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Abstract. We consider the problem of sampling simple paths between
two given vertices in a planar graph and propose a natural Markov chain
exploring such paths by means of “local” modifications. This chain can
be tuned so that the probability of sampling a path depends on its length
(for instance, output shorter paths with higher probability than longer
ones). We show that this chain is always ergodic and thus it converges
to the desired sampling distribution for any planar graph. While this
chain is not rapidly mixing in general, we prove that a simple restricted
variant is. The restricted chain samples paths on a 2D lattice which are
monotone in the vertical direction. To the best of our knowledge, this is
the first example of a rapidly mixing Markov chain for sampling simple
paths with a probability that depends on their lengths.

1 Introduction

Sampling (or generating) a “random” object from a large set of combinatorial
objects is a fundamental problem arising in Statistical Physics, Mathematics,
and Computer Science. Because the number of such objects is typically huge
(i.e., exponential in the size of the input), direct enumeration is unfeasible. An
efficient sampling procedure is thus an important tool for studying statistical
properties of “typical” instances. For many problems, the tasks of uniformly
sampling and counting the number of objects are equivalent [13] and, in most
cases, #P -hard. This includes counting simple paths in graphs [24], also when
restricting to planar graphs [20]. For these cases, sampling is instead consider
according to distributions that are “close” to the desired one [23]. A most relevant
technique for the design of this kind of sampling procedures is the Markov chain
Monte Carlo method [3].

We consider the task of sampling simple paths between two given vertices in
planar graphs according to a fixed probability distribution using Markov chain
Monte Carlo. Since in several applications it is natural to ask for paths of some
fixed length, we thus consider the weighted version of the sampling problem in
which the distribution depends on the length of the paths.

The Markov chain Monte Carlo method involves the design of a Markov chain
whose states are the objects we wish to sample, and whose stationary distribution



is the probability we want to use to sample them. The sampling procedure is then
a “random walk” on the chain for a fixed number of steps, until we are certain
that the probability of sampling one object is (approximately) the stationary
distribution of the chain. A most critical part of this method is proving that the
Markov chain is rapidly mixing, i.e., the number of steps needed to reach the
stationary distribution is polynomially bounded by the size of the input.

While rapidly mixing Markov chains are known for several hard problems,
like graph coloring [6–8, 11], knapsack [19], perfect matchings [12], independent
sets [2, 9, 16], there is essentially no positive result for the case of simple st-paths
on general graphs. The only chain proposed for this setting is by Roberts and
Kroese [22], but it is however not rapidly mixing.

Most of the positive results consider restricted paths over a lattice structure.
In the simplest instance of these restrictions we have paths using only downward
and rightward edges of the two-dimensional grid. This case has been analyzed
[15] also for multiple source-destination paths, where the chain can “get stuck”
because all paths must be disjoint and thus some non-local moves are introduced.
If we further impose the paths to stay above the main diagonal of a square
grid, the so-called staircase walks, the number of such paths is given by the
famous Catalan numbers [5]. Martin and Randall [17] consider a Markov chain
for sampling such paths where the weight of a path is the number of times it
hits the diagonal. In the sampler by Greenberg et al. [10], the weight of a path is
instead the number of faces below it (the authors also consider the more general
case of higher dimensional lattices). Finally, Randall and Sinclair [21] consider
the case where only one end of the path is fixed, and provide an efficient sampler
for all such paths of a given length in the infinite d-dimensional lattice.

1.1 Our Results

We study a natural Markov chain in which a current st-path in a given (undi-
rected, unweighted) planar graph is modified according to a simple local rerout-
ing operation (see Section 3). Roughly speaking, rerouting operations resulting
in longer paths are “accepted” only with small probability, while those resulting
in shorter paths are always accepted. We show that the chain always converges
to the Gibbs distribution on the paths weighted according to their lengths. In
other words, the probability of sampling a specific path x depends only on its
length `(x) and it is of the form

π(x) ∝ λ`(x), (1)

where λ > 0 is a parameter that can be used to “tune” the chain. Setting λ = 1
yields a uniform sampler over all st-paths, while smaller/larger values provide
samples biased towards shorter/longer paths.

Despite this chain being not rapidly mixing in general planar graphs, we
obtain an efficient sampler with Gibbs distribution (1) for the following setting,
depicted in Figure 1. The paths from s to t are monotone in the vertical direction
and the graph is any sub-grid of the 2D lattice without internal holes. The
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Fig. 1: An example of a vertical-monotone path in a sub-grid.

new Markov chain is a restriction of the original one maintaining the “vertical-
monotonicity” of the paths (Section 5). Our main technical contribution is a
rigorous proof that this chain is rapidly mixing for all λ ∈ (0, 1]. In the proof
we combine the technique of path coupling without contraction [1] with the idea
of modifying the chain by making some transitions “more lazy”. Note that in
this restricted setting, an efficient sampler can also be obtained using dynamic
programming (see Appendix B for the details). However, our main interest is in
the analysis of the mixing time of the proposed Markov chain, which is a variant
of a well-known “mountain/valley” chain [17].

We show that our results are tight in the following sense (Section 4). First,
the original “unrestricted” chain is not rapidly mixing for λ = 1 in some planar
graphs. This is true even for sub-graphs of the 2D lattice, and thus for the chain
sampling all paths in a grid, without restricting to vertical-monotone ones. Both
for the restricted and the unrestricted chains, we show that the mixing time is
exponential in the number of vertices for every λ > 1. The latter result is in part
expected because determining if a planar graph has an Hamiltonian path is NP-
hard (and for sufficiently large λ a sampler can be used to solve this problem).
However, our negative results on the Markov chain are stronger in the sense
that the chain remains slowly mixing even for very simple graphs where this
problem can be easily solved. Thus, these results give a certain indication of the
limitation of “local” chains. As for the case λ = 1, the existence of an efficient
(uniform) sampler for planar graphs remains an interesting open problem.

2 Preliminaries

Planar graphs. Given a planar graph G = (V,E), we use n and m to denote
respectively the number of vertices |V | and of undirected edges |E|. By planarity,
the vertices in V can be drawn as points in the plane in a way such that the edges
in E are non-crossing curves; we denote such a drawing as a plane embedding
of G. In a plane embedding, any maximal region of the plane enclosed by edges
of E is called a face; the infinite region not enclosed by any edge is called the
outer face. We use f to denote the overall number of faces, including the outer
face. According to Euler’s formula, the number of faces satisfies f = m− n+ 2.
Note also that in any planar graph f ∈ O(n). Namely, f ≤ 2n− 4 with equality
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achieved by triangulated graphs, i.e., planar graphs in which every face is a
triangle.

A path is a sequence of vertices x = (v1, . . . , vl) such that (vi, vi+1) ∈ E, for
all i = 1, . . . , l − 1; we denote the number of edges along x as |x| = l − 1. In a
simple path no vertex appears more than once. For any two vertices s and t, an
st-path is a simple path starting at s and ending at t. Without loss of generality,
we assume the graph to be 2-connected (we can otherwise easily reduce to this
case).

Markov chains and mixing time. We consider Markov chains M whose state
space Ω is finite. In our application, Ω is the set of all simple st-paths in a given
planar graph. The transition matrix P ∈ R|Ω|×|Ω| defines the transitions of M.
That is, P (x, y) is the probability that the chain moves from state x to state y
in one step. Thus, P t(x, y) is the probability of moving in t steps from state x
to state y, where P t is the tth power of matrix P .

A Markov chain as above is irreducible if, for all x, y ∈ Ω, there exists a t ∈ N
such that P t(x, y) > 0. In other words, every state can be reached with non-zero
probability regardless of the starting state. A Markov chain is aperiodic if, for
all x ∈ Ω, gcd{t ∈ N |P t(x, x) > 0} = 1. It is well known [14] that an irreducible
and aperiodic Markov chain converges to its unique stationary distribution π.
That is, there exists a unique vector π ∈ R|Ω| such that πP = π and, for all
x, y ∈ Ω, it holds

lim
t→∞

P t(x, y) = π(y).

An aperiodic and irreducible Markov chain is called ergodic.
The mixing time of a Markov chain is the time needed for the distribution

P t(x, ·) to get “sufficiently close” to the stationary distribution for any starting
state x. Formally, the mixing time is defined as

tmix(ε) := min
t∈N

max
x∈Ω
{||P t(x, ·)− π||TV ≤ ε}, (2)

where ||P t(x, ·)−π||TV = 1
2

∑
y∈Ω |P t(x, y)−π(y)| is the total variation distance.

It is common [14] to define tmix := tmix(1/4) since tmix(ε) ≤ dlog2(1/ε)etmix. A
Markov chain is rapidly mixing if tmix(ε) is bounded from above by a polynomial
in log(|Ω|) and in log(1/ε).

A rapidly mixing Markov chain can be used to efficiently sample elements
from Ω with probability arbitrarily close to π. Simply simulate a random walk
on the chain from an arbitrary initial state x for t = tmix(ε) time steps and
return the state of the chain at time t. According to (2), the probability P t(x, y)
of the returned state y is approximately π(y).

3 A Markov Chain for Planar Graphs

We now define a Markov chain Mpaths whose state space Ω is the set of all
simple st-paths of a given planar graph. The transitions of Mpaths are defined
by rerouting a current path along one of its adjacent faces (see Figure 2).
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Fig. 2: Rerouting of x along face a.
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Fig. 3: A graph admitting multiple embeddings with different sets of faces.

Definition 1. Let x be an st-path and a be a face adjacent to at least one edge
of x. We say that x can be rerouted along a if the edges in x and a form a single
sub-path of x of length at least one, and the path y obtained by replacing all edges
common to x and a with the edges in a that do not belong to x is simple. In this
case, the rerouting operation consists of replacing x with y.

Note that we forbid rerouting operations that reduce the length of the current
path by introducing a cycle and short-cutting it afterwards. The reason is that
these operations are not “reversible” and would prevent us from using well-
established methods to determine the stationary distribution.3

Markov chainMpaths. Given a parameter λ > 0, the transition from the current
state x to the next one are defined according to the following rule:

1. With probability 1
2 do nothing. Otherwise,

2. Select a face a uniformly at random. If x cannot be rerouted along a then
do nothing. Otherwise,

3. Move to the path y obtained by rerouting x along a with probability

A(x, y) := min

{
1,
λ|y|

λ|x|

}
,

and do nothing with remaining probability 1−A(x, y).

For λ < 1, rerouting operations increasing the length of the current path by `
are accepted with probability λ`, while those reducing it are always accepted.
The converse happens for λ > 1.

3 The analysis of non-reversible Markov chains is in general rather difficult and it is
considered an interesting problem also for simple chains [4].
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Fig. 4: Paths with ∆xy = 2 (left) and ∆xy = 4 (right).

Remark 2. We stress that a planar graph can have different embeddings, and
the transitions ofMpaths depend on the particular given one. Figure 3 shows an
example of a graph admitting an embedding in which there is a face with three
vertices. In the next section we show that the chain is ergodic for any embedding.

Remark 3. For the sake of simplicity we forbid rerouting along the outer face.
Doing so would not change the presented results significantly except in making
the proofs less readable.

4 Analysis of Mpaths

Ergodicity. For all states x ∈ Ω it holds that P (x, x) ≥ 1/2, and thus Mpaths

is aperiodic. To show ergodicity, it then suffices to prove that any two states
x, y ∈ Ω are connected by a path with non-zero probability. Before stating the
main theorem, we first introduce the following notion of “distance” between
st-paths.

Definition 4. Given two st-paths x and y, a maximal sub-path common to x
and y is an ordered sequence of vertices appearing in both paths and not contained
in a longer sequence with the same property. We let ∆xy denote the number of
maximal sub-paths common to x and y.

Note that the definition also allows “degenerate” sub-paths of just one vertex.
For instance, if x and y have only the starting and the ending vertices in common,
then ∆xy = 2. Figure 4 shows examples of paths with different values of ∆xy.

Theorem 5. For any plane embedding of a given graph and any pair of vertices
s and t, the Markov chain Mpaths is ergodic with diameter at most 2n2.

Proof (Sketch). Any two paths x and y such that ∆xy = 2 are connected by a
sequence of at most f paths. Moreover, for ∆xy > 2, there is an intermediate
path x′ such that ∆xx′ = 2 and ∆x′y < ∆xy. Since ∆xy < n and f < 2n in
planar graphs, the theorem follows. ut

Stationary distribution. To characterize the stationary distribution of Mpaths,
we show that, for some probability distribution π, it holds

π(x) · P (x, y) =π(y) · P (y, x), for all x, y ∈ Ω. (3)

It is well-known that π is then the stationary distribution of Mpaths; this prop-
erty is known as the detailed balance condition [14, Proposition 1.19].
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Fig. 5: Graphs with exponential bottleneck ratio.

Theorem 6. For any planar graph and any two vertices s and t, the stationary
distribution of the Markov chain Mpaths is

π(x) =
λ|x|

Z(λ)
, where Z(λ) =

∑
z∈Ω

λ|z|. (4)

The parameter λ can be used to tune the stationary distribution ofMpaths. For
example, by setting λ = 1 the stationary distribution is the uniform distribution
over all simple st-paths.

Mixing time. We conclude this section by providing some negative results con-
cerning the mixing time of Mpaths.

Theorem 7. There exist planar graphs G and vertices s, t such that Mpaths

with λ = 1 is not rapidly mixing.

Proof. We apply the well-known bottleneck theorem [14] which says that, for
any subset of states R ⊂ Ω such that π(R) ≤ 1/2, the following bound on the
mixing time of the chain holds:

tmix ≥
π(R)

4Q(R, R̄)
where Q(R, R̄) =

∑
x∈R,y∈R̄

π(x)P (x, y). (5)

Let G be the planar graph obtained by combining two copies of a planar graph
H as follows. The two copies share only a single edge connecting s and t, and all
other vertices and edges in H are duplicated (see Figure 5a). The set R consists
of the subset of st-paths of G that use only edges in one of the two copies, say
the upper one. Note that R contains the common single-edge path x∗ = (s, t),
that this is the only path in R with transitions to some y ∈ R̄, and that there
are at most two transitions from x∗ to some other state (each edge is adjacent
to at most two faces). Therefore

Q(R, R̄) =
∑

x∈R,y∈R̄
π(x)P (x, y) ≤ 2π(x∗) = 2/|Ω|.

In order to apply the bottleneck theorem we need π(R) ≤ 1/2. This can be
easily achieved by adding two more paths to the bottom copy of H (recall that
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Fig. 6: The transitions of Mmon; p is the probability of selecting a face u.a.r.

R consists of all paths in the upper copy of H). We then get

tmix ≥
π(R)

4Q(R, R̄)
≥ |R|/|Ω|

8/|Ω| = |R|/8.

ut

Corollary 8. There exists an infinite family of planar graphs such that the mix-
ing time of Mpaths satisfies tmix ∈ Ω(λn/2) for all λ > 1.

Proof (Sketch). The claim follows by considering the bottleneck ratio of the
graph in Figure 5b. ut

We note that Theorem 7 holds also for graphs that have a very simple structure,
like two square grids sharing only edge (s, t), and for outerplanar graphs.

5 A Rapidly Mixing Chain for Vertical-Monotone Paths

We now present the rapidly mixing Markov chain Mmon, which is a natural
modification of Mpaths for the case where the graph is a sub-graph of the two-
dimensional lattice (grid) with no holes. That is, every face is either a cell of the
grid or it is the outer face. The chain Mmon samples paths that are vertical-
monotone, that is, that are only monotone in the vertical direction (if we follow
the path from s to t, it never goes up). We thus assume that s lies above or at
the same y-coordinate of t. Though it is straightforward to generate such paths
uniformly at random, our goal is a weighted sampler with probability biased
towards shorter paths according to the parameter λ, i.e., with distribution of
the form (1).

Markov chain Mmon. The chain is a modification of Mpaths in which some
transitions are disallowed and others are “more lazy” (see Figure 6). Specifically,
the chain does not allow to replace an horizontal edge with three edges, and
transitions swapping two consecutive edges of a face are only performed with
probability

γ :=
1 + δ

2
where δ = λ2 and λ ∈ (0, 1].

This choice of γ will be useful for the analysis of the mixing time. Note that
we restrict to the case λ ≤ 1, because the lower bound for λ > 1 of Corollary 8
holds also for Mmon. Note further that Mmon is ergodic with diameter ≤ 2f ,
and its stationary distribution is the same as for Mpaths.
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5.1 Mixing Time of Mmon

To bound the mixing time we use the method of path coupling without contraction
[1]. A path coupling for a chain M can be specified by providing distributions

Px,y[X = x′, Y = y′], for all x, y ∈ Ω such that P (x, y) > 0, (6)

satisfying, for all x, y ∈ Ω such that P (x, y) > 0,

Px,y[X = x′] = P (x, x′) for all x′ ∈ Ω, (7)

Px,y[Y = y′] = P (y, y′) for all y′ ∈ Ω. (8)

We use ρ to denote the shortest-path distance in the Markov chain, i.e., ρ(x, y)
is the minimum number of transitions to go from x to y.

Lemma 9 (Theorem 2 in [1]). Suppose we have a path coupling for a Markov
chain M such that, for all x, y with P (x, y) > 0, it holds

Ex,y[ρ(X,Y )] ≤ 1. (9)

Then, the Markov chainM∗ with transition matrix P ∗ = (P+pminI)/(1+pmin)
has mixing time t∗mix ∈ O

(
D2/pmin

)
, where pmin and D denote respectively the

smallest non-zero transition probability and the diameter of M.

Note that M∗ is the chain with transition probabilities

P ∗(x, y) :=

{
P (x,x)+pmin

1+pmin
if y = x,

P (x,y)
1+pmin

otherwise.

ThereforeM∗ andM have the same stationary distribution. This suggests nat-
urally to run the chain M∗mon for efficiently sample vertical-monotone paths.

Path coupling for Mmon. For the sake of clarity, for every face a we define the
following shorthand:

pa(x) := P (x, x⊕ a),

where x⊕ a denotes the path obtained by rerouting x along a. We define a path
coupling by specifying, for every pair (x, y) such that x and y differ in one face
d, the probabilities in (6) to move to a pair (x′, y′):

(x, y) 7→ (x⊕ d, y) with probability pd(x), (10)

(x, y) 7→ (x, y ⊕ d) with probability pd(y), (11)

and for every other face a 6= d

(x, y) 7→ (x⊕ a, y ⊕ a) with probability min{pa(x), pa(y)}, (12)

(x, y) 7→ (x⊕ a, y) with probability max{0, pa(x)− pa(y)}, (13)

(x, y) 7→ (x, y ⊕ a) with probability max{0, pa(y)− pa(x)}. (14)
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Fig. 7: Analysis of path coupling for grids (main idea).

Finally, with all remaining probability

(x, y) 7→ (x, y). (15)

One can easily check that this is indeed a path coupling, that is, (7)-(8) are
satisfied. The difficulty is in proving the condition necessary to apply Lemma 9.

Lemma 10. The path coupling defined above satisfies condition (9).

Proof (Sketch). In the coupling, the distance between two paths x and y can
either increase by 1 or decrease by 1. Since the initial distance is 1, we can thus
write the expected distance after one coupling step as

Ex,y[ρ(X,Y )] = 0 · p0 + 1 · p1 + 2 · p2 = 1 + p2 − p0,

where p0 is the probability that the distance decreases, p2 is the probability that
it increases, and p1 = 1− p0 − p2.

The transitions reducing the distance are those corresponding to (10)-(11),
that always happen with probability

p0 = pd(x) + pd(y) = p(1 + δ) = 2pγ,

where p = 1
2f is the probability to pick a face uniformly at random.

The distance increases instead to 2 if, for instance, the coupling uses a face
for rerouting y while x stays the same. Since the coupling attempts to reroute
both paths whenever possible (12), the probability that the distance becomes 2
is due to (13) and (14) only. We thus have to consider only faces for which the
probability of rerouting is different for the two paths, that is, pa(x) 6= pa(y). We
illustrate the proof only for the cases in Figure 7; the remaining ones can be
found in Appendix A.4.

For the case of Figure 7a, the transitions increasing the distance correspond
to the four faces around d (namely, n, s, e,w). We thus get that

p2 = pδ + pδ + p(γ − δ) + p(γ − δ) = 2pγ,

and conclude then that (9) holds for this case.
In the scenario of Figure 7b we can apply the same analysis. Here it is crucial

to observe that faces ne and sw do not contribute to p2 because in Mmon these
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transitions are not allowed. This is one of the cases where the monotonicity of
the paths plays a crucial role. We thus get that

p2 = p(1− γ) + p(1− γ) + pδ + pδ = 2γp.

Therefore, (9) holds also for this case. ut
Since the diameter ofMmon is O(n) and the minimum non-zero transition prob-

ability is pmin = λ2

2f , we can establish the following bound on the mixing time.

Theorem 11. The mixing time of M∗mon is O
(
n3/λ2

)
for every λ ∈ (0, 1].

6 Conclusion

We have studied a natural Markov chain Mpaths for sampling st-paths in any
given planar graph. We have shown that this chain is always ergodic and its
stationary distribution is the Gibbs distribution on the paths weighted according
to the number of edges. The chain is, in general, not rapidly mixing, but it might
be possible that, in some graphs, modifications of this “basic” chain yield a
rapidly mixing one. We have shown that this is indeed the case when restricting
the sampling to vertical-monotone paths on sub-graphs of the 2D lattice. Another
possible direction might be to introduce non-local transitions. In this case, the
chain should probably be designed “ad-hoc” for a specific class of graphs. It
would also be interesting to find graph classes for whichMpaths is rapidly mixing.
We conjecture that this might for example be the case for regular square grids.

An interesting related question is how to count the number of paths of a
certain length. Note that the case of vertical-monotone paths provides an excel-
lent example to also show the limitations of our local chain. Indeed, in this case
the dynamic programming algorithm for counting all paths (even non simple) in
general graphs would work here. Moreover, the procedure can be easily adapted
to sample paths with uniform distribution among those with a fixed length. This
procedure in the end leads to an exact Gibbs sampler (1) for all values of λ > 0
(see Appendix B for the details).
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A Postponed Proofs

A.1 Theorem 5

Lemma 12. For any plane embedding of a graph G the following holds. If x and
y are two st-paths such that ∆xy = 2, then they are connected in Mpaths by a
path of length at most f , where f is the number of faces of G.

Proof. Consider the subgraph of G induced by the edges of x and y, and the
drawing of this subgraph on the plane. Since ∆xy = 2, the plane is divided
in exactly two regions, one of which is bounded by the edges of x and y and
the other one is unbounded. The bounded region contains δxy faces of G, with
1 ≤ δxy ≤ f . We prove by induction on δxy that in Mpaths there is a path
between x and y of length at most δxy.

The base case for δxy = 1 is trivial, because y can be obtained by rerouting
x along exactly one face, the one contained in the bounded region. The path in
Mpaths is then the transition from x to y.

We now assume the claim to hold for every δxy ≤ k − 1 and prove it for
δxy = k. Consider a face a contained in the bounded region having at least one
edge which belongs to x but not to y. We distinguish among the following cases,
depicted by Figure 8:

1. Face a does not contain any vertex from y. We define a path x′ as follows. Let
u and v be the first and last vertex of a that we encounter when moving from
s to t along x, respectively. Let z be the sub-path of a connecting u to v and
not containing any intermediate vertex from x. Then x′ is the concatenation
of the sub-path of x going from s to u, the path z, and the sub-path of x
going from v to t. Note that by construction ∆xx′ = 2 since x and x′ are
identical from s to u and from v to t, and they have no common vertices
between u and v. Similarly, ∆yx′ = 2 since z has no vertices from y.
We next observe that δxx′ + δx′y = δxy, because the sub-path z partitions
the faces in the bounded region determined by x and y. Note also that the
partition is proper because the original bounded region contains δxy ≥ 2
faces, and therefore δxx′ ≤ k − 1 and δx′y ≤ k − 1. We can thus apply the
inductive hypothesis and obtain a path inMpaths from x to x′ of length δxx′ ,
and a path in Mpaths from x′ to y of length δx′y. The concatenation of the
two paths yields a path in Mpaths from x to y of length δxx′ + δx′y = δxy.

13
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2. Face a contains some vertex from y. Let u and v be the first vertex of a that
we encounter by following respectively x and y along the non-common sub-
paths. Let z be the sub-path of a going from u to v without intermediate
vertices from x and y. Then x′ is the concatenation of the sub-path of x
going from s to u, the path z, and the sub-path of y going from v to t. Note
that by construction ∆xx′ = 2 since x and x′ are identical from s to u and
from t′ to t, and they have no common vertices between u and t′. Similarly,
∆yx′ = 2 since y and x′ are identical from s to s′ and from v to t, and
they have no common vertices between s′ and v. The same argument of the
previous case implies δxx′ + δx′y = δxy and δxx′ ≤ k − 1 and δx′y ≤ k − 1.
Thus, by inductive hypothesis, we obtain a path in Mpaths from x to y of
length δxx′ + δx′y = δxy.

The lemma thus follows from the fact that δxy ≤ f . ut

One might be tempted to define the distance between two paths as the number
of faces that are inside the bounded region formed by the two. However, things
are slightly more complex since it is possible to have “nested” regions. The next
lemma allows us to reduce to the simpler case of a single bounded region.

Lemma 13. For any graph and any two st-paths x and y such that ∆xy > 2,
there exists an st-path x′ such that ∆xx′ = 2 and ∆x′y = ∆xy − 1.

Proof. We construct an st-path x′ as in Figure 9. Starting from s, let a be the
last vertex for which x and y are identical. From a, we follow y until we reach a
vertex b belonging to both x and y. From b we follow again x until t. Observe
that the resulting path x′ is simple since in between a and b there are no vertices
belonging to x. By construction, x and x′ are identical from s to a and from b
to t, while they differ between a and b. Therefore, it holds that ∆xx′ = 2.

We now show that ∆x′y ≤ ∆xy − 1. Consider the set of ∆xy maximal sub-
paths common to x and y. One of such sub-paths contains a, while another
distinct one contains b. If we start at b and follow x towards t we encounter
at most ∆xy − 2 such sub-paths. Therefore, the number of maximal sub-paths
common to x′ and y between b and t is at most ∆xy − 2. Moreover, observe
that x′ and y are identical between s and b and therefore here we have only one
maximal sub-path common to x′ and y. In total, there are at most 1 +∆xy − 2
maximal sub-paths common to x′ and y, that is, ∆x′y ≤ ∆xy − 1. ut
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Proof (of Theorem 5). By Lemma 12 and 13, there exists a path inMpaths from
x ∈ Ω to y ∈ Ω of length at most ∆xy · f . Since in any planar graph f ≤ 2n− 4
and ∆xy < n, the distance between x and y is smaller than 2n2. ut

A.2 Theorem 6

Proof. We show that the distribution π in (4) satisfies the detailed balance con-
dition (3). Given two paths x, y ∈ Ω with P (x, y) > 0, assume without loss of
generality that A(y, x) = 1 and observe that

P (x, y) =
1

2f
· λ
|y|

λ|x|
and P (y, x) =

1

2f
.

Therefore

π(x) · P (x, y) =
λ|x|

Z(λ)
· 1

2f
· λ
|y|

λ|x|
= π(y) · P (y, x),

ut

A.3 Corollary 8

Proof. Consider the graph in Figure 5b consisting of a single row of 2k faces and
s and t located in the middle as shown. Observe that

Z(λ) = λ+ 2(λ3 + λ5 + · · ·+ λ2k+1).

We consider the bottleneck ratio of the set R of all st-paths on the right part of
the graph and of length larger than 1. Thus

π(R) =
λ3 + λ5 + · · ·+ λ2k+1

Z(λ)
≤ 1/2.

Note that the only st-path in R which has a non-zero transition probability to
some y∗ ∈ R̄ is the path x∗ of length 3, and the only one such y∗ ∈ R̄ is the
path (s, t) of length 1. Therefore, we have

Q(R, R̄) = π(x∗)P (x∗, y∗) =
λ3

Z(λ)

1

2f

λ

λ3
.

Thus, the bottleneck theorem implies (we also use that f ≥ 2 in our graphs)

tmix ≥
π(R)

4Q(R, R̄)
=
λ3 + λ5 + · · ·+ λ2k+1

4λ/2f
> λ2k.

Since the graph has n = 2(2k+ 1) = 4k+ 2 vertices, we get tmix ∈ Ω(λn/2). ut
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A.4 Lemma 10

Let x, y ∈ Ω be any pair such that ρ(x, y) = 1. Note that the transitions defining
our path coupling correspond to the following values for ρ(X,Y ):

ρ(X,Y ) =0 for (10) and (11)

ρ(X,Y ) =2 for (13) and (14)

ρ(X,Y ) =1 for (12) and (15)

Therefore

Ex,y[ρ(X,Y )] = 0 · p0 + 1 · p1 + 2 · p2 = 1 + p2 − p0,

where

p0 := Px,y[ρ(X,Y ) = 0] = pd(x) + pd(y)

p2 := Px,y[ρ(X,Y ) = 2] =
∑
a6=d

|pa(x)− pa(y)|

p1 := Px,y[ρ(X,Y ) = 1] = 1− p2 − p0

Our goal is then to prove that p2 ≤ p0 for all x, y ∈ Ω with ρ(x, y) = 1. In
order to bound p2 it is enough to consider only the faces adjacent with the face
d in which x and y differ. We name them according to Figure 10. The following
claim says that we can ignore the “corner faces”. At this point it is crucial the
monotonicity of the paths.

Lemma 14. If a ∈ {nw, ne, sw, se} then |pa(x)− pa(y)| = 0.

Proof. Consider the case a = nw (the other cases are similar) and the intersection
of this face with the subpath common to both x and y, depicted in Figure 11.
Observe that, if vertex d is in both path x and path y, then pnw(x) = pnw(y).
Now consider the case where d belongs only to one of the two paths, say x, and
the edges of nw common to both x and y.

If (a, c) is common (Figure 11a), the monotonicity of the paths implies that
also (c, d) is common (Figure 11b), contradicting the hypothesis that d is not
on y. Thus, we have that only (a, b) can be common (Figure 11c), but then the
paths cannot be rerouted along nw and thus pnw(x) = pnw(y) = 0. ut
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Fig. 11: The cases in the proof of Lemma 14.

Proof (of Lemma 10). By Lemma 14, our goal is to show that

p2 =
∑

a∈{n,s,e,w}
|pa(x)− pa(y)| ≤ (1 + δ)p = 2γp = p0.

Dividing all terms by p, this is equivalent to show the inequality

pn + ps + pe + pw ≤ 1 + δ = 2γ,

where

pa :=
|pa(x)− pa(y)|

p
for every face a.

We distinguish several cases which we group according to Figures 12 and 13. For
Figure 12, it holds

Figure 12a: pn =γ − δ ps =0 pe =γ pw =δ

Figure 12b: pn =γ − δ ps =γ − δ pe =γ pw =δ

Figure 12c: pn =0 ps =γ − δ pe =δ pw =γ.

The remaining cases are similar to the previous ones as they differ in only one
face. For instance, the only difference between the case in Figure 12d and the
one in Figure 12a is for face n. However, since γ = 1+δ

2 , in the case of Figure 12d
we have pn = 1− γ = γ − δ, that is, the same as in the case in Figure 12a.

For the cases of Figure 13, it holds

Figure 13a: pn =0 ps =0 pe =1 pw =δ

Figure 13b: pn =γ − δ ps =0 pe =γ pw =δ

Figure 13c: pn =0 ps =γ − δ pe =γ pw =δ

Figure 13d: pn =γ − δ ps =γ − δ pe =δ pw =δ.

The remaining cases follow from the identity 1− γ = γ − δ.
To conclude the proof, we note that the case where d is not surrounded by

four faces, that is, d is on the border of the grid, is even more favorable than
those above, because some faces among n, s, e,w will not be present. ut
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Fig. 12: The cases where x and y have the same length.

B Dynamic Programming and Exact Sampling for
Vertical Monotone Paths

For the sake of completeness, in this section we describe a standard dynamic
programming approach for counting paths. In general graphs, this method counts
non-simple paths, but in our application the algorithm can be easily modified in
order to avoid non-simple paths (see the end of this section for the details).

Suppose we have a polynomial-time procedure that returns a path selected
uniformly from the subset of all paths of length `, and suppose also we can
compute the number m` of st-paths of length `. We can use this procedure to
sample paths according to the Gibbs distribution (1) as follows:

1. Select a length k with probability

sk :=
mkλ

k

Z(λ)
,

where Z(λ) =
∑
z∈Ωλ

|z| =
∑
`m` · λ`.

2. Select a path x uniformly at random in the set of all st-paths of length
exactly k.

To see that we are indeed selecting paths according to (1), observe that the
probability that a path x is selected is sk · (1/mk) = λk/Z(λ).
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Fig. 13: The cases where the length of x and y is different.

We next describe how the standard dynamic programming for counting all
paths (not necessarily simple) of length up to some L can be used to sample st-
paths uniformly among those of a fixed length `. For vertical-monotone paths,
this algorithm can be easily modified to avoid non-simple paths. Since the graph
is unweighted, we only consider lengths up to n. We compute a table T (u, k) for
all vertices u and for all lengths k such that T (u, k) is the number of paths of
length k from s to u. Initially T is identically to 0 except for T (s, 0) = 1.

Given the values for k = 0, . . . , `−1 we compute T (u, `) as follows. For every
u, consider all neighbors v ∈ Nu and let

T (u, `) =
∑
v∈Nu

T (v, `− 1). (16)

In our application, the neighbors of u are the vertices on the grid that are placed
below, on left, and on the right of u.

In order to conclude the proof, we need to show how this procedure can be
used to pick a path x uniformly among all st-paths of a given length `. Consider
the entry T (t, `) which tells us the number of such paths. According to (16) this
value is the sum of the number of paths of length `− 1 to the neighbors of u: If
v is a neighbor of u and there are T (v, ` − 1) paths from s to v, Starting from
u = t, we pick a neighbor v with probability

ηv := T (v, `− 1)/T (u, `),
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and repeat this step starting from the selected vertex until we reach s. The
sequence of vertices that we choose is an st-path x of length `. To see that
x is chosen with probability 1/T (t, `) consider the sequence of vertices in x =
(x0, x1, . . . , x`) where x0 = s and x` = t. Observe that the probability of picking
this sequence is the probability of picking x`−1, x`−2, . . . , x0,

ηx`−1
ηx`−2

· · · ηx0
=
T (x`−1, `− 1)

T (x`, `)
· T (x`−2, `− 2)

T (x`−1, `− 1)
· · · T (x0, 0)

T (x`−1, `− 1)

=
T (s, 0)

T (t, `)
=

1

T (t, `)
.

To conclude the analysis we provide a simple upper bound on the running time.
First, the table has size n × n and it can be computed in time O(n2), since
each node has only a constant number of neighbors. For the same reason, the
procedure for selecting a random st-path of length ` takes O(`) steps, and thus
the overall running time can be bounded from above by O(n2).

Finally, we note how to ensure that the dynamic programming counts only
simple paths in our vertical-monotone restriction. First, in the table we store
three values corresponding to the paths that arrive to a node u from above,
from left and from right (say Tabove, Tleft and Tright) similarly to the above
computation. Once this table is computed, the selection of a random path x
proceeds similarly to the method described above, except that we carry the
information about the last step. For example, if x`−1 is on the left of x` then we
consider the number of st-paths to x`−1 which arrive only from above or from
the left of this node, T ′(x`−1, ` − 1) := Tabove(x`−1, ` − 1) + Tleft(x`−1, ` − 1).
Then, at the next iteration, when we select a neighbor x`−2 of x`−1 we consider
the analogous quantity and the probability of selecting a particular x`−2 is the
ratio T ′(x`−2,`−2))/T ′(x`−1, `− 1).
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