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can appear. We want to service such requests. To do so, we place serversat nodes. The request at a node v is serviced, if there is a server on v, or ifa server in its neighborhood is moved to v. Clearly, if we want to be ableto service one request, then the multiset of server locations must contain adominating set of nodes.However, there are applications in which we want to ensure that morethan one request can be serviced. In this paper, we study the case of tworequests. Imagine, e.g., that two requests occur simultaneously and a servercan satisfy only one at a time. We view our problem as a member of the largefamily of dominating set problems, of which [HHS98] already cite more than75 di�erent variants. These may depend on conditions on the dominatingset DS (e.g. connectivity) or on the other nodes (e.g. a node is dominatedif there is a node in DS at distance at most k, or each vertex is dominatedat least k times, or exactly once, etc.). The study of such dominating setproblems is motivated by their applications to facility location (minimizingthe number of facilities, subject to every demand being close enough to somefacility), �le sharing in distributed systems [NR95], game theory [dJ62], etc.Interestingly, some very old questions have also triggered new researchon the topic [AF95, RR00, Ste99]:Roman Domination : Where should the armies of the RomanEmpire be placed so that a smallest number of armies can protectthe whole Empire (see Figure 1)?
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The assumption is that an area can be protected either by one armylocated inside the area, or by an army in a neighbor area that comes overfor the defense. In the latter case it is required that a second army remains inthe neighbor area, so that it can quickly confront a second attack. A reasonfor the historical 1-2 requirement (one army here or two at a neighbor) isthat we want to be able to service two requests in one time unit (providedthat no two requests can come from the same point at the same time).In this paper we deal with variants of the Roman Dominating set[Dre00, Ste99]. In particular, we consider the case in which there are tworequests we want to service and no two requests appear at the same node.Moreover, a server that is used to service the �rst request cannot be used toservice another request. A solution to our problem for a given graph is a setof servers at nodes; since all servers are identical, a multiset of nodes (wherethe multiplicity of a node is the number of servers at that node) representsa server placement.Two factors we will consider are: (i) whether the two requests are knownbefore the �rst one must be serviced (Offline), or the �rst one must beserviced before the second one is known (Online), and (ii) whether serversmust stay in place unless they service a request (Static), or we allow fora rearrangement (Dynamic): as one server services the �rst request, allother servers are allowed to move to a neighbor node. The goal of themove is to guarantee that any second request can be handled, too, in theOnline case (that is, the resulting server placement is a dominating set ifwe ignore the �rst requesting node and its server). The Online StaticWin-Win version has been discussed earlier [Och96] and called Win-Winthere. (Unlike in Roman Domination, in this case we only require to beable to win against any two consecutive attacks.) Since our problems alsodeal with two consecutive requests, we adopt the name terminology and wedenote the four problem variants as Online Static Win-Win, OnlineDynamic Win-Win, Offline Static Win-Win, and Offline DynamicWin-Win.1.1 Our (and Previous) ResultsIn this paper we investigate the relationships between the above problems(including Roman Domination), as well as the complexity of computingexact and approximate solutions. In particular, we consider the followingquestions:1. Given a multiset S, is S a feasible solution to (one of) the above3



Offline Dynamic Win-WinDominating Set Dominating 2-Set(double dominating set)Online Static Win-Win Roman Domination(5.6)(5.2) (5.3)(4.2)Offline Static Win-WinOnline Dynamic Win-Win(5.2) (5.3)(5.6)(trivial) (4.2) (3.2) [Dre00]Figure 2: Relationships between the problems: arrows represent `�' andthey are numbered according to the corresponding theorem.problem variants? Is there a combinatorial characterization for thoseS?2. Let varA Win-Win and varB Win-Win denote any two problemvariants. If S is a solution for varB Win-Win, does this imply thatS is also a solution to varA Win-Win?3. A positive answer to the above question implies that opta(G) � optb(G),where opta and optb denote the minimum size multiset solving the twovariants, resp. Is there a graph for which the inequality is strict?Let varA Win-Win� varB Win-Win denote the fact that Question 2has a positive answer, and let varA Win-Win� varB Win-Win denotethe fact that Question 3 does too. It turns out that the problems we look atform the partial order in Figure 2.1 Noticeably, this relationship also holdswhen we restrict ourselves to planar graphs.As for Question 1, for two out of the four win-win problems we provide acharacterization of those multisets corresponding to each problem. For theDynamic Win-Win, we prove the NP-hardness of the rearrangement stepafter the �rst request. This result seems to denote that such a characteri-zation for this problem version does not exist, or at least is di�erent fromthose given for the other two problems (those can be checked in polynomialtime).This leads us to complexity and (non-) approximability issues. Intu-itively, the � relationship may have some consequences on the (non-) ap-proximability of those problems. Indeed, the order in Figure 2, combinedwith the fact that \doubling" a dominating set (the Dominating 2-Setproblem in Figure 2) yields a feasible solution for all of the problems, im-plies an approximation preserving reduction (�AP, see [ACG+99]) between1Figure 2 contains a new problem (Dominating 2-Set) which we introduce to provesome of our results. 4



Problem Version General Graphs Planar Graphs(2 + 2 lnn)-APX, PTAS,Roman Domination not c logn-APX in P for r-outerplanar(NP-hard [Dre00]) (NP-hard [Hed00])(in P for trees & (r� n)-grids [Dre00])Online Sta. Win-Win, (2 + 2 lnn)-APX,Online Dyn. Win-Win, not c logn-APX (2 + �)-APX, for any � > 0Offline Sta. Win-WinTable 1: Hardness and approximability: Our and previous results. (All NP-hardness results are in strong sense, thus implying the non-existence of aFPTAS. Previous results are displayed between brackets.)all these problems. Let f(n)-APX denote the class of problems that admita polynomial-time f(n)-approximation algorithm [ACG+99]. In Table 1 wesummarize the complexity and (non-) approximability results of this work.As for the results on planar graphs, our technical contribution is aPolynomial-Time Approximation Scheme (PTAS) for Roman Domination.This result is based on an exact polynomial-time algorithm for r-outerplanargraphs. The latter improves over the previous results in [Dre00]: in this workonly trees and r�n-grids (for any �xed r) are shown to be exactly solvable.Our result subsumes both of them (an r�n-grid is clearly an r-outerplanargraph).2 Online Static Win{WinIn the sequel, given a multiset S, uniq(S) denotes the set resulting by re-moving multiplicities.De�nition 2.1 (online static) Given a graph G = (V;E), a server place-ment for G is a multiset S of nodes. A server placement S is a win{win forG, if for all v 2 V there is an uv 2 S with the properties:1. v = uv or (uv ; v) 2 E,2. for all v0 2 V n fvg there is an uv0 2 S n fuvg withv0 = uv0 or (uv0 ; v0) 2 E:Lemma 2.2 (sandwich) Any graph G has the following properties:5



v1 v2 v3 v4 v5Figure 3: A win{win. v1 v2 v3 v4Figure 4: Not a win{win.1. For every dominating set DS, the server placement SP := DS ]DSis a win{win for G, where ] denotes the multi-union.2. For every win{win WW , the set uniq(WW ) is a dominating set of G.3. For every minimum dominating set MDS and for every minimumwin{win MWW , jMDSj � jMWW j � 2jMDSj hold.Proof. For Property 1, let v1; v2 2 V be a pair of nodes with v1 6= v2. SinceDS is a dominating set, there are uv1 ; uv2 2 DS, such thatv1 = uv1 or (v1; uv1) 2 E; andv2 = uv2 or (v2; uv2) 2 Ehold. Due to the de�nition of SP , fuv1 ; uv2g � SP holds. This implies thatrequests at v1; v2 can be serviced.For Property 2, let v 2 V be a node. There is a uv 2 WW with v = uvor (v; uv) 2 E. Since uv 2 uniq(WW ), uniq(WW ) is a dominating set.For Property 3, it su�ces to consider the win{win WW :=MDS]MDSand the dominating set DS := uniq(MWW ). Clearly, jMDSj � jDSj �jMWW j � jWW j = 2jMDSj. 22.1 Characterization of win{win MultisetsThe property of being a win{win does not depend only on a node and itsneighbors. Furthermore, it is not enough that for every pair of nodes thereare two di�erent adjacent servers. This is illustrated by the example inFigure 4. The server placement S = fv2; v3g is not a win{win. If the �rstrequest is at v2, then there are two cases. Case 1, the request is serviced byv2, then a second request at v1 cannot be serviced. Case 2, the request isserviced by v3, then a second request at v4 cannot be serviced.This observation lead us to the following characterization of the serverplacements that are win{win.De�nition 2.3 Given a graph G(V;E) and a multiset D for it, a vertexv 2 V is weak if D dominates v only once. A vertex u 2 D is safe if everyv 2 N(u)+ is not weak, where N(u)+ = N(u) [ fug.6



Lemma 2.4 A multiset D for G(V;E) is a win{win if and only if the fol-lowing two properties hold:at-most-1-weak Every u 2 D does not dominate more than one weak node;at-least-1-safe Every non weak node v 2 V is dominated by at least one safenode u 2 D.Proof.()) By contradiction, assume that some u 2 D does not satisfy Property at-most-1-weak. Then, there exist two weak nodes w1 and w2 dominated onlyby u. After a �rst request at w1, w2 is no longer dominated (we must haveused u for the �rst request). This contradicts the hypothesis that D is awin{win. Now suppose (again by contradiction) that a non weak node v isnot adjacent to any safe node (thus contradicting Property at-least-1-safe).Let u1; : : : ; uk be the nodes of D adjacent to v, for some k � 2 (this followsfrom the fact that v is not weak). By hypothesis, none of u1; : : : ; uk is safe.So, there exist w1; : : : ; wk distinct weak nodes, with wi adjacent to ui, for1 � i � k. Now consider a �rst request at node v. For this request we mustuse one among u1; : : : ; uk, let us say uj . Then, if the second request is at theweak node wj we do not have any server to react. Again, this contradictsthe hypothesis.(() Let v1 be the position of the �rst request. We have two cases: v1 isweak, or v1 is not weak. In the �rst case, we must use the only node u 2 Dthat is adjacent to v1; Property at-most-1-weak guarantees that every nodein N(u)+ n fv1g will still be dominated. So, any second request can behandled. Otherwise, that is, v1 is not weak, Property at-least-1-safe impliesthat there exists a u 2 D which is safe; we use such a u for this request.At this point all the nodes in N(u)+ n fv1g will still be dominated by someu0 2 D. Also in this case any second request can be handled. 22.2 ComplexityWe are interested in the complexity of the Online Static Win-Win prob-lem. We discuss hardness and approximation of this problem. Both NP-hardness and approximation hardness can be proved using the followinglemma.Lemma 2.5 Any f(n)-approximation algorithm A for Min DominatingSet implies a 2f(n)-approximation algorithm forMin Online StaticWin-Win. Conversely, any g(n)-approximation algorithm B for Min Online7



Static Win-Win implies a 2g(n)-approximation algorithm for Min Dom-inating Set.Proof. Applying A to any graph G we can �nd a dominating set DS of sizejDSj � f(n)jMDSGj. By Lemma 2.2 the server placement SP = DS ]DSis a win{win for G of size jSP j = 2jDSj � 2f(n)jMDSGj � 2f(n)jMWWGj.Conversely, applying B to any graph G we obtain a win{win SP of sizejSP j � g(n)jMWWGj. Then, according to Lemma 2.2 the set DS =uniq(SP ) is a dominating set of size jDSj � jSP j � g(n)jMWWGj �2g(n)jMDSGj. 2We know thatMin Dominating Set is not approximable within c lognfor some c > 0 [RS97] (unless P=NP) and that it is approximable within1+ln n [Joh74]. From these facts and the above lemma one can easily provethe following.Theorem 2.6 TheMin Online StaticWin-Win problem in general graphscan be approximated within 2+ 2 lnn, but (unless P=NP) cannot be approx-imated within c logn for some c > 0.ForMin Dominating Set in planar graphs a Polynomial Time Approx-imation Scheme (PTAS) is known [Bak94]. Therefore, Lemma 2.5 impliesan approximation algorithm for Min Online Static Win-Win in planargraphs, called Min Planar Online Static Win-Win, with ratio 2+ � forevery � > 0.Moreover, this approximation ratio is tight for the approach of \dou-bling" a dominating set to construct the solution. We illustrate this by theexample in Figure 5. For this graph, the set M := fv1; : : : ; v8g is a mini-mum dominating set. Doubling it gives a solution WW with jWW j = 16.On the other hand, the server placement MWW = fw; v1; v2; : : : ; v8g is aminimum win{win with jMWW j = 9. In this case, the approximation ra-tio is 16=9. If we increase the number of rays from 8 to k, then we getjWW j=jMSP j = 2k=(k + 1). This shows that there exist graphs for whichthe simple doubling algorithm has approximation ratio greater than 2 � �,for any � > 0.3 Roman DominationWe come back to the original problem of the so called Roman Domination.On every node, we can place none, one, or two servers.8



v4v3v2 v6 u6w v7 u7u8u1u2 v1u3 u4 u5v5v8Figure 5: Doubling a dominating set gives a win{win of cost roughly twicethe optimum.De�nition 3.1 (roman domination) Given a graph G = (V;E), a romanfor G is a server placement S such that every node v in V either belongs toS or has a neighbor u in S whose multiplicity in S is at least 2. Formally,8v 2 V; v =2 S ! 9u : (v; u) 2 E ^ fu; ug � S.Clearly, every roman S is a win{win: If the �rst request is at a nodev 2 S, then v is serviced by its own server; if v 62 S, then v is serviced by aneighbor u with fu; ug 2 S. This implies that a minimum win{win does nothave cardinality larger than a minimum roman. The next result shows thatthe `�' relationship between those two problems is actually strict:2Strict Inclusion 3.2 Online Static Win-Win� Roman Domination:For the graph in Figure 3, the server placement S0 = fv2; v2; v4; v4g is aminimum roman. On the other hand, S = fv2; v3; v4g is a minimum win{win: if the �rst request is at v2, then this request is serviced by v3; if afterthat the second request is at v3, then it is serviced by v2 or by v4. }It is known that Min Roman Domination is NP-hard for arbitrarygraphs [Dre00]. We strengthen this result and show that the problem is alsohard to approximate. As a by{product, we get a new proof for the NP-hardness. In particular, Lemma 2.2 remains true if we replace the notionof win{win by roman (see also [Dre00, Proposition 2.1]). Hence, we get thefollowing theorem:Theorem 3.3 The Min Roman Domination problem in general graphscan be approximated within 2 + 2 lnn, but (unless P = NP) cannot be ap-proximated within c logn for some c > 0.2Since in all cases `�' is trivial, in the sequel we will only show that `=' does not hold.9



3.1 Planar GraphsOften, our problem instances are not arbitrary graphs; planarity is quitea natural condition (see Figure 1). It is therefore interesting to study theproblem complexity for planar graphs, since we know that minimum dom-inating set can be approximated well for planar graphs. It turns out thatMin Roman Domination is NP-hard for planar graphs.3Theorem 3.4 Min Roman Domination is strongly NP-hard even if theinput graph G is planar.Proof Sketch. We show the NP-hardness of Min Roman Domination byreducing Planar Vertex Cover [GJ79]. Indeed, in an adaptation of thewell known reduction from vertex cover to dominating set, we can make thelocal transformation upon an edge in Figure 6. The resulting graph, witheG G0 w1euvu e vw2eFigure 6: Reduction from Planar Vertex Cover to Roman Domina-tion.jV j + 2jEj vertices and 5jEj edges is still planar, and it is straightforwardto show that a vertex cover with k nodes in the original graph exists if andonly if a roman with 2k nodes exists in the second. 2The results from the previous section show that the planar Min RomanDomination can be approximated within 2 + �. The next theorem showsthat we can �nd a better approximation. Its proof follows the ideas from[Bak94, ABFN00] which have become a well known standard method to getPTASs for many problems on planar graphs. Those approximations schemeslook very similar; the only speci�c part is that the problem has to be solvedoptimally on r{outerplanar graphs. We use dynamic programming and the3In [Dre00, page 68], the NP-hardness of the planar graph case is also mentioned. At thewriting time the paper cited in [Dre00] is unpublished, so for the sake of completeness, weinclude a reduction from vertex cover. This reduction is also used to prove the \tightness"of our approximability results. 10



notion of bounded treewidth [ABFN00] to show how this can be done for theMin Roman Domination problem.Theorem 3.5 (PTAS) Min Planar Roman Domination has a Poly-nomial Time Approximation Scheme (PTAS), but (unless P = NP) it doesnot have a Fully Polynomial Time Approximation Scheme (FPTAS).Proof. Let G be a r{outerplanar graph. This implies thatG has a treewidthl of at most 3r� 1 ([ABFN00], Theorem 9). A tree decomposition hfXiji 2Ig; T i, with width at most 3r� 1 and with jI j = O(jV j) of G, can be foundin O(rjV j) time ([ABFN00], Theorem 12).Let hfXiji 2 Ig; T i be a tree decomposition for the graph G = (V;E).Let Xi = fx(i)1 ; : : : ; x(i)ni g be a bag [ABFN00] with ni := jXij. A numberj 2 f0; : : : ; 3ni � 1g can be identi�ed with a server placement S(i)j in thefollowing way. We write j in ternary arithmetic, i.e., j = Pni�=1 3��1j� ,where j� 2 f0; 1; 2g. Every node x� 2 Xi occurs with multiplicity j� in S(i)j .The algorithm we will describe visits the vertices of T from the leavesto the root. For every server placement S(i)j of a bag Xi, the algorithmcomputes a server placement S(i)j for the bags in the subtree rooted at i asa partial solution.The dynamic programming algorithm proceeds in three steps.Step 1: For every leaf Xi, for every j 2 f0; : : : ; 3ni � 1g, we de�ne S(i)j :=S(i)j .Step 2: After this initialization, we visit the vertices of our tree decompo-sition from the leaves to the root. Suppose node i has a child k in the treeT . In the case that i has several children k1; : : : ; ks in the tree T , this stephas to be repeated for each child.1. Determine the intersection Y := Xi \Xk.2. For every server placement S(i)j of Xi, we choose a server placementS(k)j0 of Xk such that the following properties hold:(a) S(i)j jY = S(k)j0 jY .(b) For every v 2 Xk n Y with v 62 S(k)j0 , there is a uv with fuv; uvg �S(k)j0 and (v; uv) 2 E.(c) The number j(S(i)j ] S(k)j0 ) n (S(i)j jY )j is minimized.11



Then, we de�ne S(i)j := (S(i)j ] S(k)j0 ) n S(i)j jY . For di�erent j1; j2 2f0; : : : ; 3nig with S(i)j1 jY = S(i)j2 jY , the same j 01 = j 02 can be chosen.Note that, from Property 3 of a tree decomposition, we know thatnone of the nodes v 2 Xk n Y will appear in a bag that has not beenvisited up to this point. Otherwise, such a node would also appear inXi.Step 3: LetXR be the root of T , let n := jXRj. Choose a j 2 f0; : : : ; 3n�1g,such that1. S(R)j is a roman for G, and2. jS(R)j j is minimum.The algorithm described above runs in time polynomial in the size ofG and in 33r. Due to construction, for every vertex i 2 T and for everyj 2 f0; : : : ; 3ni � 1g, S(i)j is a smallest server placement such that property 2(b) of step 2 is ful�lled. This implies that S(R)j is a minimum roman for G.Finally, the strong NP-hardness proof of Theorem 3.4 implies that Ro-man Domination is not in FPTAS (see [GJ79] for the de�nition of strongNP-hardness and its implications). 24 Online Dynamic Win{WinIn this section, we assume that after the �rst request, there is enough timeto move the servers from one node to a neighbor before the second requestoccurs. This leads to the following de�nition.De�nition 4.1 (online dynamic) Given a graph G = (V;E) and a serverplacement S. A function4 r : S ! V is called rearrangement for G; S, if forevery server v 2 S r(v) = v or (v; r(v)) 2 Eholds. We say that S is a dynamic win{win for G, if for every u 2 V thereis a rearrangement ru with the properties:� There is v 2 S with ru(v) = u, i.e., the �rst request at u can beserviced.4Note that di�erent servers at a node can take di�erent values.12



� For all u0 2 V n fug, there is a v0 2 S n fvg with ru(v0) = u0 or(ru(v0); u0) 2 E.Strict Inclusion 4.2 Online DynamicWin-Win� Online StaticWin-Win:Consider the cycle of length 4, (v1; : : : ; v4; v1). By one hand, the serverplacement S = fv1; v3g is a dynamic win{win. For instance, if the �rstrequest is at v2, then this request is serviced by v1 and v3 moves to v4. Onthe other hand, there is no server placement S0 which is a win{win withjS0j = 2. To see this, we consider two cases. Case 1, S0 = S. A �rst requestat v2 must be serviced by v1 or v3, let us say v1. Then a second requestoccurring at v1 cannot be serviced. Case 2, S 0 = fv1; v4g. Consider a requestat v1. If we use the server at v1, then v2 is no longer dominated. Similarly,using the server at v4 leaves v3 undominated. }Again, the methods from Section 2 can be used to show the complexityof Min Online Dynamic Win-Win.Theorem 4.3 The Min Online Dynamic Win-Win problem is NP-hard.It can be approximated within 2 + 2 lnn, but (unless P = NP) cannot beapproximated within c logn for some c > 0.We know that �nding a minimum dominating set is hard to do. But whathappens if we are given a server placement, and are asked if the arrangementis `close to' a dominating set { that is, if each server is allowed to move atmost 1 step, can a dominating set be obtained?De�nition 4.4 Let r be a rearrangement for hG; Si; r is called dominatingrearrangement for hG; Si, if the server placement fr(v)jv 2 Sg contains adominating set for G.Given a graph G and a server placement S, the Dominating Rear-rangement problem asks whether there is a dominating rearrangement forhG; Si.Theorem 4.5 Dominating Rearrangement is NP-complete. This re-mains true, even if the input graph is planar.Proof. It is obvious that this problem is in NP. We use a reduction fromSAT [GJ79] to show the NP-hardness.Let F be a Boolean formula, given as a set U of variables and a collectionC of clauses over U . We de�ne a graph GF = G = (V;E) as follows (see13



vc2vc1su1vu1 �vu1 su2vu2 �vu2Figure 7: Reduction from SAT, F = (u1 _ u2) ^ (�u1 _ �u2).Figure 7). For every variable u 2 U , there is a storage node su 2 V and twovariable nodes vu; �vu 2 V . Each such triple of nodes is connected by edges,i.e., (su; vu); (su; �vu); (vu; �vu) 2 E.For every clause c 2 C, there is a clause node vc 2 V . A clause nodevc is connected to a variable node vu (�vu, resp.), i� u 2 c (�u 2 c, resp.).On every storage node, a server is placed, i.e., the server placement has theform S := fsugu2U .For every dominating rearrangement r and for every variable u 2 U ,either r(su) = vu or r(su) = �vu hold. It is obvious, that this correspondsto a variable assignment. The given formula F is satis�able, i� there is adominating rearrangement for hG; Si.To prove the NP-completeness for planar graphs, we de�ne the subgraphG0 � G by deleting the storage nodes and the adjacent edges. G0 is planar,i� G is planar. It has been shown in [Lic82, Lemma 1] that SAT is NP-complete, even if the input is restricted to formulae F with the propertythat G0 and G are planar. 2Theorem 4.6 Given a graph G and a server placement S. The problem todecide whether S is a dynamic win{win for G is NP-complete.Proof. We extend the de�nition of the graph G in the proof of Theorem 4.5.We add a dummy node vd 2 V , and we add edges from vd to every clausenode and from vd to every variable node. The new server placement becomesS := fsugu2U ] fvdg.If the �rst request is at vd, then this request has to be serviced by vd,since no clause node and no variable node is in S. A second request can beserviced, i� there is a dominating rearrangement. We have seen that this isa NP-complete problem. 214



w1 w2 w3 w4v2uv1Figure 8: Proof of Non-Inclusion 5.35 O�ine Static/Dynamic Win{WinIn this section, we consider the situation in which both requests occur at thesame time (equivalently, as the �rst request must be serviced, it is alreadyknown where the second one will be).De�nition 5.1 (o�ine static) Let G = (V;E) be a graph. A server place-ment S is an o�ine win{win if for every pair of nodes v1; v2 2 V , v1 6= v2,there is a pair fuv1 ; uv2g � S with� v1 = uv1 or (v1; uv1) 2 E, and� v2 = uv2 or (v2; uv2) 2 E.Non-Inclusion 5.2 Online DynamicWin-Win6� Offline StaticWin-Win:For the graph in Figure 4 the set fv2; v3g is an o�ine win{win. For the samegraph, no dynamic win{win can have size 2. Indeed, consider a �rst requestat v2. No matter what server we use to service this request, the remainingone cannot cover the nodes fv1; v3; v4g, where a second request can occur.Non-Inclusion 5.3 Offline StaticWin-Win6� Online DynamicWin-Win:It is easy to verify that fu; v1; v2g is a dynamic win{win for the graph inFigure 8. On the other hand, there is no o�ine win{win multiset of size lessthan 4: each of the subtrees rooted at v1 or v2 must contain at least twoservers. }Again, Min Offline Static Win-Win is an NP-hard problem, illus-trated by the techniques of Section 2. Moreover, we can give the followingcharacterization of the o�ine win{win multisets:15



Lemma 5.4 A server placement S is an o�ine win{win, i� for every pairof two di�erent nodes there is one server in the neighborhood of one nodeand a di�erent server in the neighborhood of the other node.We conclude this section with Offline Dynamic Win-Win. Here wecombine the fact that servers can be rearranged before serving the secondrequest (Dynamic) with the fact that the second request is known by thetime we have to serve the �rst one (Offline). Therefore, we have thefollowing de�nition for the corresponding server placement:De�nition 5.5 (o�ine dynamic) Let G = (V;E) be a graph. A serverplacement S, is an o�ine dynamic win{win for G, if for every pair of nodesv1; v2 2 V , with v1 6= v2, there is a pair of distinct nodes uv1 ; uv2 2 V suchthat vi is at distance at most i from uvi, for i = 1; 2.Strict Inclusion 5.6 Offline Dynamic Win-Win� Online DynamicWin-Win:Consider the cycle of length 5, (v1; v2; : : : ; v5; v1). It is easy to verify thatthe set S = fv1; v3g is an o�ine dynamic win{win (S is a dominating setand both servers are at distance at most 2 from any other non-server node).To prove that no multiset of size 2 can be a dynamic win{win we use thefollowing argument. After the �rst request has been serviced, the set ofnodes to be considered as possible positions for the second request induce apath of length 4; therefore, no matter where we place the remaining server,there is no way to dominate all such nodes. }6 ConclusionClearly, these are just a few of a myriad of dominating set problems. Wehave looked at them individually, but have also tried to explore the connec-tions between them. First of all, every Online version is more \di�cult"(i.e. requires more servers) than the corresponding Offline one (i.e. �).Similarly, every Static problem is more \di�cult" than the correspondingDynamic one. Additionally, our results show that the Online and the Dy-namic features are somehow orthogonal: Online Dynamic Win-Win andthe Offline Static Win-Win are simply not comparable.More interestingly, we can consider more requests, or even an unboundedsequence of requests, a Win� scenario. In this case, a server can be reusedafter the �rst time step. This problem raises interesting questions, in that16



the online problem looks similar to a typical online server question, butinstead deals much more directly with the connectivity of dominating solu-tions. Another interesting di�erence is that instead of minimizing work, itattempts to minimize resources needed for quality of service guarantees. Wewill explore this relationship in a future paper.References[ABFN00] J. Alber, H.L. Bodlaender, H. Fernau, and R. Niedermeier. FixedParameter Algorithms for Planar Dominating Set and RelatedProblems. In Proc. 7th Scandinavian Workshop on AlgorithmTheory (SWAT), volume 1851 of LNCS, pages 97{110, 2000.[ACG+99] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi. Complexity and Approximation {Combinatorial optimization problems and their approximabilityproperties. Springer Verlag, 1999.[AF95] J. Arquilla and H. Fredricksen. Graphing an Optimal GrandStrategy.Military Operations Research, pages 3{17, Winter 1995.[Bak94] B. Baker. Approximation Algorithms for NP{Complete Prob-lems on Planar Graphs. J. ACM, 41(1):153{180, 1994.[dJ62] C.F. de Jaenish. Trait des Applications de l'Analyse Mathema-tique au Jeau des Echecs. Petrograd, 1862.[Dre00] P.A. Dreyer. Applications and Variations of Domination inGraphs. PhD thesis, Rutgers University, New Jersey, 2000.[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability/ A Guide to the Theory of NP{Completeness. Freeman andCompany, 1979.[Hed00] S.T. Hedetniemi. Roman domination in graphs II. Slidesand notes from presentation at 9th Quadrienn. Int. Conf. onGraph Theor., Combinatorics, Algorithms, and Applications,June 2000.[HHS98] T.W. Haynes, S.T. Hedetniemi, and P.J. Slator. Fundamentalsof Domination in Graphs. Marcel Dekker, New York, 1998.17
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A TreewidthWe recall the de�nition of treewidth from [ABFN00].De�nition A.1 Let G = (V;E) be a graph. A tree decomposition of G is apair hfXi; ji 2 Ig; T i, where each Xi is a subset of V , called a bag, and T isa rooted tree with the elements of I as nodes. The following three propertiesshould hold:1. Si2I Xi = V ;2. for every edge fu; vg 2 E, there is an i 2 I such that fu; vg � Xi;3. for all i; j; k 2 I, if j lies on the path between i and k in T , thenXi \Xk � Xj.The width of hfXi; ji 2 Ig; T i equals maxfjXijji 2 Ig� 1. The treewidth ofG is the minimum k such that G has a tree decomposition of width k.The treewidth of a graph is always bigger than 0, except for the casethat E = ;. On the other hand, the size of a bag is bounded by the numberof nodes in the graph. Therefore, the treewidth of a graph is less than thenumber of nodes.Example: Consider the graph G in Figure 9. We de�ne the bags X1 :=fv1; v3g and X2 := fv2; v3g and a tree T with 1 as the root and 2 as a child.The pair hfX1; X2g; T i is a tree decomposition. Since the size of both bagsv1 v2v3Figure 9: Graph G with treewidth 1.is 2, G has a treewidth of 1.G is a tree. It is easy to show that every tree has treewidth 1. Thesituation changes, if we add the edge fv1; v2g to G, i.e., we deal with thecomplete graph K3. There is no tree T 0, such that hfX1; X2; fv1; v2gg; T 0iis a tree decomposition of K3 (Contradiction to property 3). Therefore, thetreewidth of K3 is 2. This result can be extended, the treewidth of thecomplete graph Kn+1 is n. 19


