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Abstract. We investigate the problem of sharing the cost of a multi-
cast transmission in a wireless network where each node (radio station)
of the network corresponds to (a set of) user(s) potentially interested in
receiving the transmission. As in the model considered by Feigenbaum
et al [2001], users may act selfishly and report a false “level of interest”
in receiving the transmission trying to be charged less by the system.
We consider the issue of designing a so called truthful mechanisms for
the problem of maximizing the net worth (i.e., the overall “happiness”
of the users minus the cost of the transmission) for the case of wireless
networks. Intuitively, truthful mechanism guarantee that no user has an
incentive in reporting a false valuation of the transmission. Unlike the
“wired” network case, here the cost of a set of connections implementing
a multicast tree is not the sum of the single edge costs, thus introduc-
ing a complicating factor in the problem. We provide both positive and
negative results on the existence of optimal algorithms for the problem
and their use to obtain VCG truthful mechanisms achieving the same
performances.

1 Introduction

One of the main benefits of ad-hoc wireless networks relies in the possibility of
communicating without any fixed infrastructure. Indeed, each station is a ra-
dio transmitter/receiver and communication between two stations that are not
within their respective transmission ranges can be achieved by multi-hop trans-
missions: a set of intermediate stations forwards the message till its destination.

In this work, we consider the problem of sharing the cost of a multicast
transmission in such wireless networks. A set of radio stations implements a
directed communication graph which can be used to broadcast a (set of) messages
from a given source node s to any subset of users. In particular, each user j is
sitting close to some station i and she can receive the transmission only if i
does. In addition, user j benefits from receiving the transmission some amount
specified by a value vj (say, how much j valuates the transmission).
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Since transmissions along the edges (i.e., links) of the communication graph
require some costs (i.e., the power consumption of the station forwarding the
messages), one would like to select a suitable set of nodes, to which the trans-
mission is sent to, so that (i) the users share the cost of the transmission, and
(ii) the overall net worth is maximized: the net worth is defined as the sum of
the vjs of all users receiving the transmission minus the overall cost due to the
used links.

Although the costs of the links are a property of the network (thus known to
the “protocol”), the valuation vj is clearly a property of user j. Thus, each vj is
a private piece of information (a part of the input) held by user j only. So, a user
may act selfishly and report a different value bj trying to receive the transmission
at a lower price. We thus need to design so called truthful mechanism for our
problem, that is, a suitable combination of an algorithm A and payments to the
users which guarantee that (i) no user j has an incentive in reporting bj �= vj ,
and (ii) the algorithm A, once provided with the correct vjs, returns an optimal
solution.

This problem has been previously considered in the context of “classic” wired
networks in [15]. In this work we consider a different model, that is, the wireless
network one. The main difference between the two models relies on the different
cost functions, which turns out to be a key point for solving the problem above.

Cost of Wireless Connections. Consider a directed weighted communication graph
G = (S, E , w) defined as follows: S is the set of stations, and G contains a directed
edge (i, j) ∈ E if and only if the direct transmission from i to j is feasible; in this
case the weight w(i, j) is the minimum power required for station i to directly
transmit to station j. For instance, in the empty space w(i, j) = d(i, j)2, where
d(i, j) is the Euclidean distance between i and j.

Each station is a radio transmitter/receiver and a station i is able to directly
transmit a message to station j if and only if the power Pi used by station
i satisfies Pi ≥ w(i, j). Stations use omnidirectional antennas, and a message
sent by station i to j can be also received by every other station j′ for which
w(i, j′) ≤ w(i, j). In order to reduce the power consumption, every station i
can adjust its transmission power Pi, thus implementing the set of connections
{(i, j)| w(i, j) ≤ Pi}. Hence, given a set of connections C ⊆ E , its cost is defined
as follows:

Cost(C) =
∑

i∈S
max

j:(i,j)∈C
w(i, j), (1)

that is, the overall power consumption required to implement all these connec-
tions.

Net Worth of a Multicast Transmission. We are interested in sets C ⊆ E which
guarantee that, given a distinguished source node s, the set C connects s to a
suitable set D(C) ⊆ S of destination nodes. Consider a set U of users, each of
them located close to some of the nodes in S. The source s can send some kind
of transmission (say a movie or a sport event) to a user j only if j is close to
some of the destination nodes D(C). In addition, every user j has a valuation
vj of the transmission representing how much she would benefit from receiving
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it (i.e., how much she would pay for it). As in the model of [15], we consider
the situation in which each user j is sitting close to one station, say i; the latter
represents the router of the network at distance one hop from user j. So, user
j can receive the transmission only if node i does. Observe that, we can always
reduce the case of several users located close to the same node to the case of (at
most) one user close to one node (consider each user as a node with no outgoing
edges and one ingoing edge of cost 0). Given a solution T ⊆ E , its net worth is
defined as

NW(T ) = Worth(T ) − Cost(T ), (2)

where Worth(T ) =
∑

i∈D(T ) vi.
The cost sharing problem asks for a T ⊆ E that, for a given source s, maxi-

mizes the net worth function above.
Selfish Users and Economical Constraints. Associated to each node there is a
selfish agent reporting some (not necessarily true) valuation bi; the true value vi

is privately known to agent i. Based on the reported values b = (b1, b2, . . . , bn)
a mechanism M = (A, P ) constructs a multicast tree T using algorithm A (i.e.
T = A(b)) and charges, to each agent i, an amount of money to pay for receiving
the transmission equal to P i(b), with P = (P 1, P 2, . . . , Pn).

There is a number of natural constraints/goals that we would like a mecha-
nism M = (A, P ) to satisfy/meet:
1. Truthfulness (or Strategyproofness)1. For every i, let b−i := (b1, b2, . . . ,
bi−1, bi+1, . . . , bn) and (bi, b−i) := b. The utility of agent i when she reports bi,
and the other agents report b−i, is equal to

ui(bi, b−i) :=
{

vi − P i(bi, b−i) if T = A(bi, b−i) and i ∈ D(T ),
0 otherwise.

We require that, for every i, for every b−i, and for every bi �= vi, it holds that
ui(vi, b−i) ≥ ui(bi, b−i). In other words, whatever strategy the other agents fol-
low, agent i has no incentive to lie about her true valuation vi. A mechanism
satisfying this property is called truthful.
2. Efficiency. The net worth NW(T ) yielded by the computed solution T is
maximum, that is, NW(T ) = maxC⊆E{NW(C)}.
3. No Positive Transfer (NPT). No user receives money from the mechanism,
i.e., P i(·) ≥ 0.
4. Voluntary Participation (VP). We never charge a user an amount of
money grater than her reported valuation, that is, ∀bi, ∀b−i bi ≥ P i(bi, b−i).
In particular, a user has always the option to not paying for a transmission for
which she is not interested.
5. Consumer Sovereignty (CS). Every user is guaranteed to receive the
transmission if she reports a high enough valuation.
6. Budget Balance (BB).

∑
i P i(b) = Cost(A(b)).

7. Cost Optimality (CO). The set of connections T is optimal w.r.t. the set
of receivers D(T ), that is, Cost(T ) = minC⊆E,D(T )=D(C){Cost(C)}.
1 In Sect. 2 we provide a more general definition of truthfulness which applies to a

wide class of problems involving selfish agents.
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Clearly, the Efficiency requirement implies the Cost Optimality. Unfortu-
nately, in some cases it is impossible to achieve efficiency, so we will relax it to
r-efficiency, that is, r ·NW(T ) ≥ maxC⊆E{NW(C)}. In these cases, we will take
into account CO and r-CO, i.e., Cost(T ) ≤ r · min C⊆E,

D(T )=D(C)
{Cost(C)}.

1.1 Previous Work

Power Consumption and Range Assignment Problems. The problem of comput-
ing a broadcast tree of minimal cost for wireless networks has been investigated
in [19, 13, 9, 30]. In particular, in [19] the authors proved that the problem is
NP-hard to approximate within logarithmic factors, while it remains NP-hard
even when considering geometric 2-dimensional networks [9]. Several variants of
this problem have been considered in [23, 12, 13, 9, 30, 5, 6, 1] (see also [10] for a
survey). However, to our knowledge, no algorithmic solution for optimizing the
net worth has been given so far.

Recently, the design of truthful mechanisms for the range assignment problem
in presence of “selfish transmitters” (i.e., selfish agents that want to minimize
the energy their station has to use) has been investigated in [2] for the strongly
connectivity problem, and in [3] for point-to-point transmissions, respectively.
Mechanism Design and Cost-Sharing Mechanisms in Wired Networks. The the-
ory of mechanism design dates back to the seminal papers by Vickrey [29], Clarke
[8] and Groves [18], and recently found a natural application to (algorithmic)
questions related to the Internet [25] (see also [16] and [26]). VCG mechanisms
guarantee the truthfulness under the hypothesis that the mechanism is able to
compute the optimum and the optimization function is utilitarian (see Sect. 2
for a formal definition of utilitarian problem).

This technique is employed in [15] (and in this work) where the authors
consider the wired networks case. They indeed provide a distributed optimal
algorithm for the case in which the communication graph is a directed tree. This
yields a distributed mechanism2 which, for this problem version, satisfies all
requirements mentioned above (truthfulness, efficiency, etc.) except for budget
balance.

Noticeably, a classical result in game theory [17, 28] implies that, for this
model, budget balance and efficiency are mutually exclusive. Additionally, in
[14] (see also Theorem 5 in [7]) it is shown that no α-efficiency and β-efficiency
can be guaranteed simultaneously, for any two α, β > 1. So, the choice is to either
optimize the efficiency (as in [15]) or to meet budget balance (as in [20, 21, 7]).
In the latter case, it is also possible to obtain so called group strategyproofness, a
stronger notion of truthfulness which can also deal with coalitions. On the other
hand, if we insist on efficiency, NPT, VP, and CS, then there is essentially only
one such mechanism: the marginal-cost mechanism [24], which belongs to the
VCG family.

All such negative results apply also to our problem (i.e., wireless networks).
Indeed, a simple observation is that every instance of the “wired” case can be
2 The mechanism is able to compute both the solution and the payments in distributed

fashion.
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reduced to the wireless one using the following trick: replace every edge (i, j),
with two edges (i, x(i, j)) and (x(i, j), j) with w(i, x(i, j)) = 0 and w(x(i, j), j) =
w(i, j). So, also for our problem we have to choose between either budget balance
of efficiency.

1.2 Our Results

We consider the problem of designing mechanisms that satisfy truthfulness, ef-
ficiency, NPT, VP, CS, and CO in the case of wireless networks. We first show
that, even though the problem is not utilitarian, it is possible to adapt the
VCG technique so as to obtain truthful mechanisms based on exact algorithms
(Sect. 2).

Unfortunately, the problem is NP-hard, thus preventing from a straightfor-
ward use of the VCG result to obtain polynomial-time truthful mechanisms.
Motivated by this negative result, we first consider the problem restricted to
communication graphs that are trees (this is the analogous of the result for
wired networks in [15]). We prove that, in this case, the optimal net worth can
be computed via a polynomial time distributed algorithm (Sect. 3.1). The im-
portance of this result3 is threefold:

– It shows that the hardness of the problem is confined in the choice of a
“good” multicast tree, and not in its use: if an “oracle” provides us with a
tree containing an optimal multicast tree, then we can compute the optimum
in polynomial-time.

– It is used to obtain a truthful distributed polynomial-time mechanism satis-
fying NPT, VP, CS, and efficiency when the given communication graph is
a tree. In this case, both the solution and the payments can be computed in
distributed fashion using O(1) messages per link.

– It can be used to approximate the problem in some situations for which
a good “universal” tree exists, i.e., a tree containing a set of connections
of cost not much larger than the optimal solution and reaching the same
set of nodes. This approach is similar to that of several wireless multicast
protocols4 which construct a multicast tree by pruning a broadcast tree T
(e.g., MIP, MLU and MLiMST in [13]). In all such cases, one can assume
that the communication graph G is the tree T .

Moreover, we show that a shortest-path tree can be used as universal tree
so to obtain a polynomial-time mechanism satisfying truthfulness, NPT, VP,
CS, and O(n)-CO, for the case of any communication graph G. In addition, our
mechanism guarantees |D(T ∗)|-efficiency, for all instances that admit an optimal
solution T ∗ satisfying |D(T ∗)| ≤ γ Worth(T∗)

Cost(T∗) , for some constant γ < 1 (Sect. 3.2).
We also prove that, in general, for any R > 0, no polynomial-time algorithm
can guarantee R-efficiency, unless P = NP. Notice that, this result rules out the
possibility of having polynomial-time mechanisms satisfying O(n)-efficiency.
3 Independently from this work, Biló et al [4] also provide polynomial-time truthful

mechanisms for trees in the case of wireless networks.
4 In this case the set of destination nodes (termed multicast group) is given in input.
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We then extend our positive result to a class of graphs denoted as trees with
metric free edges (see Sect. 3.3). Our technical contribution here is a non-trivial
algorithm extending the technique and the results for trees.

Finally, we turn our attention to the Euclidean versions of the problem, that
is, the case in which points are located on a d-dimensional Euclidean space and
w(i, j) = d(i, j)α, for a fixed constant α ≥ 1. We first show that the problem
remains NP-hard even when d = 2 and for any α > 1 (Sect. 3.4). For the case
d = 1 we provide a polynomial-time mechanism satisfying truthfulness, efficiency,
NPT, VP, CS and CO, with the additional property of ensuring multicast trees
of depth at most h, for any 1 ≤ h ≤ n−1 given in input. This result exploits the
broadcasting algorithm in [11]. For the case d = 2, we present a solution based
on the construction of so called Light Approximate Shortest-path Trees (LASTs)
given in [22]. This achieves a better performance w.r.t. MST-based solutions in
several cases.

Due to lack of space some of the proofs are omitted. We refer the interested
reader to the full version of this work [27].

2 Optimal Algorithms Yield Truthful Mechanisms

For the sake of completeness, we first recall the classical technique to obtain
truthful mechanisms for utilitarian problems known as VCG-mechanism [29, 8,
18]. We then show how to adapt this technique to our (non-utilitarian) problem.

Let us first consider a more general situation in which each agent i has
a certain type ti. The valuation of agent i of a solution X is represented by a
function VALi(X, ti), where the function VALi(·, ·) is known to the mechanism. A
maximization problem is utilitarian if its objective function g(·), which depends
on the agents type vector t = (t1, t2, . . . , tn), satisfies

g(X, t) =
n∑

j=1

VALj(X, tj), (3)

for any solution X . Each agent i can declare a different type bi to the mechanism.
We have the following result on the VCG mechanism M = (ALG, PV CG):

Theorem 1. [18] If ALG is an optimal algorithm for a utilitarian problem Π,
then the mechanism M = (ALG, PV CG) is truthful for Π.

Let σi(T ) = 1 if i ∈ D(T ), and 0 otherwise. Notice that, simply setting
VALi(T, vi) := σi(T ) · vi does not satisfy the definition of utilitarian problem
since NW(T ) �=

∑n
i=1 VALi(T, vi) = Worth(T ). Nevertheless, the next results

states that the VCG technique can be adapted to our problem. The main idea is
to initially charge each node by the cost of its ingoing edge in the tree (computed
as in the wireless network case) so to “reduce” our problem to a utilitarian one
(see [27] for the details).
Theorem 2. Let A be a (polynomial-time) exact algorithm for maximizing the
NW(·) function. Then the cost sharing problem on wireless networks admits a
(polynomial-time) mechanism M = (A, PA) satisfying truthfulness, efficiency,
NPT, VP, CS and CO.
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3 Special Communication Graphs

Motivated by the result of the previous section, we focus on the existence of
polynomial-time exact algorithms for the cost sharing problem on wireless net-
works. Since the problem is NP-hard, also for Euclidean 2-dimensional instances
(Sect. 3.4), in the following we will focus on restrictions for which such algorithms
exist.

3.1 Trees

We proceed similarly to [15] and assume that the communication graph is a
directed tree T = (S, E).

Definition 1. For every i ∈ T , let p(i) denote its parent in T . Also let ci =
w(p(i), i) and cs = 0. We denote by Ti the subtree rooted at i, and by ch(i) the
set of i’s children. Finally, NWopt(i) denotes the optimal net worth of Ti, that
is, the optimum for the instance in which i is the source node and the universal
tree is Ti.

Algorithm Wireless Trees at node i

1. After receiving a message µj from each child j ∈ ch(i) do
(a) Add(j) := −cj +

∑
k∈ch(i),ck≤cj

µj ;

(b) T (i) := ∅;
(c) if maxj∈ch(i) Add(j) < 0 then µi := vi

(d) else do
i. Add := maxj∈ch(i) Add(j);
ii. µi := vi + Add;
iii. j∗ := arg max{j ∈ ch(i)|Add(j) = Add};
iv. T (i) := {(i, j)|w(i, j) ≤ w(i, j∗)};

2. send µi to parent p(i);

Fig. 1. The distributed algorithm for trees computing an optimal solution in bottom-up
fashion.

Lemma 1. For every node i, it holds that

NWopt(i) = vi + max{0, max
j∈ch(i)

{−cj +
∑

k∈ch(i),ck≤cj

NWopt(k)}}. (4)

Proof. The proof is by induction on the hight h of Ti. Obviously, for h = 1, since
i is a leaf node, then NWopt(i) = vi. Let us now assume that the lemma holds for
any h′ ≤ h − 1, and let us prove it for h. Let T ∗

i denote an optimal solution for
Ti. Let us first observe that, if NWopt(i) = NW(T ∗

i ) > vi, then T ∗
i must contain

at least one outgoing edge from node i. Let (i, j) be the longest such edge in
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T ∗
i . For any node k ∈ Ti, let T ∗

i,k denote the subtree of T ∗
i rooted at k. Since

(i, j) ∈ T ∗
i , then k ∈ D(T ∗

i ), for all k ∈ ch(i) such that ck ≤ cj . So,

Worth(T ∗
i ) = vi +

∑

k∈ch(i),ck≤cj

Worth(T ∗
i,k), (5)

Cost(T ∗
i ) = cj +

∑

k∈ch(i),ck≤cj

Cost(T ∗
i,k). (6)

Let us now suppose, by contradiction, that there exists a l ∈ ch(i), with cl ≤ cj

and NW(T ∗
i,l) < NWopt(l). Let T ′

l denote the subtree of Tl yielding optimal net
worth w.r.t. Tl, that is, NW(T ′

l ) = NWopt(l). Let T ′
i be the solution obtained

by replacing, in T ∗
i , T ∗

i,l with T ′
l . Since T ′

i still contains all edges (i, k), with
w(i, k) ≤ w(i, j), we have that

Worth(T ′
i ) ≥ Worth(T ′

l ) + vi +
∑

k∈ch(i),ck≤cj,k �=l

Worth(T ∗
i,k). (7)

Clearly, Cost(T ′
i ) = Cost(T ∗

i )−Cost(T ∗
i,l)+Cost(T ′

l ). This, combined with Eq. 7,
yields NW(T ′

i ) ≥ NW(T ∗
i )−NW(T ∗

i,l)+NW(T ′
l ). From the hypothesis NW(T ∗

i,l) <
NWopt(l) = NW(T ′

l ), we obtain NW(T ′
i ) > NW(T ∗

i ), thus contradicting the op-
timality of T ∗

i . So, for every k ∈ ch(i) with ck ≤ cj , it must hold NW(T ∗
i,k) =

NWopt(k). From Eq.s 6-5 we obtain

NWopt(i) = NW(T ∗
i ) = vi − cj +

∑

k∈ch(i),ck≤cj

NW(T ∗
i,k)

= vi − cj +
∑

k∈ch(i),ck≤cj

NWopt(k). (8)

The optimality of T ∗
i implies that, if NWopt(i) > vi, then j must be the node in

ch(i) maximizing the right quantity in Eq. 8. The lemma thus follows from the
fact that NWopt(i) ≥ vi: taking no edges in Ti yield a net worth equal to vi. This
completes the proof.

Theorem 3. For any communication graph T which is a tree, algorithm Wire-
less Trees computes the optimal net worth in polynomial time, using O(n) total
messages and sending O(1)-messages per link.

In Fig. 2 we show a distributed top-down algorithm for computing P j
A(·) of

Theorem 2 (see the proof in [27]). The code refers to a non-source node; the
computation is initialized by s which, at the end of the bottom-up phase of
Algorithm Wireless Trees, has computed the value NWopt = µs and it executes
the instructions 1a-1e for every j ∈ ch(s).

Using the algorithm in Fig. 2, from Theorem 3 and from Theorem 2 we obtain
the following:

Corollary 1. If the communication graph is a tree, then the cost sharing prob-
lem on wireless networks admits a distributed polynomial-time truthful mecha-
nism M = (A, PA) satisfying efficiency, NPT, VP, CS and CO.
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Algorithm Wireless Trees Pay at node i = p(j)

1. After receiving the message (NWopt, λ
i) from parent p(i), for each child j ∈ ch(i)

do
(a) λj=0 := NWopt − bj ;
(b) x := maxk∈ch(i),k �=j{−ck +

∑
l∈ch(i),cl≤ck

µl};
(c) λ−j := NWopt − µi + vi + max {0, x};
(d) λj := λ−j − λj=0;
(e) send (NWopt, λ

j) to child j;

Fig. 2. The distributed algorithm for computing the payments in top-down fashion.

3.2 Do Good Universal Muticast Trees Exist?

In this section we propose an application of our optimal algorithm given in
Sect. 3.1. In particular, we consider mechanisms that pre-compute some broad-
cast tree T (i.e., D(T ) = S) and then solve the problem by computing an optimal
subtree T of T . Let ALGun denote the resulting algorithm. The following result
is a simple generalization of Corollary 1.

Theorem 4. There exists a payment function Pun such that Mun = (ALGun,
Pun) satisfies truthfulness, NPT, VP and CS. Moreover, if ALGun runs in poly-
nomial time, then the payment functions Pun are computable in polynomial time
as well.

The next result provides an upper bound on the approximability of the cost
sharing problem when the input communication graph is not a tree. The idea is
to use a shortest-path tree as universal tree.

Theorem 5. There exists a polynomial-time mechanism Mun = (ALGun, Pun)
satisfying truthfulness, NPT, VP, CS and O(l)-CO, where l = |D(T )| and T
is the computed solution. Additionally, for any γ < 1 and for all instances that
admit an optimal solution T ∗ satisfying |D(T ∗)| ≤ γ Worth(T∗)

Cost(T∗) , Mun guarantees
also ( k

1−γ )-efficiency, with k = |D(T ∗)|. Thus, in this case, Mun guarantees
O(n)-efficiency.

The above result guarantees O(|D(T ∗)|)-efficiency only in some cases. The
next theorem rules out the possibility of obtaining polynomial-time O(|D(T ∗)|)-
efficiency in general. Its proof is a simple adaptation of an analogous result for
the wired case in [15].

Theorem 6. For any R > 0, no polynomial-time R-approximation algorithm
(mechanism) exists, unless P = NP.

3.3 Trees with Metric Free Edges

We consider the case in which the set of edges of the communication graph
G = (S, E) is partitioned into two sets T ∪ F . Similarly to the case considered
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in Sect. 3.1, T induces a spanning tree of G, i.e., D(T ) = S, and, for every node
i, we must select a set of outgoing edges in the set T . However, each of these
edge also induces a set of “additional connections for free” in the set F , that is,
for every (i, k) ∈ F , w(i, k) = 0. So, adding all such connections to the solution
does not increase its cost. These connections are specified as follows. Let w∗(i, j)
denote the weight of the path in T connecting the node i to one of its descendants
j. Let us define FREE(i, j) := {(i, k)| w∗(i, k) ≤ w(i, j)∧ (i, j) ∈ T ∧ (i, k) /∈ T }.
Moreover, for every T ⊆ T , let F(T ) :=

⋃
(i,j)∈T FREE(i, j), and F := F(T ). We

consider the restriction of the problem in which every feasible solution C ⊆ T ∪F
must fulfill the following property: C contains an edge (i, k) ∈ F if and only if
it also contains an edge (i, j) ∈ T with w∗(i, k) ≤ w(i, j). In other words, no
edge in F can appear as the longest outgoing edge of a node in any solution
C, thus implying Cost(C) = Cost(C ∩ T ). Observe that this definition captures
some restrictions of the 2-dimensional Euclidean case (see [27] for a discussion).

The following result allows us to apply Theorem 2 and obtain a truthful
mechanism.

Theorem 7. The optimal net worth, in the case of metric free edge, of any
given tree T can be computed in polynomial time.

Corollary 2. The cost sharing problem on wireless networks, in the case of
trees with metric free edges, admits a polynomial-time mechanism M = (A, PA)
satisfying truthfulness, efficiency, NPT, VP, CS, CO.

3.4 Geometric Euclidean Graphs

In this section we consider so called geometric communication graphs, that is,
stations are located on the d-dimensional Euclidean space, the communication
graph is a complete graph with w(i, j) := d(i, j)α, where α ≥ 1 is a fixed constant
and d : Rd → R+ is the Euclidean distance.

Theorem 8. The problem of maximizing NW(·) is NP-hard, even when re-
stricted to geometric wireless networks, for any d ≥ 2 and any α > 1.

Definition 2. Let MST(S) denote the minimum spanning tree of a set of points
S ⊆ Rd. Given a source node s ∈ S, MSTbrd(S, s) denotes the directed spanning
tree obtained by considering all edges of MST(S) downward directed from s. Let
optbrd(S, s) denote the minimum cost among all T ⊆ S ×S such that D(T ) = S.

The following result concerns the problem of constructing a tree T minimizing
the cost for transmitting to all nodes in S:

Theorem 9. [9, 30] For any d ≥ 1 and for every α ≥ d, there exists a constant
cd
α such that, for any S ∈ Rd, and for every s ∈ S, Cost(MST(S, s)) ≤ cd

α ·
optbrd(S, s). In particular, c2

2 = 12 [30].

Unfortunately, the same approximability result does not hold if the set of
destinations is required to be a subset of S (e.g., stations that form a grid of size√

n ×
√

n and only one node with a strictly positive valuation).
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A slightly better result can be obtained by using so called Light Approximate
Shortest-path Trees (LASTs) introduced in [22]:

Theorem 10. For any k, for any β > 1, for any d ≥ 2, and for any α ≥ d,
there exists a polynomial-time mechanism M satisfying truthfulness, NPT, VP,
and CS. Additionally, M satisfies O(1)-CO whenever the computed solution T ′

satisfies D(T ′) = S or |D(T ′)| ≤ k.

We now consider the problem restricted to linear networks, i.e., the Euclidean
case with d = 1. By using the result in [11] it is possible to prove the following:

Theorem 11. The optimal h net worth5 of any given communication graph G
corresponding to a linear network can be computed in polynomial time.

Corollary 3. The cost sharing problem on linear wireless networks admits a po-
lynomial time mechanism M = (A, PA) satisfying truthfulness, efficiency, NPT,
VP, CS, and CO. This holds also with the additional constraint of computing
multicast trees of depth at most h.

Very recently and independently form this work, Biló et al [4] also consider
the Euclidean case and provide O(1)-BB and O(1)-CO mechanisms.
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