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Università di Salerno

via S. Allende 2, I-84081 Baronissi (SA), Italy

ABSTRACT
We investigate the problem of constructing a multicast tree
in ad-hoc networks. In particular, we address the issue of
the power consumption, that is, the overall energy that the
stations must spend to implement such a tree. We focus
on two extreme cases of multicast: broadcast (one-to-all)
and unicast (one-to-one). Minimum Spanning Trees (MSTs)
and Shortest-Path Trees (SPTs) yield optimal solutions for
broadcast and unicast, respectively. Unfortunately, they do
not guarantee any optimality for the “counterpart”, that
is, MSTs are non-optimal for unicast, while SPTs are non-
optimal for broadcast.

In this work, we experimentally evaluate the performances
of an algorithm combining MST solutions with SPT ones.
Our approach is based on the construction of Light Ap-
proximate Shortest-path Trees (LASTs) of a given directed
weighted graph, introduced by Khuller et al [1995]. LASTs
approximate simultaneously the cost of the MST and the
distances of the SPT rooted at a source node, thus yielding,
also in the worst case, optimal solutions for both unicast
and broadcast.

Rather surprisingly, this “compromise” between MSTs
and SPTs, has a very good performance w.r.t the broadcast
tree obtained from a MST. Indeed, for randomly-generated
instances, the broadcast tree obtained with LASTs is in
some cases better (and never much worse) than the broad-
cast tree obtained from MSTs. This important fact shows
that LASTs are not only interesting in theory, but they
have practical relevant applications. Indeed, their use in
our experiments also provides new insights on the approxi-
mation ratio of the MST broadcast algorithm for randomly-
generated instances.

∗Work supported by the European Project IST-2001-33135,
Critical Resource Sharing for Cooperation in Complex Sys-
tems (CRESCCO).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PE-WASUN’04,October 7, 2004, Venezia, Italy.
Copyright 2004 ACM 1-58113-959-4/04/0010 ...$5.00.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Nonnumerical Algorithms
and Problems—graph algorithms, network problems

General Terms
Algorithms, Experimentation, Theory

Keywords
Wireless Ad Hoc Networks, Energy Consumption, Multicast
Trees, Light Approximate Shortest-path Trees.

1. INTRODUCTION
One of the main benefits of ad-hoc wireless networks re-

lies in the possibility of communicating without any fixed
infrastructure. Indeed, each station is a radio transmit-
ter/receiver and communication between two stations that
are not within their respective transmission ranges can be
achieved by multi-hop transmissions: a set of intermediate
stations act as relays and forward the message till its desti-
nation. Due to the limited power of the stations, multi-hop
transmissions are, in general, unavoidable. Moreover, they
often result in a significant reduction of the overall energy
required by the communication. This is accomplished by
suitably varying the transmission ranges of the stations de-
pending on the environmental conditions and on the relative
positions of the stations.

In particular, omnidirectional antennas are used by all
stations to transmit and to receive the messages. These an-
tennas are attractive in their broadcast nature. Indeed, a
single transmission by a station can be received by many
stations that are “close enough”. Consider the example in
Fig. 1. The source station s wants to broadcast the a mes-
sage to all other stations. Because of signal attenuation, the
power required by s to directly transmit a message to an-
other station j is proportional to d(s, j)α, where α > 1 and
d(s, j) is the distance between the two stations (see Sect. 1.1
for a more in-detail description of the model). Therefore, the
cost of one-hop transmissions is superlinear in the distance
between the stations. Also notice that, the power of a sta-
tion determines its transmission range: if station s transmits
with power dα, then all stations at distance at most d from
s receives the message (see Fig. 1). Notice that, because
of signal attenuation, in general, a single hop transmission
from s to all other stations may result in a very high power
consumption. It is therefore preferable to use intermediate
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Figure 1: An example of wireless network in the
two-dimensional Euclidean space. Disks represent
the regions where the attenuated power of the cor-
responding signal is not smaller than γ: station s
transmits with power d(s, 3)α and reaches stations 1,
2 and 3, while transmission from s to 4 is performed
in two hops via station 3.

stations that, together with the source s, implement a suit-
able multicast tree. The overall energy required to perform
the transmission is proportional to the sum of the costs of
the transmission ranges (i.e., the sum of the energy spent
by every station to transmit). For instance, the multicast
tree in Fig. 1 requires energy d(s, 3)α + d(3, 4)α, that is, the
energy consumption corresponding to the two transmission
ranges.

We consider the problem of constructing multicast trees
requiring minimal power consumption1 (see Sect. 1.1 for a
formal definition of the problem). As first observed in [12],
energy-efficient solutions must consider the power/range as-
signment (i.e., a network connectivity, associated to the
Physical layer) and the actual construction of a multicast
tree (i.e., a routing function, associated to the Network
layer) jointly. We address the issue of designing central-
ized (as opposed to distributed) algorithms for construct-
ing energy-efficient multicast trees. This is considered a
challenging algorithmic problem even when assuming that
the station positions do not vary over time (i.e., static ad-
hoc networks). Indeed, computing a minimum-cost solution
is NP-hard, thus implying that no polynomial-time (cen-
tralized/distributed) algorithm can guarantee r = 1, unless
P=NP [13] (see the discussion in Sect. 1.2).

Centralized algorithms for the static case are the basis for
the design of (more sophisticated) distributed and/or dy-
namic algorithms. One desideratum is to have some guar-
antee that the cost of the computed solution is “sufficiently
close” to the optimum. Towards this end, two important fac-
tors should be considered when designing such algorithms:
(i) the worst case approximation guarantee, and (ii) the “ex-
perimental” approximation performances when restricting
to real instances. Clearly, a good algorithm should have a
good worst case approximation guarantee and an even better
approximation behavior when restricting to real instances.2

In this work, we present a new algorithm based on a “com-
promise” between the minimum-spanning tree and shortest-

1Here we consider only the energy required for transmission,
thus not considering the energy required for reception or
signal processing; these assumptions are the same as other
well-studied models [12, 19, 3] and do not consider the joint
contribution of different forms of energy expenditure and
associated trade-offs.
2Obviously, the concept of ‘real instance’ is necessarily
somewhat vacuous and hard to define mathematically.

path tree (see Sect. 1.3 for the details). Shortest-path trees
and minimum spanning trees provide optimal solutions for
unicast and broadcast, respectively (see the discussion in
Sect. 1.2). However, minimum spanning trees (resp., shortest-
path trees) do not guarantee optimal solutions for unicast
(resp., broadcast). Our solution is based on the idea of
approximating simultaneously those two problems using so
called Light Approximate Shortest-path Trees (LASTs) in-
troduced by [14]. This guarantees, in the worst case, a con-
stant approximation for both unicast and broadcast. More-
over, in some cases, it improves over the broadcast tree ob-
tained with minimum spanning trees. We indeed evaluate
our algorithm on randomly-generated instances and observe
that, surprisingly, the broadcast tree obtained with LASTs
is often not worse than the one obtained with a minimum
spanning tree. This is somewhat counterintuitive, since our
algorithm increases the weight of a minimum spanning tree
(which is good for broadcasting) to attain a good perfor-
mance also w.r.t. the single source-destination distances
(unicast).

Our work deals with the problem of computing a solution
once the geographical position of the stations is given and
we do not consider the effect of stations mobility on the
computed solution (i.e., the case of static ad-hoc networks).

1.1 Model and Assumptions
We consider a set S of stations that are located on the two-

dimensional Euclidean space and we represent each station
as a point corresponding to its position. A station i is able
to directly transmit to a station j if and only if the power
Pi used by station i to transmit satisfies

Pi

d(i, j)α
≥ γ,

where d(i, j) is the Euclidean distance between i and j,
α ≥ 1 is the attenuation parameter depending on the envi-
ronmental conditions [16] (e.g., in the empty space α = 2),
and γ is the transmission quality parameter : station j will
receive the message with attenuated power equal to P ′ =
Pi/d(i, j)α, and the message can be corrected interpreted if
P ′ ≥ γ (typically γ is normalized to be 1). The power Pi

determines the transmission range of station i as follows.
For every station j such that d(i, j) ≤ α

√

Pi/γ, it holds that
Pi/d(i, j)α ≥ γ, thus implying that j receives the signal sent
by i. So, station i is directly connected to all stations located
inside the disk centered at i and with range r(i) := α

√

Pi/γ
(see the example in Fig. 1). Because of this, r(i) is denoted
to as the transmission range of station i. Observe that, we
are not considering obstacles between stations. So, with the
cost (i.e., power) of a single transmission, a station can ac-
tually transmit to all stations within its transmission range.

Given a set of stations S and a range assignment for it,
i.e., a function r : S → R+, the overall power consumption
is equal to

COST(r) :=
∑

i∈S

r(i)α. (1)

A range assignment naturally implements a communication
graph defined as the directed graph Gr = (S, Er), where
Er := {(i, j)| d(i, j) ≤ r(i)}. Interestingly, given a commu-
nication graph C = (S, EC), one can obtain a range assign-
ment rC(·) implementing C by letting

rC(i) := max{d(i, j)| (i, j) ∈ EC}.
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Algorithm Amst

Input: set of stations S on a k-dimensional Euclidean space,
a source node s ∈ S, and destination nodes D ⊆ S;

1. Let G = (S, E , w) be the undirected weighted graph
with E = S × S and w(i, j) = d(i, j)α;

2. Compute a MST T of G;

3. Compute a directed tree T dir obtained as the union of
all paths in T connecting s to some d ∈ D;

4. Return T dir.

Figure 2: The Amst algorithm.

Notice that rC(·) is the minimum-cost range assignment
such that GrC

= C. We thus define COST(C) := COST(rC).
So, the cost function COST(·) measures the overall power
consumption required by the network to implement a given
communication graph.

Consider a communication graph C connecting a given
source node s ∈ S to a set of destination nodes D(C). Ob-
serve that every communication graph C can be transformed
into a tree T such that D(C) = D(T ) and COST(T ) ≤
COST(C). We can thus restrict ourselves to trees without
any loss of efficiency. In particular, a broadcast tree is a
tree T = (S, ET ) such that D(T ) = S. Similarly, a unicast
tree is a tree P = (S, EP ) connecting a given source node s
to a given destination node d. Clearly, an optimal unicast
tree can be computed by considering the minimum-cost path
connecting s to d, among all possible paths from s to d.

Given a set of stations S, a source node s and a set of
destination nodes D ⊆ S, let T ∗(S, s, D) denote the multi-
cast tree connecting s to D of minimal cost. We denote by
OPT(S, s, D) its cost. An algorithm is an r-approximation
algorithm if, for any input (S, s, D), (i) it runs in polyno-
mial time and (ii) the computed multicast tree T satisfies
COST(T ) ≤ r · OPT(S, s, D).

1.2 Previous Related Work
Several algorithms constructing multicast trees in wire-

less networks have been proposed in the literature. One
of the most natural algorithms is probably Amst shown in
Fig. 2 [12]. Essentially, Amst constructs a MST on the set
of points corresponding to the physical locations of the sta-
tions and then direct the edges from s to all other nodes
that need to be reached (or that provide a connection from
s to some d ∈ D). The Aspt algorithm instead, constructs
a shortest-path tree, rooted at the source node, of the com-
plete graph G with edge weights w(i, j) = d(i, j)α. Both
algorithms have been presented and experimentally evalu-
ated in [12], while [5, 19] provide a worst-case analysis of
them. In the remaining of this section we describe more
in detail these and other related theoretical/experimental
results.

1.2.0.1 Theoretical Results.
Assigning transmission powers to the stations which (i)

guarantee a “good” communication graph, and (ii) minimize
the overall power consumption of the network gives rise to
interesting algorithmic questions. In particular, these two
aspects yield a class of fundamental optimization problems,

denoted as range assignment problems, that have been the
subject of several works in the area of wireless network the-
ory [15, 11, 10, 5, 19, 7, 6, 2, 3, 1, 18] (see also [8] for
a survey). These works mainly focus on the existence of
polynomial-time algorithms having a good worst case ap-
proximation guarantee.

In [5] it is proved that, when requiring the solution C to
be a broadcast tree, the problem is NP-hard when stations
are located in the 2-dimensional Euclidean space and for any
α > 1 . For α = 1, the problem admits a trivial optimal
solution: directly connect s to the farthest station (and thus
to all stations in S). In [5, 19] it is proved that, when stations
are located on a k-dimensional Euclidean space, and α ≥ k,
the Amst algorithm is a cα

k -approximation, where c2
2 ≤ 12

in [19]. The proof of these results is based on the following
bound on the total weight of a minimum spanning tree:

MST(S) ≤ cα
k · OPT(S, s), (2)

where OPT(S, s) denotes the minimal energy required by
any broadcast tree for the instance (S, s), and MST(S) :=
∑

(i,j)∈TMST
d(i, j)α, with TMST being a minimum spanning

tree of the point set S ⊆ Rk. In [5] it is proved that the ap-
proximation factor cα

k increases exponentially with k, while
[19] showed that c2

2 ≥ 6. Notice that, for α < k, no constant-
approximation algorithm is known. In this case, Amst re-
turns a solution of cost Ω(

√
n) times the optimum even for

very regular instances (e.g., stations forming a square grid).
In [19] the authors proved that Aspt has an unbounded ap-
proximation ratio, that is, for every R > 1, there exists an
instance for which Aspt returns a broadcast tree whose cost
is more than R times the optimum.

The work [6] focuses on one-dimensional Euclidean in-
stances and shows that a polynomial-time exact algorithm
exists even when imposing that the broadcast tree must
have depth at most h, for every given h ≥ 1. Recently,
[1] provide an exact polynomial-time algorithm for the 2-
dimensional Euclidean case with h = 2, and a family of
(1 + ǫ)-approximate algorithms for 2-dimensional instances
and constant h, for any ǫ > 0.

1.2.0.2 Experimental Results.
One of the main difficulties in experimentally evaluating

the performances of a given algorithm is the fact that, since
the problem is NP-hard [5], no polynomial-time algorithm
for computing the optimum is known. Therefore, the possi-
bilities are to (i) consider small-size instances for which non
polynomial-time algorithms return the optimum in a rea-
sonable amount of time, (ii) compare the algorithm at hand
with other algorithms, or (iii) use a “sufficiently good” esti-
mation of the optimum.

The authors of [12] propose three algorithms for this prob-
lem and experimentally evaluate their performances on 2-
dimensional random instances generated with uniform dis-
tribution. In particular, two of the algorithms considered in
[12] are Amst and Aspt. The experiments are performed
on 100 instances generated for each of the following values:
|S| ∈ {10, 100}, α ∈ {2, 4} and several values of |D|. Not
surprisingly, when |D| gets larger, Aspt gets worse than
Amst. In addition, the Multicast Incremental Power (MIP)
algorithm proposed in the same work (a variant of Prim’s
MST algorithm) denotes a better performance of both algo-
rithms above, when |D| is sufficiently large w.r.t. |S|. On
the contrary, when |D| is small, Aspt yields better solutions
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that the other two algorithms. The computed solutions are
evaluated w.r.t. the optimum only for small values of |S|
(namely, |S| ≤ 10). For larger values, instead, each of the
three algorithms is compared with the best solution returned
by the other two (thus an estimation of the optimum).

In order to get around the problem of computing the op-
timum of an (randomly-generated) instance, the work [9]
uses a different (geometric) approach for the case of broad-
cast trees. Given a minimum spanning tree T of a set of
points S, let MST(S) :=

∑

(i,j)∈T d(i, j)α. Then, using

the technique of [5, 19], it is possible to show that the ap-
proximation ration cα

2 of Amst is at most 4R(α), where
R(α) = max

S⊆R2 MST(S)/D(S)α, and D(S) is the diame-

ter of the smallest disk containing S. The best known the-
oretical upper bound is R(2) ≤ 3 [19], thus a worst-case
approximation factor 12 for Amst when α = 2. However,
the experiments in [9] show that, for random instances,
this value is much smaller. Indeed, for several network
sizes, 10,000 instances were generated and, in all such cases,
4MST(S)/D(S)α was less than 6.4. Interestingly, the high-
est values were all achieved for small-size instances (i.e.,
|S| ≤ 9), while MST(S)/D(S)α decreases as |S| increases.

It is worth observing that the approximation ratio of Amst

is an important parameter also for other algorithms. For
instance, in [19] it is shown that, for broadcast trees, the
approximation ratio of algorithm MIP proposed in [12] is at
most 12 by showing that the cost of the latter is not larger
than the cost of Amst.

1.3 Our Contribution
In this work we experimentally evaluate a new multicast

algorithm based on the construction of Light Approximate
Shortest-path Trees (LASTs). LASTs have been introduced
in [14] where the authors proved that, for any parameter
δ > 1, for any weighted directed graph G and for any source
node s in G, it is possible to construct in polynomial time a
(δ, 1+ 2

δ−1
)-LAST, that is, a spanning tree T of G such that

(see [14, Theorem 4]):

• In T the length of the path from s to every other node
d is at most δ times the length of the path from s
to d in the shortest-path tree of G rooted at s (i.e.,
T approximates the shortest-path tree distances by a
factor δ);

• The sum of the weights of the edges in T is at most
1+ 2

δ−1
times the cost of the MST of G (i.e., T approx-

imates the cost of the MST by a factor 1 + 2
δ−1

).

Intuitively speaking, the parameter δ provides a continuous
trade-off between MSTs and SPTs: the larger δ the closer
the cost to weight of a MST; the smaller δ, the closer are
the distances to the minimal distances in G.

The idea of using LASTs for multicast in wireless networks
has been first introduced in a work from the same authors
[18], motivated by applications in a game-theoretic setting
involving selfishly-acting users (i.e., receivers of a transmis-
sion located nearby the stations). The resulting algorithm
Alast is obtained by replacing, in Step 2 of Amst, the
MST algorithm with the one in [14] (the latter is based on
the idea of replacing parts of a MST by parts of a SPT).
By combining the results on Amst in [19] (see Eq. 2 above)
with the above mentioned properties of LASTs, it is easy to
prove the following bounds on the worst case approximation

guarantee of Alast:

COST(Alast(S, s, D))

OPT(S, s, D)
≤

{ (

1 + 2
δ−1

)

MST(S)
OPT(S,s,D)

≤ 12 + 24
δ−1

if D = S,

δ · |D| otherwise.
(3)

So, the theoretical bounds above say that, when considering
broadcast trees, LASTs have only a constant factor loss of
efficiency w.r.t. that of MSTs (e.g., when δ = 2, we are only
guaranteed that Alast returns a solution of cost at most
three times MST(S), thus an approximation factor 36). It
is worth observing that, denoted λδ := 1 + 2

δ−1
, the above

mentioned bounds do not imply that COST(Alast(S, s)) ≤
λδ ·COST(Amst(S, s)); all we can obtain from these bounds
is the following (much weaker) one:

COST(Alast(S, s)) ≤ 12λδ · COST(Amst(S, s)). (4)

We experimentally evaluate the loss of efficiency obtained
when replacing a MST with a LAST, that is, how much we
have to increase the cost of broadcasting if we also want
to approximate the cost of every single source-destination
path (i.e., the cost of unicast) within a factor δ. In partic-
ular, we consider how often Alast worsen the solution of
Amst and, if so, how far are the two costs. We evaluate
these parameters for instances of n = |S| nodes generated
at random with uniform distribution, for several values of n,
δ and α. Fixed these parameters, we generate several thou-
sands of instances by throwing n points at random with
uniform probability (i.e., the position of the stations) and
then choosing the source with uniform distribution. Our re-
sults show that the loss of efficiency is well-below a factor
λδ, that is, in all cases

COST(Alast(S, s)) ≤ λexp
δ · COST(Amst(S, s)),

with λexp
δ < λδ (e.g., for δ = 2 and α = 2 we obtain an ex-

perimental upper bound λexp
δ = 1.572). So, experimentally,

the bound is much below the one in Eq. 4 (actually even
below λδ itself).

For each randomly-generated instance (S, s) we consider
the following ratios:

λexp
δ (S, s) :=

COST(Alast(S, s))

COST(Amst(S, s))
,

σexp
δ (S, s) :=

COST(Aspt(S, s))

COST(Amst(S, s))
,

λ
exp

δ (S, s) :=
COST(Alast(S, s))

MST(S)
,

σexp
δ (S, s) :=

COST(Aspt(S, s))

MST(S)
.

Clearly, the worst case (i.e., the largest value obtained in
our experiments) of λexp

δ and σexp show the worst behavior,
for randomly-generated instances, of Alast and Aspt w.r.t.
Amst. In addition, we relate the above ratios to the approx-
imation ratio of Amst and provide a twofold connection.
First, the best case λexp

δ (S, s) provides a lower bound on the
approximation ratio achieved by Amst on our randomly-
generated instances. Indeed, if λexp

δ (Sbest, sbest) = 1/c then,
for some instance (Sbest, sbest), it holds that

COST(Amst(Sbest, sbest)) = c · COST(Alast(Sbest, sbest))
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and thus the cost of Amst(Sbest, sbest) is at least c times the
optimum on that instance (the same holds when considering
the best case of σexp

δ (S, s)). This compares with the exper-
imental upper bound in [9] mentioned above. On the other
hand, the weight MST(S) of the minimum spanning tree of
S is related to the optimum via the relation in Eq. 2. We
thus provide an absolute upper bound on the approximation
ratio achieved by Alast and Aspt by considering the worst
case of λ

exp

δ and σexp
δ (see Sect. 2.4). The results on these

bounds parallel with the results on the worst case of λexp
δ

and σexp
δ : we indeed obtain

COST(Alast(S, s)) ≤ 12λexp
δ · OPT(S, s), (5)

where, for δ = 2, 12 · λexp
δ < 18.864 < 12λδ = 36.

By contrast, the theoretical bound δ on the approxima-
tion ratio of the unicast is tight also for randomly-generated
instances (see Sect. 2.2). Therefore, the goal is to find
the smallest δ for which Alast provides a sufficiently good
broadcast tree (see Sect. 2.3). This also explains our initial
choice δ = 2 for several of our experiments: this value is
a good “compromise” when considering the maximum be-
tween the approximation ratios for unicast and for broadcast
(i.e., λδ and δ). Indeed, there are two “symmetric” cases:
the case δ = 2 and λδ = 3, and the case δ = 3 and λδ = 2.
Since the bound δ is experimentally tight, while λexp

δ < λδ,
it makes no sense to consider any δ > 2 (in particular, the
case δ = 3).

1.3.0.3 Paper organization.
In Sect. 2 we present our experimental results. In partic-

ular, in Sect.s 2.1 and 2.1.1, we consider the cost of broad-
cast trees for δ = 2 and α = 2, 4, 8: Sect. 2.1 deals with
|S| ≥ 10, while Sect. 2.1.1 considers the case |S| ≤ 10. The
experimental results on the cost of unicast are contained in
Sect. 2.2. In Sect. 2.3 we consider different values of δ and
evaluate λexp

δ . The results on λ
exp

δ and σexp
δ are contained

in Sect. 2.4. In Sect. 3 we conclude and outline some future
research and open questions.

2. EXPERIMENTAL RESULTS
We first compare both Alast and Aspt to Amst and

consider the worst and the best cases of the first two algo-
rithms, i.e., the instances for which Alast and Aspt per-
formed worst/best w.r.t. Amst. We start by looking at the
case δ = 2 and α = 2 and obtain the following results for
α = 2 and δ = 2:

• For small-size instances (i.e., 5 ≤ |S| ≤ 10) in at least
95.230% of the cases the solution computed by Alast

in not worse than that of Amst. Moreover, the solu-
tion computed by Alast is better than that of Amst

in at least 1.238% of the cases. For larger size instances
(i.e., |S| = 10, 20, . . . , 50, 100, 150, 200) Alast com-
putes a solution better (resp., not worse) than Amst

in at lest 4.190% (resp., 5.330%) of the cases; these
values are achieved for |S| = 200 and the percentages
get better as |S| gets smaller. In that respect, Aspt

has a much worse behavior, since for |S| ≤ 40 it re-
turns a solution not worse than Amst in only 6.57%
of the cases. This percentage drops down to 0 for
|S| ∈ {150, 200}, where Aspt always returns a solu-
tion worse than Amst.

• Although for large-size instances there is a quite large
fraction of the instances for which Alast worsen the
solution computed by Amst, in all such cases, the so-
lution of Alast is not much worse than that of Amst.
Indeed, in the worst case, the ratio λexp

δ (S, s) is 1.572.
This value is achieved for small size instances, while
large-size instances yield λexp

δ (S, s) ≤ 1.463. On the
contrary, the worst ratio σexp

δ (S, s) is always greater
than the corresponding ratio λexp

δ (S, s). Moreover,
the ratio σexp

δ (S, s) has maximum value 2.493 and, all
worst cases are greater than 1.59.

• When considering the minimal ratios λexp
δ (S, s) and

σexp
δ (S, s) achieved in our experiments (i.e., the best

case), we have the following results. Alast is better
for |S| ≥ 50, while Aspt is better for |S| ≤ 40. For all
instances sizes, in the best case, λexp

δ (S, s) < 1, while
σexp

δ (S, s) > 1 for |S| ∈ {150, 200}.

By looking closer to the above three aspects one can see
that the good performances of Alast are not only due to
the fact that for some network parameters (i.e., |S| and α)
Aspt performs better than Amst: indeed, Alast is better
than Amst even for those cases in which Aspt is not better
than Amst (see, in Table 1, the cases |S| = 100, 150). In
other words, the “compromise” between minimum spanning
trees and shortest-path trees provided by LASTs is better
than simply considering the best solution of the two algo-
rithms Amst and Aspt. For instance, for |S| ≥ 50 and
α = 2, 4, there are instances for which Alast is better than
both Amst and Aspt (see best cases in Table 1 and further
results in [17]).

2.1 Cost of broadcast
In this section we evaluate the relative performance of al-

gorithm Alast versus Amst and Aspt. We first count how
many times Alast and Aspt yield a solution better/worse
than Amst. The results are shown in Fig. 3 for α = 2 and
δ = 2. Observe that Aspt degrades quite fast w.r.t. Amst

as the number of nodes increase. On the contrary, Alast

has a different behavior since there is a non-zero fraction
of the instances for which it returns a solution better than
Amst.

In Table 1 we report on the worst/best ratio achieved
by Alast and Aspt w.r.t. the solution yield by Amst.
It is evident the improvement of Alast over Aspt in the
worst case. More importantly, in the worst case, the cost of
solution Alast(S, s) is well below λδCOST(Amst(S, s)) =
3COST(Amst(S, s)).

When considering the best achieved ratio, we notice that
the Aspt is better for S ≤ 40 while Alast is better for
larger size instances. We recall that the analysis of the best
case gives a useful insight on the approximation ratio of
Amst for instances generated with uniform distribution (see
the discussion in Sect. 1.3). Indeed, by considering the best
of Aspt and Alast as an upper bound to the optimum,
we can derive a lower bound on the approximation ratio of
Amst. In the third column of Table 1 we show such a lower
bound for the values considered.

We next consider attenuation parameter α = 4 (as in [12])
and α = 8. We compare to the experiments for the case
α = 2. Observe that, for α = 4, 8, there is a higher number
of instances in which Alast and Amst provide a solution
with the same cost (see [17]). This can be explained with
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Figure 3: The frequency of solutions returned by
Alast and Aspt which are better/as good as/worse
than the solution of Amst (10,000 randomly-
generated instances with α = 2 and δ = 2).

the fact that Alast builds its tree starting from the MST.
Therefore, as α increase, Alast returns the same solution
as Amst in a larger number of cases. More importantly,
Alast maintains its performances for α = 4, 8, while in
general the worst case of Aspt gets higher.

Our data, for α = 2 (and |S| ≥ 50), provide a valid justifi-
cation in the use of LASTs for constructing broadcast trees,
as opposed to the simpler/natural approach of taking the
best solution returned by Amst and Aspt. This also holds
for α = 4 and |S| ≥ 50 (see [17]).

2.1.1 A closer look to small-size instances
In this section we focus on the study of small-size in-

stances, since these cases seem to be the most promising
for discovering significant improvements of Alast and of
Aspt in the worst/best case. As previously mentioned, the
best case yield a lower bound on the approximation ratio of
Amst, that is, what is the worst ratio achieved by Amst

over all instances generated. In particular, for network sizes
5 ≤ |S| ≤ 9 we generate 50,000 instances and obtain the
results in Table 2.

Observe that we obtain an higher worst ratio for Alast

w.r.t. the large-size instances (see Table 1). This fact shows
that small-size instances are a severe test for the three algo-
rithms (thus a similar trend of the upper bound for Amst

in [2]). However, also in these cases, the value λexp
δ (S, s) is

well below the theoretical bound λ2 = 3.

2.2 Cost of unicast
So far we have been evaluating the cost of the broadcast

tree obtained from the three algorithms Amst Aspt and
Alast. We next consider the experimental worst case for
the cost of unicast produced by the same three algorithms.
The obtained results are shown in Table 3 and 4.

Notice that the theoretical bound matches with the ex-
perimental one (see the “Worst case” column of Tables 3
and 4). More importantly, Amst has a much worse behav-
ior w.r.t. the Alast in both best and worse case. Moreover,
for small-size instances, Alast achieves the optimal unicast
in a good percentage of cases. In this analysis Amst is also
below Alast. Our data confirms the intuition that MST is
not a good unicast tree, while LASTs give a δ-approximation
of the optimal unicast. We also tested other values of α > 2
and obtained analogous tight results.

2.3 Adjusting the parameter δ of the LASTs
We have seen that the theoretical unicast bound δ matches

with the experimental one δexp (see Sect. 2.2), while λexp
δ <

λδ (see Sect. 2.1). The idea is the following: try to adjust
δ to obtain a better unicast tree with a “good” λexp

δ . Our
trials are shown in Table 5.

Our experiments give a slightly higher λexp
δ w.r.t. the

cases in which δ = 2. We can see that, in these cases, the
differences between λexp

δ and λδ are quite important (see e.g.
the experimental bound for λ1.01 = 201). So, at the price of
a small degradation of the broadcast tree, we obtain a much
better unicast approximation.

2.4 Cost of broadcast versus weight of MSTs
In this section we consider the ratios λ

exp

δ and σexp
δ . As

mentioned in the Introduction, these ratios give an absolute
upper bound on the approximation ratio achieved by Alast

and Aspt, respectively. The results are shown in Table 6.

Worst ratio Best ratio

Nodes λ
exp
δ σ

exp
δ

λ
exp
δ σ

exp
δ

10 1.393484 2.959805 0.365746 0.361863

20 1.334686 3.016235 0.510485 0.545921
30 1.267987 2.690986 0.634819 0.739471
40 1.325315 2.60085 0.675511 0.840242
50 1.21736 2.440541 0.703407 0.841885
100 1.130818 2.396243 0.772127 1.123973
150 1.138154 2.553272 0.785942 1.269689

Table 6: The worst/best ratio between the cost of
the solutions of Alast and Aspt over MST (10,000
randomly-generated instances with α = 2 and δ = 2).

3. CONCLUSIONS AND FUTURE WORK
The theoretical (upper and lower) bounds on the approx-

imation ratio of Amst and Alast are not tight, especially
when looking at randomly-generated instances. This is due
to the fact that the cost is usually upper bounded by sum-
ming up the weight of all edges in the solution. This ex-
plains the fact that, in some cases, Amst is worse than
Alast and/or Aspt: though Alast increases the total edge
weights of the MST, we not always have to pay for all such
edges (see, e.g., the instance in Fig. 4).
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Figure 4: An instance for which Alast and Aspt

yield a solution of cost 1/4 the cost of the solution
of Amst, for α = 2 (dashed edges belongs to a SPT,
while solid ones belong to a MST).

An interesting open problem is to investigate lower bounds
on the approximation ratio of Alast. In particular, given
that Amst is at least 6-approximate [19], is there an in-
stance for which COST(Alast(S, s)) > 6λδOPT(S, s)? As
for the upper bound, it would be interesting to see whether
COST(Alast(S, s)) < λδCOST(Amst(S, s)). Finally, the
existence of a polynomial-time constant approximation al-
gorithm for the multicast problem, i.e., when a D ⊂ S is
given, is open.
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Worst ratio Best ratio Lower bound on the
Nodes λ

exp
δ

(S, s) σ
exp
δ

(S, s) λ
exp
δ

(S, s) σ
exp
δ

(S, s) apx ratio of Amst

10 1.45473675 2.305245347 0.612590799 0.348877936 2.866332026

20 1.441095633 1.967276868 0.743912924 0.61227423 1.633255086
30 1.463335458 2.144286978 0.803460083 0.66260896 1.50918575
40 1.437470634 2.040225473 0.824313711 0.778277883 1.284888113
50 1.455386458 1.928186937 0.852621393 0.853503816 1.172853517
100 1.259035589 1.749475918 0.927487388 0.980521707 1.078181777
150 1.243433947 1.624524465 0.955362459 1.026332578 1.046723147
200 1.22694007 1.598773982 0.96196238 1.068397079 1.039541691

Table 1: The worst/best ratio between the cost of the solutions of Alast and Aspt over the cost of Amst

(10,000 randomly-generated instances with α = 2 and δ = 2).

Worst ratio Best ratio Lower bound on the
Nodes λ

exp
δ

(S, s) σ
exp
δ

(S, s) λ
exp
δ

(S, s) σ
exp
δ

(S, s) apx ratio of Amst

5 1.276516007 1.947219394 0.536916526 0.385731614 2.592476124
6 1.34547619 2.250435145 0.548756433 0.370500023 2.699055166
7 1.438073394 2.492612128 0.546624261 0.352824185 2.83427283

8 1.493178373 2.433231869 0.57799932 0.396503839 2.522043675
9 1.571838125 2.45137697 0.585923696 0.387225575 2.582474054
10 1.547802023 2.437001382 0.618862861 0.359872096 2.778765039

Table 2: The worst/best ratio between the cost of the solutions of Alast and Aspt over the cost of Amst

(50,000 randomly-generated instances with α = 2 and δ = 2).

worst case best case achieved opt
Nodes Amst Alast Amst Alast Amst Alast

10 4.736082 2 1 1 10.50% 12.26%
20 7.012582 2 1 1 0.37% 0.73%
30 10.08234 2 1 1 0.01% 0.04%
40 11.29895 1.999703 1.03093 1.023071 0.00% 0.00%
50 14.53238 2 1.036549 1.036549 0.00% 0.00%
100 17.5929 2 1.24436 1.104489 0.00% 0.00%
150 20.67111 2 1.40402 1.209489 0.00% 0.00%
200 25.11876 2 1.476016 1.216234 0.00% 0.00%

Table 3: The worst/best ratio between the cost of unicast in Amst and Alast (10,000 randomly-generated
instances with α = 2 and δ = 2).

worst case best case achieved opt
Nodes Amst Alast Amst Alast Amst Alast

5 3.302363 1.999786 1 1 48.05% 48.83%
6 3.821315 1.999953 1 1 35.48% 36.78%
7 4.446378 2 1 1 26.33% 27.84%
8 5.035519 2 1 1 19.00% 20.64%
9 5.062921 2 1 1 13.86% 15.48%
10 5.662891 2 1 1 10.14% 11.79%

Table 4: The worst/best ratio between the cost of unicast in Amst and Alast (50,000 randomly-generated
instances with α = 2 and δ = 2).

Worst ratio Best ratio
δ λδ Nodes λ

exp
δ

(S, s) σ
exp
δ

(S, s) λ
exp
δ

(S, s) σ
exp
δ

(S, s)
1.5 5 10 1.747268 2.610911 0.425091 0.387851

5 100 1.376454 1.679471 0.929351 0.970396
1.25 9 10 1.825356 2.295495 0.425505 0.425505

9 100 1.451658 1.751842 0.923907 0.969727
1.1 21 10 2.092178 2.338308 0.391455 0.376636

21 100 1.538815 1.97884 0.954313 0.978234
1.05 41 10 2.097929 2.161458 0.365864 0.365864

41 100 1.826472 1.806227 0.949624 0.965029
1.01 201 10 2.378215 2.378215 0.380838 0.380838

201 100 1.699624 1.719947 0.97714 0.975886

Table 5: The worst/best ratio between the cost of broadcast for several values of δ < 2 (50,000 randomly-
generated instances of size 10 and 10,000 instances of size 100, with α = 2).

68


