1 and for all instances
that admit an optimal solution T ∗ satisfying |D(T ∗)| ≤ ϕWorth(T ∗,v)

Cost(T ∗) , Mun

guarantees also ( k
1−ϕ

)-efficiency, with k = |D(T ∗)|. Thus, in this case, Mun

guarantees O(n)-efficiency.

PROOF. Let T ∗ be an optimal solution for the initial communication graph
G, and let NetWorthopt = NetWorth(T ∗,v). Also let T be a shortest-path
tree of G. Since T is a shortest-path tree of G, there exists a subtree T ′ such
that Worth(T ′,v) ≥ maxi∈D(T ∗) vi, thus implying

Worth(T ∗,v) ≤ |D(T ∗)|Worth(T ′,v).

Let SP (s, i;G) denote the shortest path in G connecting s to i. It is not
difficult to see that Cost(T ∗) ≥ maxi∈D(T ∗) SP (s, i;G), thus implying that
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Cost(T ′) ≤ Cost(T ∗). Putting things together

NetWorth(T ∗,v)

NetWorth(T ′,v)
=

Worth(T ∗,v)− Cost(T ∗)
Worth(T ′,v)− Cost(T ′)

≤ Worth(T ∗,v)− Cost(T ∗)
Worth(T ∗,v)/|D(T ∗)| − Cost(T ∗)

.

Let k = |D(T ∗)| and ρ = Worth(T ∗,v)/Cost(T ∗). From the hypothesis, it
holds that k ≤ ϕρ, thus implying

NetWorth(T ∗,v)

NetWorth(T ′,v)
≤ ρ− 1

ρ/k − 1
= k

ρ− 1

ρ− k
≤ k

ρ− 1

ρ− ϕρ
<

k

1− ϕ
.

This completes the proof. 2

The above result guarantees O(|D(T ∗)|)-efficiency only in some cases. Theo-
rem 5 rules out the possibility of obtaining this result in general.

5.1 The Case of Geometric Euclidean Graphs

In this section we consider stations located on the `-dimensional Euclidean
space. For this problem restriction, we improve the result in Theorem 30 in
order to guarantee O(1)-CO also when the mechanism returns a multicast tree
transmitting to all nodes. We remark that, unless P = NP, no polynomial-time
mechanism can guarantee that, whenever all users receive the transmission,
property CO holds (this is due to the NP-hardness of the MECBS problem [7]
which we used in the proof of Theorem 6).

Let us first review an MST-based algorithm to build broadcast trees in wireless
networks:

Definition 31 Let MST (S) denote the minimum spanning tree of a set of
points S ⊆ R`. Given a source node s ∈ S, MST brd(S, s) denotes the directed
spanning tree obtained by considering all edges of MST (S) downward directed
from s. Let OPTbrd(S, s) denote the minimum cost among all T ⊆ S ×S such
that D(T ) = S.

The following result concerns the problem of constructing a tree T minimizing
the cost for transmitting to all nodes in S:

Theorem 32 [7,31] For any ` ≥ 1 and for every α ≥ `, there exists a constant
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c`
α such that, for any S ⊆ R`, and for every s ∈ S,

Cost(MST (S, s)) ≤ c`
α ·OPTbrd(S, s).

In particular, c2
2 = 6 [2].

Unfortunately, the same approximability result does not hold if the set of
destinations is required to be a subset of S. Indeed, consider a grid of size√

n × √
n. It may be the case that a node i adjacent to s in the grid is at

distance Ω(
√

n) in the MST . This prevents from optimal solutions when using
this MST-based graph as initial communication graph: this happens when i is
the only node with a strictly positive valuation.

A better result can be obtained by using so called light approximate shortest-
path trees (LAST), introduced in [20], which approximate simultaneously the
cost of the MST and the cost of the shortest path from s to any other node i.
Informally speaking, the following result states that we can achieve O(1)-CO
whenever the computed solution reaches all nodes or very few ones:

Theorem 33 For any k, for any β > 1, for any ` ≥ 2, and for any α ≥ `,
there exists a polynomial-time mechanism M satisfying truthfulness, NPT,
VP, and CS. Additionally, M satisfies O(1)-CO whenever the computed solu-
tion T ′ satisfies D(T ′) = S or |D(T ′)| ≤ k.

PROOF. If D(T ′) = S then, by definition of (β, 1 + 2
β−1

)-LAST (see [20]) it
holds that

Cost(T ′) ≤
(

1 +
2

β − 1

) ∑

(i,j)∈MST (S)

w(i, j).

Since OPTbrd(S, s) ≥ ∑
(i,j)∈MST (S) w(i, j)/c`

α, we obtain

Cost(T ′) ≤ OPTbrd(S, s)c`
α

(
1 +

2

β − 1

)
.

Otherwise, that is, |D(T ′),≤ k, let T ∗
D(T ′) denote the minimal-cost multicast

tree reaching D(T ′). It is not difficult to see that

Cost(T ∗
D(T ′)) ≥ max

i∈D(T ∗
D(T ′))

SP (s, i;G).

From the fact that (β, 1+ 2
β−1

)-LASTs approximate the shortest-path distances
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within a factor β (see [20]), we have

Cost(T ′) ≤ |D(T ′)| · β · max
i∈D(T ∗

D(T ′))
SP (s, i;G) ≤ |D(T ′)| · β · Cost(T ∗

D(T ′)).

In both cases, for every fixed β > 1, we have O(1)-CO. This completes the
proof. 2

6 Conclusion and Open Questions

In this work we have considered the problem of designing a truthful mechanism
for the problem of maximizing the net worth in wireless networks. One of our
results show that it is possible to obtain distributed polynomial-time mecha-
nisms for instances in which the communication graph forms a tree. In general,
designing such distributed mechanisms is considered a very challenging prob-
lem (see e.g. [14]) and we feel it would be interesting to further investigate this
issue in the wireless network model. In particular, Euclidean instances seem
to us the next natural step. Indeed, even for the one-dimensional case, we are
not aware of any method to turn our mechanism into a distributed one. More-
over, to the best of our knowledge, no distributed algorithm for computing
an optimal tree in such instances is know and all existing ones are based on
dynamic programming techniques. Is there any (approximation) distributed
algorithm for the one-dimensional Euclidean case? Another interesting case
is the two-dimensional Euclidean one. Is it possible, for these instances, to
approximate the NetWorth(·) function in polynomial-time?
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