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On the approximability of two tree drawing conventions
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Abstract

We consider two aesthetic criteria for the visualization of rooted trees:inclusionand tip-over. Finding the minimum area
layout according to either of these two standards is an NP-hard task, even when we restrict ourselves to binary trees.

We provide a fully polynomial time approximation scheme for this problem. This result applies to any tree for tip-over layouts
and to bounded degree trees in the case of the inclusion convention. We also prove that such restriction is necessary since, for
unbounded degree trees, the inclusion problem is strongly NP-hard. Hence, neither a fully polynomial time approximation
scheme nor a pseudopolynomial time algorithm exists, unless P= NP. Our technique, combined with the parallel algorithm by
Metaxas et al. [Comput. Geom. 9 (1998) 145–158], also yields an NC fully parallel approximation scheme. This latter result
holds for inclusion of binary trees and for theslicing floorplanningproblem. Although this problem is in P, it is unknown
whether it belongs to NC or not. All the above results also apply to other size functions of the drawing (e.g., the perimeter).
 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Trees are largely used for the representation of hier-
archical structures and many techniques and standards
for their visualization have been proposed (see [3–7,
10]). In this paper we are interested ininclusionand
tip-overstandards [6,4].

In the inclusion convention nodes are represented
by boxes, while the parent-child relationship is repre-
sented by including one box in another. Moreover, rec-
tangles with the same parent are non-overlapping, one
next to the other (samex- or y-coordinate of the top
left corner) and within distance at leastδ (see Fig. 1).
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Notice that, for binary trees in which the internal nodes
have null size, an optimal area drawing can be ob-
tained by combining the two subdrawings either hor-
izontally or vertically as shown in Fig. 1. The case
where internal nodes also contain non-null rectangles
can be easily reduced to ternary trees with rectangles

Fig. 1. Inclusion layouts of binary trees with internal nodes with null
size: How to arrange the subdrawings.
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on the leaves only (see [6] for the details). Notice that
in this latter case more than two arrangements of the
subdrawings are possible (Fig. 2 shows some of them).
More generally, for constant degree trees, only a con-
stant number of arrangements must be considered.

In the tip-over convention, nodes are again rep-
resented with boxes, while the children of a node
are placed either all horizontally (samex-coordinate
of the top left corner), or all vertically (samey-
coordinate) as shown in Fig. 3. Notice that in the tip-
over convention there are only two possible ways to
arrange the drawings of the subtrees: either horizon-
tally or vertically. In the inclusion convention, instead,
the layout of a subtree whose root has three or more
children can be obtained in several different ways.

Finding the minimum area layout according to one
of these two standards is NP-hard, even when we re-
strict ourselves to binary trees [6]. In the same pa-
per the authors provide a pseudopolynomial time al-
gorithm to compute the optimal solution. It is worth
observing (see Theorem 1 below) that such an algo-

rithm guarantees polynomial running time only when
the sizes of the rectangles (representing nodes) in the
instance are polynomially bounded. Additionally, for
the inclusion convention, it applies only tobounded
degreetrees.

In this paper we provide a fully polynomial time
approximation scheme (in short FPTAS) for the mini-
mum area layout problem. Our results are based on the
algorithm by Eades et al. [6] combined with a round-
ing technique that allows to achieve, for any error
parameterr > 1, an r-approximation algorithm run-
ning (regardless of the sizes of the rectangles) in time
poly(1/(r − 1), n).

On the other hand, we show that for unbounded de-
gree trees the minimum area inclusion layout problem
is strongly NP-hard. This significantly strengthen the
NP-hardness result in [6] in that it implies that nor
a fully polynomial time approximation scheme nor a
pseudopolynomial time algorithm for that problem ex-
ist (see [2,1]). In other words, both the algorithm in [6]
and our FPTAS cannot be extended to this case, thus

Fig. 2. Some of the possible arrangements for inclusion layouts of ternary trees.

Fig. 3. Tip-over layouts: How to arrange the subdrawings.
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Table 1
Hardness and (non-)approximability results for the MIN SIZE INCLUSION and the
MIN SIZE TIP-OVER problems

Problem version Previous results Our results

MIN SIZE INCLUSION NP-complete [6] strongly NP-hard

MIN SIZE TIP-OVER NP-complete [6] in FPTAS

MIN SIZE B -INCLUSION NP-complete [6] in FPTAS

MIN SIZE 2-INCLUSION NP-complete [6] parallel FPTAS

SLICING FLOORPLANNING in P [11] parallel FPTAS

making the assumption on the degree of the tree nec-
essary.

We also investigate parallel efficient approximation
algorithms. Metaxas et al. in [9] proved that the
above mentioned problems are in NC when, again,
the sides of the rectangles are polynomially bounded
(see Theorem 2 below). We show that our method,
combined with such result, gives a fully parallel
approximation scheme. The same results also apply
to a slightly different problem:Slicing Floorplanning.
Although this problem is in P [11], the parallel
algorithm in [9] does not guarantee a polynomial
number of processors when the size of the layout is
not polynomially bounded.

Finally, all the results also apply to variants of the
problem in which we may want to minimize a function
other than the area (namely, the perimeter or the height
given a fixed width).

In Table 1 we summarize the hardness and the
(non-)approximability results.

1.1. Problem definition and related work

Given a layoutL (satisfying one of the two aesthetic
criteria defined above) we denote byWL and HL
the width and the height of the smallest rectangle
enclosingL. We consider the following size functions
depending onWL andHL:
(1) Area: AREA(L) = WL · HL.
(2) Enclosing square area: SQUARE(L) = max{WL,

HL}2.
(3) Perimeter length: PERIMETER(L) = 2(WL+HL).
(4) Height given a fixed widthw:

HEIGHT(L) =
{

HL if WL � w;
∞ otherwise.

(5) Width given a fixed heighth: it is denoted by
WIDTH and its definition is symmetric with re-
spect to that of HEIGHT.

The above functions provide a criteria to evaluate
the “quality” of a feasible solution (i.e., a layout that
satisfies the inclusion or the tip-over aesthetic criteria)
depending on the application. Then, depending on the
chosen function, we consider the following optimiza-
tion problems.

MIN AREA INCLUSION.
Instance.A rooted treeT and a functionR :T →R+

×R+ that maps every nodeu into a rectangle
R(u) whose width and height are given byXu

andYu.
Solution. An inclusion layoutL.
Measure.The area AREA(L) = WL · HL of the

layoutL.

Also, we denote by MIN SIZE INCLUSION the prob-
lem defined as MIN AREA INCLUSION where SIZE is
anyof the above size functions. Moreover, we will use
MIN WIDTH INCLUSION, MIN PERIMETER INCLU-
SION, and so on to distinguish a particular size func-
tion. All the above definitions will be extended to the
TIP-OVER convention. In this case the corresponding
optimization problems will be denoted by MIN SIZE

TIP-OVER, MIN AREA TIP-OVER, and so on. The
MIN SIZE B -INCLUSION problem will be the restric-
tion of MIN SIZE INCLUSION to B-ary trees. A prob-
lem strictly related to MIN AREA 2-INCLUSION is
SLICING FLOORPLANNING. In this case we are given
a regular binary tree in which every leaf is a module
(rectangle) and every internal node is labeled eitherH

or V . Moreover, the rectangles representing the leaves
can be rotated by 90◦, but the arrangement of such
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boxes is completely determined by the internal nodes
(H andV correspond to the vertical and the horizontal
arrangement of MIN SIZE 2-INCLUSION). The goal is
to minimize the area of the layout.

In the sequel we will make use of the following two
results.

Theorem 1 (Eades et al. [6]).For any positive con-
stant B and for any instanceT of MIN SIZE B -
INCLUSION (or MIN SIZE TIP-OVER), the optimum
can be computed inO(n2M)-time,1 whereM is the
maximum width(or the maximum height) of the nodes
of T .

Theorem 2 (Metaxas et al. [9]).For any instanceT
of MIN SIZE 2-INCLUSION (respectively,SLICING

FLOORPLANNING), the optimum can be computed in
O(log2 n) parallel time usingO(n6(δ + M)6/ logn)

(respectively, O(n6M6/ logn)) EREW processors,
whereM is the maximum width/height of the nodes
of T .

Organization of the paper. The rest of the paper is
organized as follows: in Section 2 we show how to
obtain approximate solutions, while in Section 3 we
prove the strong NP-hardness of MIN SIZE INCLU-
SION. Finally, in Section 4 we consider parallel ef-
ficient approximation algorithms and describe some
questions left open by this paper.

2. Fully polynomial time approximation scheme

In this section we describe a fully polynomial
time approximation scheme that makes use of the
pseudopolynomial time algorithm in [6]. We obtain
a fully polynomial time approximation scheme by
rounding the numbers in the input so that the algorithm
of Theorem 1 runs in polynomial time.

Theorem 3. MIN SIZE B -INCLUSION andMIN SIZE

TIP-OVER are in FPTAS.

Proof. For the sake of clarity we first describe the case
in which the size function is the area one. LetT be a

1 From now on we will denote byn andM , the size and the max-
imum number occurring in the input set, respectively.

tree and letXu andYu be the width and the height of
any nodeu of T . We define a truncated instance of the
problem as follows. For two suitable integerst1 andt2
(we specify their exact value in the sequel), let be

X′
u =

⌊
Xu

10t1

⌋
and Y ′

u =
⌊

Yu

10t2

⌋
.

From the above definition, we have that

10t1X′
u � Xu < 10t1X′

u + 10t1 and

10t2Y ′
u � Yu < 10t2Y ′

u + 10t2.

Let L be any layout of the treeT and letWL and
HL denote the width and the height ofL, respectively.
Let us also denote withW ′

L and H ′
L the width and

the height ofL measured according to the truncated
instance. It is then easy to see that

10t1W ′
L � WL < 10t1W ′

L + 10t1n, (1)

10t2H ′
L � HL < 10t2H ′

L + 10t2n. (2)

Let us now denote withWopt andHopt the width and
the height of the optimal drawing. Also, letL denote
the optimal solution for the truncated instance. From
Eqs. (1)–(2) and from the fact thatL is the optimum
of the truncated instance, we have that

WLHL
<

(
10t1W ′

L + 10t1n
)(

10t2H ′
L + 10t2n

)
= 10t1+t2W ′

LH ′
L + 10t1+t2n

(
H ′
L + W ′

L + n
)

� 10t1+t2W ′
optH

′
opt + 10t1+t2n

(
H ′
L + W ′

L + n
)

� WoptHopt + 10t1+t2n
(
H ′
L + W ′

L + n
)
. (3)

Thus, if we consider the relative error,2 Eqs. (1)–(3)
imply that

E = WLHL − WoptHopt

WLHL

<
10t1+t2n(H ′

L + W ′
L + n)

WLHL

� 10t1n

WL
+ 10t2n

HL
+ 10t1+t2n2

WLHL

� 10t1n

M1
+ 10t2n

M2
+ 10t1+t2n2

M1M2
,

2 It is easy to see that the relative error corresponds to the approx-
imation ratio minus one.
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Fig. 4. Strong NP-hardness of MIN SIZE INCLUSION: (a) the MIN SIZE INCLUSION instance corresponding to that of 3-PARTITION; (b) the
minimum size layout.

whereM1 andM2 denote the largest width and height
among all the rectangles in the instance, respectively.
For any 0< ε < 1, we can make the relative errorE

smaller thanε by settingt1 and t2 as the maximum
integers such that

M1 · ε
3 · 10n

< 10t1 � M1 · ε
3 · n and

M2 · ε
3 · 10n

< 10t2 � M2 · ε
3 · n .

Hence,L is a(1+ ε)-approximate solution and it can
be computed within O(n2 max(M1/10t1,M2/10t2))

time, that is, O(n3/ε) time.
Finally, it is easy to see that the same method also

applies to the PERIMETER function, while it can be
easily modified to deal with the HEIGHT and the
WIDTH size functions. ✷

Let us observe that the above result holds in the
inclusion convention only for bounded degree trees.
In the next section we will prove that such assumption
is necessary since, for unbounded degree trees, the
problem is strongly NP-hard.

3. Strong NP-hardness of MIN SIZE INCLUSION

In this section we show that, for unbounded degree
trees, the MIN SIZE INCLUSION problem is strongly
NP-hard. As a consequence we have that neither a
pseudopolynomial time algorithm nor a fully polyno-
mial time approximation scheme for such a problem
exists. This results holds foranyof the four size func-
tions defined in Section 1.

Theorem 4. MIN SIZE INCLUSION is stronglyNP-
hard.

Proof. We prove the strong NP-hardness of MIN

SIZE INCLUSION by reducing 3-PARTITION, which is
strongly NP-hard (see [8]), to MIN SIZE INCLUSION.

Let A = {a1, . . . , a3m} and a positive integerB
be an instance of 3-PARTITION. The corresponding
instance of MIN SIZE INCLUSION is given by a treeT
of height 2 and 3m + 2 leaves whose rectangles have
sides(1, hm), (B + 1,1), (a1, h), . . . , (a3m,h), where
h = �(B + 1)/m + 1 (see Fig. 4(a)).

Without loss of generality, assumeδ = 0. Let us
observe thatA can be partitioned into 3m triples of
sumB if and only if an inclusion layoutL∗ for T such
thatWL∗ = B + 1 andHL∗ = H + 1 (see Fig. 4(b)).
Finally, from the choiceh = �(B + 1)/m + 1 it
follows that, for any of the size functions defined
in Section 1,L∗ is the optimal solution. Indeed, it
suffices to observe that any layout whose width and
height areB + 2 andhm has a non-optimal size. This
immediately proves the theorem.✷

The following two results are consequence of the
previous result and of structural complexity properties
of the class FPTAS (see [2,1]).

Corollary 1. MIN SIZE INCLUSION does not belong
to FPTAS.

Corollary 2. No pseudopolynomial time algorithm to
solveMIN SIZE INCLUSION exists.

4. Extensions and open questions

Concerning efficient parallel algorithms, we ob-
serve that our method (see Theorem 3) combined with
Theorem 2 yields a parallel FPTAS for MIN SIZE 2-
INCLUSION and SLICING FLOORPLANNING. As for
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the latter, we observe that any feasible solution of
SLICING FLOORPLANNING can be regarded as a fea-
sible solution of MIN AREA 2-INCLUSION in which
δ = 0, some leaves are rotated and, of course, the
arrangement depends on the internal nodes. So, the
analysis in Section 2 also applies to this problem. It
is worth observing that SLICING FLOORPLANNING

can be solved in O(n2)-time [11] while it is not known
whether it is in NC or not (the parallel algorithm in [9]
only implies that the problem is in NC when the size
of the layout is polynomially bounded).

Let us observe that all the results we proved for
the minimum area problem also hold for any of the
following size functions:
(i) perimeter;
(ii) width given a fixed height;
(iii) height given a fixed width;
(iv) enclosing square.
It seems then natural to try to generalize the results
to other size functions. For instance, the results in [6,
9] also hold forany function which is monotone in
both the height and the width of the drawing. How-
ever, it is easy to define some “unnatural” monotone
functions for which findingr-approximate solutions is
NP-hard, for any arbitrarily larger. It is worth observ-
ing that our reduction (working for all the above men-
tioned functions) subsumes the strongly NP-hardness
of 2-DIMENSIONAL PACKING and 2-DIMENSIONAL

STRIP PACKING (see [6] for the reduction to MIN
AREA INCLUSION).

Finally, it remains open the question whether MIN

SIZE INCLUSION can be approximated or not.
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