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Abstract. We study the problem of computing ad-hoc selective fam-
ilies: Given a collection F of subsets of [n] = {1, 2, . . . , n}, a selective
family for F is a collection S of subsets of [n] such that for any F ∈ F
there exists S ∈ S such that |F ∩ S| = 1. We first provide a polynomial-
time algorithm that, for any instance F , returns a selective family of size
O((1 + log(∆max/∆min)) · log |F|) where ∆max and ∆min denote the
maximal and the minimal size of a subset in F , respectively. This result
is applied to the problem of broadcasting in radio networks with known
topology. We indeed develop a broadcasting protocol which completes
any broadcast operation within O(D log∆ log n

D
) time-slots, where n, D

and ∆ denote the number of nodes, the maximal eccentricity, and the
maximal in-degree of the network, respectively. Finally, we consider the
combinatorial optimization problem of computing broadcasting proto-
cols with minimal completion time and we prove some hardness results
regarding the approximability of this problem.

1 Introduction

Selective Families. The notion of selective family has been introduced in [6].
Given a positive integer n, a family S of subsets of [n] = {1, 2, . . . , n} is said to
be (n, h)-selective if and only if, for any subset F ⊆ [n] with |F | ≤ h, there is
a set S ∈ S such that |F ∩ S| = 1. This notion is an essential tool exploited in
[6,7,8,9] to develop distributed broadcasting algorithms in radio networks with
unknown topology. In particular, [6] provide a polynomial-time algorithm that,
for any integer �, computes a (2�, 2��/6�)-selective family of size O(25�/6): Notice
that the size of the selective family is a key parameter since, as we will see later,
it determines the completion-time of the corresponding broadcasting protocol.
Better constructions of selective families have been introduced in [7]. The best
known (non-constructive) upper bound has been proved in [9] where it is shown
that there exists an (n, h)-selective family of size O(h log n). This upper bound
is almost tight since, in the same paper, it is shown that, any (n, h)-selective
family has size Ω(h log n

h ).
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Radio Networks and Broadcasting. A radio network is a set of radio stations
that are able to communicate by transmitting and receiving radio signals. A
transmission range is assigned to each station s and any other station t within
this range can directly (i.e. by one hop) receive messages from s. Communication
between two stations that are not within their respective ranges can be achieved
bymulti-hop transmissions. In this paper, we will consider the case in which radio
communication is structured into synchronous time-slots, a paradigm commonly
adopted in the practical design of protocols [3,10,16]. A radio network can be
modeled as a directed graph G(V,E) where an edge (u, v) exists if and only if u
can send a message to v in one hop. The nodes of a radio network are processing
units, each of them able to perform local computations. It is also assumed that
every node is able to perform all its local computations required for deciding the
next send/receive operation during the current time-slot. In every time-slot, each
node can be active or non-active. When it is active, it can decide to be either
transmitter or receiver : in the former case the node transmits a message along
all of its outgoing edges while, in the latter case, it tries to recover messages
from all its incoming edges. In particular, the node can recover a message from
one of its incoming edges if and only if this edge is the only one bringing in a
message. When a node is non-active, it does not perform any kind of operation.

One of the fundamental tasks in network communication is the broadcast
operation. It consists in transmitting a message from one source node to all the
other nodes of the network. A broadcasting protocol is said to have completed
broadcasting when all nodes, reachable from the source, have received the source
message (notice that when this happens, the nodes not necessarily stop to run
the protocol since they might not know that the operation is completed). We
also say that a broadcasting protocol terminates in time t if, after the time-
slot t, all the nodes are in the non-active state (i.e. when all nodes stop to run
the protocol). According to the network model described above, a broadcasting
protocol operates in time-slots synchronized by a global clock: At every time-slot,
each active node decides to either transmit or receive, or turn into the non-active
state.

Selective Families and Broadcasting in Unknown Topology. Given a radio net-
work with n nodes, maximal in-degree ∆, and unknown topology (in the sense
that nodes know nothing about the network but their own label), the existence
of a (n,∆)-selective family of size m implies the existence of a distributed broad-
casting protocol in the network, whose completion time is O(nm). The protocol
operates in n phases of m time-slots each. During each phase, at time-slot j
the nodes (whose labels are) in the j-th set of the selective family which are
informed (that is, which have already received the source message) transmit the
message to their out-neighbors. Even though no node knows the topology of
the network, the definition of a selective family implies that, at the end of each
phase, at least one new node has received the source message (hence, n phases
are sufficient): This is due to the fact that for any subset F of [n], with |F | ≤ ∆,
there exists at least one subset of the selective family whose intersection with F
contains exactly one element. In particular, for any i with 1 ≤ i < n, let Ri be
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the set of nodes that have received the source message after the first i phases
and assume that there are still nodes to be informed. Then, there exists a non-
informed node xi which is an out-neighbor of at least one node in Ri: Let Fi be
the set of (labels of the) nodes r ∈ Ri such that xi is an out-neighbor of r and
let Sj be a subset in the selective family such that |Fi ∩ Sj | = 1 (notice that Sj

must exist independently of the topology of the network). Hence, xi will certainly
receive the source message at the latest during the j-th time-slot of the (i+1)-th
phase since during this time-slot exactly one of the informed in-neighbors of xi

transmits the source message to xi
1.

Ad-hoc Selective Families and Broadcasting in Known Topology. The connection
between selective families and broadcasting in radio networks with unknown
topology justifies the fact that each subset of the domain [n] has to be selected
by at least one subset in the family: Indeed, since the topology of the network
is not known, in order to be sure that Fi is selected by at least one subset in
the family, the family itself has to select every possible subset of the nodes.
In this paper, we assume that each node knows the network topology and the
source node which is a well-studied assumption concerning the communication
process in radio networks [4,5,11,1,15]. It is then easy to see that the family to
be computed has to select only those sets of nodes which are at distance l from
the source node and which are the in-neighbors of a node at distance l + 1, for
any distance l. This observation leads us to the following definition of ad-hoc
selective family: Given a collection F = {F1, F2, . . . , Fm} of subsets of [n], a
family S = {S1, S2, . . . , Sk} of subsets of [n] is said to be selective for F if, for
any Fi, there exists Sj such that |Fi ∩ Sj | = 1. In Fig.1 it is shown how a radio
network determines the sets Fi to be selected: For example, for l = 2, there are
three sets to be selected, that is, F2 which is the in-neighborhood of node 4, F3
which is the in-neighborhood of node 5, and F4 which is the in-neighborhood of
node 6.

Our (and Previous) Results. The main result of this paper is a polynomial-
time algorithm that, for any collection F , returns a selective family for F of size
O((1+log(∆max/∆min))·log |F|) where∆max and∆min denote the maximal and
the minimal size of a subset in F , respectively. The proof of our result is based on
the probabilistic method [2]: We first perform a probabilistic analysis of randomly
computing a selective family according to a specific probability distribution and
we, subsequently, apply the method of the conditional probabilities in order to
de-randomize the probabilistic construction.

The above efficient construction of ad-hoc selective families is then used to
derive a broadcasting protocol having completion time O(D log∆ log(n/D)),
where D denotes the maximal eccentricity of the network (that is, the longest
distance from a node to any other node). The protocol is efficiently constructible

1 Actually, this is not always true since the set of informed nodes might have been
changed before the j-th time-slot of the (i+1)-th phase: However, this would imply
that at least one other new node has been informed during the (i+ 1)-th phase.
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Fig. 1. The collection of sets to be selected corresponding to a radio netwo

(i.e. it can be constructed in deterministic polynomial time in the size of the net-
work) and easy-to-implement. Its completion time is better than the O(D log2 n)
bound obtained in [5] whenever ∆ = O(1) and D = Θ(n), or ∆ = o(nα), or
n/D = o(nα) (for every positive constant α > 0). Furthermore, our bound im-
plies that the Ω(log2 n) lower bound, shown in [1] in the case in which D is
a constant value greater than or equal to 2, only holds when ∆ = Ω(nα), for
some positive constant α > 0. In [11], an O(D + log5 n) upper bound is proved.
The efficient construction of the protocol with such a completion time relies on
a de-randomization of the well-known distributed randomized protocol in [3]:
However, it is not clear whether this de-randomization can be done efficiently.

The communication complexity of our protocol, that is, the maximum number
of messages exchanged during its execution, turns out to be O(n log∆ log(n/D)),
since each node sends at most O(log∆ log(n/D)) messages. Moreover, when the
source is unknown our protocol technique works in O(D log∆ log n) time.

The probabilistic argument used in order to efficiently construct small ad-
hoc selective families will then be applied in order to develop a polynomial-time
approximation algorithm for the Max Pos One-In-k-Sat problem: Given a
set of clauses with each clause containing exactly k literals, all positive, find
a truth-assignment to the Boolean variables that 1-in-k satisfies the maximal
number of clauses, where a clause is 1-in-k satisfied if exactly one literal in the
clause is assigned the value true. According to [17,13], this problem is NP-hard.
Furthermore, from the approximation algorithm for the more general maximum
constraint satisfaction problem (MAX CSP), it is known that the problem is
2k

k -approximable [14]. The performance ratio of our algorithm is bounded by
4(k−1)

k ≤ 4 (notice that the performance ratio is bounded by a constant, that is,
4 which does not depend on the value of k).

Finally, we investigate the combinatorial optimization problem of computing
a broadcasting protocol with minimal completion time, calledMin Broadcast.
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This problem is NP-hard [4]: However, the reduction, which starts from the
exact-3 cover problem, yields radio networks with D = 2. We instead introduce
a new reduction starting from the problem of computing ad-hoc selective families
of minimal size, calledMin Selective Family. This reduction allows us to show
that, for any fixed D ≥ 2, if Min D-Broadcast (i.e., the problem restricted to
radio networks of maximal eccentricity D) is r-approximable, then Min Selec-
tive Family is rD−1

D−1 -approximable. Since the latter is not r-approximable, for
any r < 2, we obtain that Min Broadcast cannot be approximated within a
factor less than 2 − 1/D (unless P = NP).

2 Efficient Construction of Ad-hoc Selective Families

This section provides an efficient method to construct selective families of small
size. More precisely, we prove the following

Theorem 1 There exists an algorithm that, given a collection F of subsets of
[n], each of size in the range [∆min, ∆max], computes a selective family S for F
of size O((1 + log(∆max/∆min)) · log |F|). The time complexity of the algorithm
is O(n2|F| log |F| · (1 + log(∆max/∆min))).

Proof. The proof consists of two main steps. We first show the existence of
the selective family S by using a probabilistic construction. Then, an efficient
algorithm that de-randomizes this construction is presented.
Probabilistic Construction. Without loss of generality, we can assume that
∆min ≥ 2. For each i ∈ {log∆min�, . . . , log∆max�}, consider a family Si of l
sets (the value of l is specified later) in which each set is constructed by randomly
picking every element of [n] independently, with probability 1

2i .
Fix a set F ∈ F and consider a set S ∈ Si, where i is the integer such that
1
2 ≤ |F |

2i < 1; then it holds that

Pr[|F ∩ S| = 1] =
|F |
2i

(
1 − 1

2i

)|F |−1
>

|F |
2i

(
1 − 1

2i

)2i

≥ |F |
4 · 2i

≥ 1
8

(1)

where the second inequality is due to the fact that
(
1 − 1

t

)t ≥ 1
4 for t ≥ 2.

We then define the family S as the union of the families Si, for each i ∈
{log∆min�, . . . , log∆max�}. Clearly, S has size O((1 + log(∆max/∆min)) · l).
The probability that S does not select F is upper bounded by the probability
that Si does not select F . The sets in Si have been constructed independently,
so, from Eq. 1, this probability is at most

(
1 − 1

8

)l ≤ e− l
8 . Finally, we have that

Pr[S is not selective for F ] ≤
∑
F∈F

Pr[S doesn’t select F ] ≤
∑
F∈F

e− l
8 = |F|e− l

8 .

The last value is less than 1 for l > 8 log |F|. Hence, such an S exists.
De-randomization. The de-randomization is obtained by applying the
“greedy” criterium yielded by the method of the conditional probabilities [12].
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Let us represent any subset S ⊆ [n] as a binary sequence 〈s1, . . . , sn〉 where, for
any i ∈ [n], si = 1 if and only if i ∈ S. Let i ∈ [n], let F ∈ F of size ∆, and
let 〈s1, . . . , si−1〉 be any sequence of i − 1 bits (i.e., any subset of the first i − 1
elements of [n]). Then, define the (conditional) probabilities

Yi(F ) = Pr [|F ∩ 〈s1, . . . , si−1, 1, xi+1, . . . , xn〉| = 1]
Ni(F ) = Pr [|F ∩ 〈s1, . . . , si−1, 0, xi+1, . . . , xn〉| = 1]

where, for any k = i+1, . . . , n, xk is a bit chosen independently at random with

Pr[xk = 1] = 1/∆.

The algorithm relies on the following

Lemma 2 It is possible to compute both Yi(F ) and Ni(F ) in O(n) time.

Proof. Let us define Si = 〈s1, . . . , si−1, 0, . . . , 0〉, and Ii = {i, i+1, . . . , n}. Define
also δi(F ) = |F ∩ Ii|. If δi(F ) = 0, then it is easy to verify that

Yi(F ) = Ni(F ) =
{
1 if |F ∩ Si| = 1,
0 otherwise.

If, instead, δi(F ) > 0 then two cases may arise

– Case i ∈ F . Then, it holds that

Yi(F ) =

{
0 if |F ∩ Si| ≥ 1,(
1 − 1

∆

)δi(F )−1 otherwise,

Ni(F ) =




0 if |F ∩ Si| ≥ 2
or δi(F ) = 1 ∧ |F ∩ Si| = 0,(

1 − 1
∆

)δi(F )−1 if |F ∩ Si| = 1,
δi(F )−1

∆

(
1 − 1

∆

)δi(F )−2 otherwise.

– Case i �∈ F . Then, it holds that

Yi(F ) = Ni(F ) =




0 if |F ∩ Si| ≥ 2,(
1 − 1

∆

)δi(F ) if |F ∩ Si| = 1,
δi(F )

∆

(
1 − 1

∆

)δi(F )−1 otherwise.

The proof is completed by observing that all the computations required by the
above formulas can be easily done in O(n) time. ��

Figure 2 shows the algorithm greedyMSF(∆) that finds the desired selective
family when all subsets in F have the same size. As for the general case, the
algorithm must be combined with the technique in the probabilistic construction
that splits F into a logarithmic number of families, each containing subsets
having “almost” the same size. A formal description of this generalization will
be given in the full version of the paper. However, we observe here that the time
complexity of the general algorithm is O(1 + log(∆max/∆min)) times the time
complexity of greedyMSF(∆).
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Input F = {F1, . . . , Fm}
F ′ := F
j := 0
While F ′ 	= ∅ Do /* Construct the jth selector Sj */

For each i = 1, . . . , n Do
For each F ∈ F ′ Do compute Yi(F ) andNi(F ) (using Lemma 2)
Yi :=

∑
F∈F′ Yi(F )

Ni :=
∑

F∈F′ Ni(F )
If Yi ≥ Ni Then si := 1 Else si := 0.

End (For)
j := j + 1
Sj := 〈s1, . . . , sn〉
F ′ := F ′ − {F ∈ F ′ : |F ∩ Sj | = 1}

End (While)
Return S = {S1, . . . , Sj}.

Fig. 2. Algorithm greedyMSF(∆).

Lemma 3 Let F be a family of subsets of [n], each of size ∆. Then, Algorithm
greedyMSF(∆) (with input F) computes a selective family S for F of size O((1+
log(∆max/∆min)) log |F|) in time O(n2|F| log |F|).
Proof. We first prove that, at each iteration of the While loop, the computed
subset Sj selects at least 1/8 of the remaining subsets of F , i.e., F ′.
Let B be a subset of [n] randomly chosen according to the following probability
function: For each i ∈ [n], i ∈ B with probability 1/∆. Let E(B) denote the
expected number of subsets F in F ′ such that |F ∩ B| = 1.
For any i ∈ [n] and for any bit sequence b1, . . . , bi, let E(B|b1, . . . , bi) be the
expected number of subsets F in F ′ such that |F∩B| = 1, where B = 〈b1, . . . , bn〉
is the random completion of the sequence b1, . . . , bi such that, for any i + 1 ≤
l ≤ n, bl = 1 with probability 1/∆.

Let s1, . . . , sn be the choices made by the For loop.

Claim 1 For any i = 1, . . . , n, E(B|s1, . . . , si) ≥ E(B).

Proof. The proof is by induction on i. For i = 1, by definition, we have that

E(B) =
1
∆
E(B|1) +

(
1 − 1

∆

)
E(B|0)

So, E(B) ≤ max{E(B|1), E(B|0)} = max{Y1, N1}, and s1 is chosen so that
E(B|s1) = max{Y1, N1}. We now assume that the claim is true for i− 1. Then,
si is chosen so that

E(B|s1, . . . , si) = max{Yi, Ni}
= max{E(B|s1, . . . , si−1, 1), E(B|s1, . . . , si−1, 0)}.
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It also holds that

E(B|s1, . . . , si−1) =
1
∆
E(B|s1, . . . , si−1, 1) +

(
1 − 1

∆

)
E(B|s1, . . . , si−1, 0)

≤ max{E(B|s1, . . . , si−1, 1), E(B|s1, . . . , si−1, 0)}.

By combining the above inequalities with the inductive hypothesis, we get

E(B|s1, . . . , si) ≥ E(B|s1, . . . , si−1) ≥ E(B).
��

Let us observe that, E(B|s1, . . . , sn) is equal to the number of subsets in F ′ that
are selected by S = 〈s1, . . . , sn〉. From Claim 1, this number is at least E(B).
Moreover, from Eq. 1, it holds that E(B) ≥ |F ′|/8. Finally, from Lemma 2, it
follows that the time complexity of greedyMSF(∆) is O(n2|F| log |F|). ��

3 Two Applications of Theorem 1

The Broadcast Protocol. For any possible source node s ∈ V , let Li(s) be the
set of nodes whose distance from s is i. For each node in Li+1(s) let us consider
the set of its in-neighbors belonging to Li(s); let Fi(s) be the family of all such
sets. Then, let Si be an arbitrarily ordered selective family for Fi(s).

Description of Protocol broad. The protocol consists of D phases. The goal
of phase i is to inform nodes at distance i from the source.
– In the first phase the source sends its message.
– The i-th phase, with i ≥ 2, consists of |Si−1| time-slots. At time-slot j of the
i-th phase a node v sends the source message if and only if the following two
conditions are satisfied:

– v belongs to the j-th set of Si−1;
– v has been informed for the first time during phase i − 1.

All the remaining nodes work as receivers.

Theorem 4 Protocol broad completes (and terminates) a broadcast operation
on an n-node graph of maximum eccentricity D and maximum in-degree ∆ within
O(D log∆ log n

D ) time-slots. Moreover, the cost of the protocol is O(n log∆ log
n
D ).

Proof. To show the correctness (and the performances) of the protocol we prove
the following

Claim 2 all the nodes at distance i from the source s are informed, for the first
time, during phase i.
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Sketch of the proof. The proof is by induction on the distance i. For i = 1 the
claim is obvious. We thus assume that all nodes at distance i have received the
source message, for the first time, during phase i − 1. Let consider a node v at
distance i + 1 and let Fv be the set of all its in-neighbors at distance i from
the source. Since Fv belongs to Fi(s) and Si is selective for Fi(s), there will be
a time-slot in phase i + 1 in which only one of the nodes in Fv transmits the
source message so that v will correctly receive it. Notice that, by the inductive
hypothesis, any in-neighbor of v that is not in Fv has not been informed in phase
i, so it does not transmit during phase i+ 1. ��

Since the graph has maximum in-degree ∆, the size of any subset in Fi(s) is
at most ∆. Hence, from Theorem 1, we have that |Si| ≤ c log∆ log |Fi(s)|, for
some constant c > 0. The total number of time-slots required by the protocol is
thus

1 +
D−1∑
i=1

c log∆ log |Fi(s)| = 1 + c log∆ log
D−1∏
i=1

|Fi(s)| ≤ 1 + c log∆ log
D−1∏
i=1

n

D

where the last inequality is due to the facts that
∑D−1

i=1 |Fi(s)| ≤ n and that∏D−1
i=1 |Fi(s)| is maximized when all the |Fi(s)| are equal. It thus follows that

broad has O(D log∆ log n
D ) completion time.

As for the cost of the protocol, it suffices to observe that once a node has acted
as transmitter during a phase, after that phase it can turn into the inactive state
forever. ��
Remark. If we require a protocol that works for any source, we need to select
a bigger set of families, i.e., the families Fi = ∪s∈V Fi(s), i = 1 . . . n − 1. By
applying the same arguments of the above proof, we can easily obtain a broadcast
protocol having O(D log∆ log n) completion time.

Approximation of the Max Pos One-In-k-Sat Problem. An (even) simplified
version of the algorithm greedyMSF(∆) can be successfully used to obtain a con-
stant factor approximation for Max Pos One-In-k-Sat.

Corollary 5 There exists a polynomial-time 4(k−1)
k -approximation for

Max Pos One-In-k-Sat.

Sketch of the proof. Given a set C of clauses with each clause containing ex-
actly k positive literals, for any clause C = {xi(1), xi(2), . . . , xi(k)} in C, we con-
sider the subset F (C) = {i(1), i(2), . . . , i(k)} ⊆ [n]. Then, we apply Algorithm
greedyMSF(∆) on the instance F(C) = {F (C) : C ∈ C} (notice that ∆ = k).
The same probabilistic argument adopted in the proof of Theorem 1 guarantees
that the first selector S1, computed by the algorithm, satisfies at least k

4(k−1)
clauses of C. The corollary, hence, follows. ��
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4 Hardness Results

By adopting the definitions in the proof of Corollary 5, and from the fact that
Max Pos One-In-k-Sat is NP-hard (see [17,13]), it easily follows

Theorem 6 It is NP-hard to approximate Min Selective Family within a
factor smaller than 2.

The following result reverts the connection between selective families and
broadcast protocols. Indeed, it shows that any non-approximability result for the
Min Selective Family directly translates into an equivalent negative result
for Min Broadcast, when restricted to networks of constant eccentricity.
LetMin D-Broadcast denote the restriction ofMin Broadcast to networks
of eccentricity D.

Theorem 7 For any fixed positive integer D ≥ 2, if Min D-Broadcast is
r-approximable, then Min Selective Family is rD−1

D−1 -approximable.

Sketch of the proof. Let F be an instance of Min Selective Family, where
F = {F1, . . . , Fm} is a collection of subsets of [n]. We construct (in polynomial
time) an instance 〈GF

D, s〉 of Min D-Broadcast such that F has a selective
family of size k if and only if 〈GF

D, s〉 has a broadcast protocol with completion
time equal to 1+k(D−1). The network GF

D is a D+1 layered graph with layers
L0, . . . , LD, with L0 = {s} and the number of nodes in GF

D is at most n|F|D.
The graph GF

D is defined by induction on D:
Base Step (D = 2). The network GF

2 consists of three levels: L0 = {s}, L1 =
{x1, . . . , xn} and L2 = {y1, . . . , ym}, where s is connected to every xi ∈ L1, and
the edge (xi, yj) exists iff xi ∈ Fj .
Inductive Step. The graph GF

D+1 can be obtained from GF
D as follows: The

layer LD+1 of GF
D+1 is obtained by replacing every node in the layer LD of GF

D

by a copy of the graph GF
2 \ {s}. More formally,

1. Replace every zi ∈ LD by the set Xi
D+1 = {xi

1(D+1), . . . , xi
n(D+1)}; each

of such new vertices has the same in-neighborhood of zi.
2. Add a set Y i

D+1 = {yi
1(D + 1), . . . , yi

m(D + 1)} of m new nodes. Then, add
the edge (xi

k(D + 1), yi
l(D + 1)) if and only if (xk, yl) is an edge in GF

2 .

So, the layer LD of GF
D+1 is the union of all Xi

D+1’s determined by the last level
of GF

D and the layer LD+1 of GF
D+1 is the union of all Y i

D+1’s.

Claim 3 F has a selective family of size k if and only if 〈GF
D, s〉 has a broadcast

protocol with completion time equal to 1 + k(D − 1).

Sketch of the proof. The proof is by induction on D.
Base Step (D = 2). Consider the family FL2 of in-neighborhoods of the nodes
in L2. Then, GF

2 admits a broadcast protocol of completion time k + 1 iff FL2

has a selective family of size k. Since F = FL2 , then the theorem follows.



On Computing Ad-hoc Selective Families 221

Inductive Step. (⇒). It is easy to show that by a suitable iteration of the
broadcast protocol for GF

2 (yielded by the selective family S for F) on GF
D, we

obtain a completion time 1 + k · (D − 1), for any D.
(⇐). Consider any broadcast protocol P for 〈GF

D+1, s〉 with completion time
1 + kD. Also, let t be the number of time slots required by P to inform all the
nodes in the second-last layer LD of GF

D+1. It is easy to see that P completes
broadcasting on 〈GF

D, s〉 within time-slot t.
If t ≤ 1 + k(D − 1), then by inductive hypothesis, F has a selective family

of size k. Otherwise, we first observe that for any i, all the nodes in Xi
D+1 have

the same in-neighborhood, thus implying that they are informed at the same
time slot. Hence, there must exist a set X last

D+1 that is informed (according to
P ) at time slot t. Let t′ = t + ∆t be the number of time slots necessary to P
to inform Y last

D+1, that is, the set of out-neighbors of X last
D+1. From the fact that

t > 1 + k(D − 1) and t′ = t+∆t ≤ 1 + kD, we obtain ∆t < k. By construction,
the subgraph induced by X last

D+1 ∪ Y last
D+1 is isomorphic to GF

2 \ {s}. Hence, there
exists a protocol for 〈GF

2 , s〉 with broadcasting time 1+∆t < 1+k. By inductive
hypothesis, F has a selective family of size k. ��

The proof of Claim 3 easily implies the following

Claim 4 Given any broadcast protocol P with completion time on GF
D equal to

t, it is possible to construct (in time polynomial in |GF
D|) a protocol P ′ with

completion time on GF
D equal to t′ = 1 + k(D − 1) ≤ t, for some integer k ≥ 1.

Consider any r-approximation algorithm forMin D-Broadcast. From Claim 4,
we can assume that such an algorithm returns a broadcast protocol for 〈GF

D, s〉
of completion time APX(GF

D) = 1+ k · (D − 1), for some k ≥ 1. By hypothesis,
it holds that

APX(GF
D)

OPT (GF
D)

=
1 + k · (D − 1)

1 +OPT (F) · (D − 1)
≤ r, (2)

which implies that

k

OPT (F)
≤ r[1 +OPT (F) · (D − 1)] − 1

OPT (F) · (D − 1)
≤ rD − 1

D − 1
.

Finally, by applying Claim 3, we can construct (in polynomial time) a selective
family for F of size at most k ≤ OPT (F) rD−1

D−1 . Hence the theorem follows. ��
By making use of Theorem 6 and Theorem 7, we can easily obtain the fol-

lowing result (whose proof is here omitted).

Corollary 8 For any constant D ≥ 2, it is NP-hard to approximate Min D-
Broadcast within a factor less than 2−1/D. Moreover, for any positive integer
c ≥ 1, Min (logc/(c+1) n)-Broadcast cannot be approximated by a factor less
than 2 (unless NP ⊆ DTIME[nlogc n]).

Remark 9 The O(D + log5 n) broadcasting protocol of [11] implies that Min
D(n)-Broadcast is in APX for any D(n) ∈ Ω(log5 n).
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5 Open Problems

The main open problem which is related to this paper consists of determining
whether the de-randomization techniques can also be applied to the probabilistic
construction of selective families given in [9]. We suspect that this is not true and,
hence, that, in order to constructively achieve the upper bound of [9], alternative
techniques have to be used.
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