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Abstract. A social choice function A is implementable with verifica-
tion if there exists a payment scheme P such that (A,P ) is a truthful
mechanism for verifiable agents [Nisan and Ronen, STOC 99]. We give
a simple sufficient condition for a social choice function to be imple-
mentable with verification for comparable types. Comparable types are
a generalization of the well-studied one-parameter agents. Based on this
characterization, we show that a large class of objective functions μ ad-
mit social choice functions that are implementable with verification and
minimize (or maximize) μ. We then focus on the well-studied case of one-
parameter agents. We give a general technique for constructing efficiently
computable social choice functions that minimize or approximately min-
imize objective functions that are non-increasing and neutral (these are
functions that do not depend on the valuations of agents that have no
work assigned to them). As a corollary we obtain efficient online and
offline mechanisms with verification for some hard scheduling problems
on related machines.

1 Introduction

Computations over the Internet often involve self-interested parties (selfish
agents) which may manipulate the system by misreporting a fundamental piece
of information they hold (their own type or valuation). The system runs some
algorithm which, because of the misreported information, is no longer guaran-
teed to return a “globally optimal” solution (optimality is naturally expressed as
a function of agents’ types) [1]. Since agents can manipulate the algorithm by
misreporting their types, one has to carefully design payment functions which
make disadvantageous for an agent to do so. A mechanism M = (A, P ) consists
of a social choice function A which, on input the reported types, chooses an out-
come, and a payment function P which, on input the reported types, associate
a payment to every agent. Payments should guarantee that it is in the agent’s
interest to report his type correctly. Social choice functions A for which there
exists a payment P that guarantees that the utility that an agent derives from
the chosen outcome and from the payment he receives is maximum when this
agent reports his type correctly are called implementable (see Sect. 1 for a
formal definition of these concepts). In this case the mechanism M = (A, P ) is
called truthful. The main difficulty in designing truthful mechanisms stems from

M. Bugliesi et al. (Eds.): ICALP 2006, Part I, LNCS 4051, pp. 596–607, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



New Constructions of Mechanisms with Verification 597

the fact that the utility itself depends on the type of the agent: for instance,
payments designed to “compensate” certain costs of the agents should make im-
possible for an agent to speculate. It is well-known that certain social choice
functions cannot be implemented. This poses severe limitations on the class of
optimization problems involving selfish agents that one can optimally solve (see
e.g. [1,2]).

Notation. The following notations will be useful. For a vector x = (x1, . . . , xm),
we let x−i denote the vector (x1, . . . , xi−1, xi+1, . . . , xm) and (y,x−i) the vector
(x1, . . . , xi−1, y, xi+1, . . . , xm). For sets D1, . . . , Dm, we let D denote the Carte-
sian product D1×· · ·×Dm and, for 1 ≤ i ≤ m, we let D−i denote the Cartesian
product D1 × · · · × Di−1 × Di+1 × · · · × Dm.

Implementation with verification. In this paper we focus on so called mechanisms
with verification as introduced in [1] and studied in [3]. These mechanisms award
payments after the selected outcome has been “implemented” and this implemen-
tation allows some limited “verification” on the agents’ reported types. We have
a finite set O of possible outcomes and m selfish rational agents. Agent i has
a valuation (or type) vi taken from a finite set Di called the domain of agent
i. A valuation vi is a function vi : O → �; vi(X) represents how much agent
i likes outcome X ∈ O (higher valuations correspond to preferred outcomes).
The valuation vi is known to agent i only. A social choice function A : D → O
maps the agents’ valuations into a particular outcome A(v1, . . . , vm). A mecha-
nism M = (A, P ) is a social choice function A coupled with a payment scheme
P = (P1, . . . , Pm), where each Pi is a function Pi : D → �. The mechanism
elicits from each agent his valuation and we denote by bi ∈ Di the reported valu-
ation of agent i. On input the vector b = (b1, . . . , bm) of reported valuations, the
mechanism selects outcome X as X = A(b) and assigns agent i payment Pi(b).
We assume that agents have quasi-linear utilities; more specifically, the utility
uM

i (b|vi) of agent i when b is the vector of reported valuations and vi is the
type of agent i is uM

i (b|vi) = Pi(b) + vi(A(b)). Agents are selfish and rational
in the sense that each of them will report bi which maximizes the correspond-
ing utility. We stress that both the outcome and the payments depend on the
reported valuations b = (b1, . . . , bm). In particular, for a fixed b−i, the outcome
A(b−i, bi) is a function Ab−i(bi) of the reported valuation bi of agent i.

The classical notion of a mechanism assumes that there is no way of verify-
ing whether an agent reported his type truthfully (that is, whether bi = vi).
Therefore, a selfish rational agent can declare any type that will maximize his
utility. In some cases, though, it is reasonable to assume that the mechanism has
some limited way of verifying the reported types of the agents. In this paper,
we consider mechanisms with verification which can detect whether bi �= vi if
and only if vi(Ab−i(bi)) < bi(Ab−i(bi)); in this case, agent i will not receive any
payment.

A scenario that is often considered when dealing with selfish rational agents
consists of a social choice function that has to share some work-load among
the agents. In this scenario, an outcome X specifies for each agent the task
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that the agent has to complete. It is thus natural to assume that the valuation
vi(X) of agent i reflects how much time it takes agent i to complete the task
assigned to him. For example, one could have vi(X) = −Ti(X) where Ti(X) is
the time needed by agent i to complete the task assigned to him by X ; thus
higher valuations correspond to outcomes X that assign to agent i tasks that
can be completed faster. In this scenario, it is natural to assume that an agent
can report to be slower than he actually is and delay the completion of the task
assigned to him without being caught by the mechanism (this corresponds to
the case in which agent i declares bi such that bi(Ab−i(bi)) ≤ vi(Ab−i(bi)). On
the other hand, if agent i declares to be faster that he actually is (that is, he
declares bi such that bi(Ab−i(bi)) > vi(Ab−i(bi))) then agent i will complete
his task at time −vi(Ab−i(bi)) instead of time −bi(Ab−i(bi)) as expected by the
mechanism, given his declared valuation bi. The mechanism will thus punish
agent i by not giving him any payment. The well-studied class of one-parameter
agents [4,2] corresponds to the special case in which the task assigned to an agent
is described by a weight and the time needed to complete a task is proportional
to its weight. In this case, the type of the agent is determined by the time it
takes the agent to complete a task of unitary weight. Let us now proceed more
formally.

Definition 1 ([1]). A social choice function A is implementable with verifi-
cation if there exists P = (P1, . . . , Pm) such that for all i, all vi ∈ Di, all
b−i ∈ D−i, utility u

(A,P )
i (b|vi) of agent i is maximized by setting bi = vi.

In this case, M = (A, P ) is called a truthful mechanism with verification. It
is easy to see that, if A is implementable with verification then there exists
P = (P1, . . . , Pm) such that, for all vi, bi ∈ Di and b−i ∈ D−i, the following
inequalities hold:

vi(Ab−i(vi)) +Pi(vi,b−i)≥vi(Ab−i(bi)) if vi(Ab−i(bi))< bi(Ab−i(bi))(1)
vi(Ab−i(vi))+Pi(vi,b−i)≥ vi(Ab−i(bi)) + Pi(bi, b−i)if vi(Ab−i(bi))≥ bi(Ab−i(bi)).(2)

We are interested in social choice functions A which are implementable with
verification and that optimize some objective function μ(·) which depends on
the agents’ valuations v = (v1, . . . , vm). For maximization (resp., minimization)
functions, we let optμ(v) be maxX∈O μ(X,v) (resp., minX∈O μ(X,v)). An out-
come X ∈ O is an α-approximation of μ for v ∈ D if the ratio betweeen μ(X,v)
and the optimum is at most α. A social choice function A is α-approximate
for μ if, for every v ∈ D, A(v) is an α-approximation of μ for v. In partic-
ular, we say that social choice function A maximizes function μ if, for all v,
A(v) = arg maxX∈O μ(X,v).

Our results. We start by studying a generalization of one-parameter agents which
we call comparable types. We give a simple sufficient condition for social choice
function to be implementable with verification for comparable types and, based
on this characterization, we show that a large class of objective functions μ
admit social choice functions that are implementable with verification and min-
imize (or maximize) μ. In particular, we consider maximization (respectively,
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minimization) functions of the form μ(v1(X), . . . , vm(X)) which are monotone
non-decreasing (respectively, non-increasing) in each agent valuation vi(X). Ob-
serve that VCG mechanisms [5,6,7] can only deal with particular functions of
this form called affine maximizers and the Q||Cmax scheduling problem is an
example of an optimization problem involving a monotone non-decreasing func-
tion (thus our result applies to Q||Cmax) that is not an affine maximizer. We
remark that agents with comparable types are more general than one-parameter
agents. In the full version we shows a simple class of latencies (corresponding
to comparable types) for which optimization is not implementable if verifica-
tion is not allowed. We also characterize social choice functions implementable
with verification for agents with strongly comparable types, a reach subclass of
comparable types which has the well-studied one-parameter agents as a special
instance. In Section 3, the focus is on efficiently computable social choice func-
tions and one-parameter agents. We give a general transformation for turning
any polynomial-time α-approximate algorithm A for the optimization problem
with objective function μ into an α(1 + ε)-approximate social choice function
A� that is implementable with verification. If the number of agents is constant,
A� can be computed in polynomial-time and this gives immediate applications
to NP-hard scheduling problems (see Section 4). Most of the proofs are omitted
fromthis paper but can be found in the full version available from the authors’
web pages.

Related work. Mechanisms for one-parameter agents have been characterized in
[4,2]. Lavi, Mu’alem and Nisan [8] showed that a weak monotonicity condition
(W-MON) characterizes order-based domains with range constraints and this
result was extended, in a sequence of papers [9,10], to convex domains. These
results concern mechanisms which do not use verification and cannot be applied
to our case. We show that the “counterpart” of W-MON for mechanisms with
verification (which we term WMonVer) is not always sufficient, unlike the cases
considered in [8,9,10]. This gives evidence that the results about W-MON cannot
be imported in mechanisms with verification. The study of social choice functions
implementable with verification starts with the work of Nisan and Ronen [1], who
gave a truthful (1 + ε)-approximate mechanism for minimizing scheduling on a
constant number of unrelated machines. Similar results have been obtained by
Auletta et al. [3] for scheduling on any number of related machines (see also [11]
for the online case). Also the works of [12,13] give mechanisms for agents which
are verifiable.

2 Agents with Comparable Types

In this section we consider comparable types. The main result of this section
(see Theorem 4) shows that, for any monotone non-decreasing function μ, there
exists a social choice function A that maximizes μ and that is implementable
with verification. In Theorem 5, we give a necessary and sufficient condition for
a social choice function to be implementable with verification with respect to a
subclass of comparable types which includes one-parameter agents.
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Definition 2. Let a and b be valuations. We say that a is smaller or equal to
b, in symbols a ≤ b, if, for all X ∈ O, a(X) ≤ b(X). Domain D is comparable
if for any a, b ∈ D either a ≤ b or b ≤ a.

In this section we assume that for all i, the domain Di of agent i is comparable.
We also assume domains to have finite cardinality (even though this assumptions
can be relaxed in some cases, e.g., for one-parameter agents). For fixed i and
b−i, inequalities (1-2) give a system of linear inequalities with unknowns P x :=
Pi(x,b−i), for x ∈ Di. For a, b ∈ Di with a ≤ b, Inequalities (1-2) are equivalent
to the following two inequalities

P a − P b ≥ a(Ab−i(b)) − a(Ab−i(a)) if a(Ab−i(b)) = b(Ab−i(b)), (3)

P b − P a ≥ b(Ab−i(a)) − b(Ab−i(b)). (4)

As before, for fixed i and b−i the two inequalities above give rise to a system
of inequalities as a and b with a ≤ b range over Di. This system of inequalities
is compactly encoded by the following graph that is a modification of the graph
introduced in [9] to study the case in which verification is not allowed.

Definition 3 (verification-graph). Let A be a social choice function. For ev-
ery i and b−i ∈ D−i, the verification-graph V(b−i) has a node for each type
in Di. The set of edges of V(b−i) is defined as follows. For every a ≤ b, add a
directed edge (b, a) of weight δb,a := b(Ab−i(b)) − b(Ab−i(a)) (encoding Inequal-
ity (4)). If a(Ab−i(b)) = b(Ab−i(b)), then also add directed edge (a, b) of weight
δa,b := a(Ab−i(a)) − a(Ab−i(b)) (encoding Inequality (3)).

Theorem 1. A social choice function A is implementable with verification if
and only if, for all i and b−i ∈ D−i, the graph V(b−i) does not have negative
weight cycles.

The theorem follows from the observation that the system of linear inequalities
involving the payment functions is the linear programming dual of the shortest
path problem on the verification-graph. Therefore, a simple application of Farkas
lemma shows that the system of linear inequalities has solution if and only if the
verification-graph has no negative weight cycle. The same argument has been
used for the case in which verification is not allowed albeit on a different graph
(see [15] and [9]).

We next show that there exists an interesting class of social choice functions
whose verification graphs have no cycle with negative weights. As we shall prove
below, these functions can be used to design optimal truthful mechanisms with
verification.

Definition 4 (stable social choice function). A social choice function A is
stable if, for all i, for all b−i ∈ D−i, and for all a, b ∈ Di, with a ≤ b, if
a(Ab−i(b)) = b(Ab−i(b)), then we have that Ab−i(a) = Ab−i(b).

The following result is based on the fact that stable social choice functions guar-
antee that, if V(b−i) contains a cycle, then all edges in that cycle have zero
weight (see full version for a proof).
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Theorem 2. Every stable social choice function A is implementable with veri-
fication.

We use the above result to show that it is possible to implement social choice
functions which select the best outcome out of a fixed subset of possible out-
comes:

Theorem 3. For any X1, . . . , X� ∈ O, let A = MAXμ(X1, . . . , X�) be the so-
cial choice function that, on input (b1, . . . , bm) ∈ D, returns the solution Xj of
minimum index that maximizes the value

μ(b1(Xj), . . . , bm(Xj)).

If μ(·) is monotone non-decreasing in each of its arguments then A is stable.

Proof. Fix an agent i and the reported types b−i ∈ D−i of all the other agents.
Let a, b ∈ Di with a ≤ b, and denote Xia := Ab−i(a) and Xib

:= Ab−i(b). To
prove that A is stable we have to show that, if a(Ab−i(b)) = b(Ab−i(b)), then
Xia = Xib

. Observe that

μ(b1(Xib), . . . , bi−1(Xib), b(Xib), . . . , bm(Xib)) = (by a(Xib) = b(Xib)) (5)
μ(b1(Xib), . . . , bi−1(Xib), a(Xib), . . . , bm(Xib)) ≤ (definition of A and Xia) (6)
μ(b1(Xia), . . . , bi−1(Xia), a(Xia), . . . , bm(Xia)) ≤ (a ≤ b and μ non decr.) (7)
μ(b1(Xia), . . . , bi−1(Xia), b(Xia), . . . , bm(Xia)) ≤ (definition of A and Xib) (8)
μ(b1(Xib), . . . , bi−1(Xib), b(Xib), . . . , bm(Xib)). (9)

This implies that all inequalities above hold with “=”. Since A chooses the opti-
mal solution of minimal index, equality between (5) and (8) yields ib ≤ ia. Sim-
ilarly, the equality between (7) and (6) yields ia ≤ ib, thus implying Xia = Xib

.

Combining Theorem 3 and Theorem 2 we obtain the main result of this section.

Theorem 4. Let μ(·) be any function monotone non-decreasing in its arguments
b1(X), . . . , bm(X), with X ∈ O and bi ∈ Di. Then, there exists a social choice
function OPTμ which maximizes μ(·) and is implementable with verification.

In the full version we exhibit a social choice function which satisfies the hy-
pothesis of Theorem 3 (and thus is implementable with verification) but is not
implementable if verification is not allowed. This shows that, for comparable
types, verification does help.

If the set O of outcomes is very large, then social choice function A could
not be efficiently computable. Our next result can be used to derive efficiently-
computable social choice functions which approximate the objective function by
restricting the search to a suitable subset of the possible outcomes.

Definition 5 (approximation preserving). AsetO′ ⊆ O is α-approximation
preserving for μ if, for every b ∈ D, the set O′ contains a solution X ′ which is an
α-approximation of μ for b.
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Theorem 3 implies the following.

Corollary 1. Let μ(·) be any optimization function monotone non-decreasing
in its arguments b1(X), . . . , bm(X), with X ∈ O and bi ∈ Di. For any α-
approximation preserving set O′ ⊆ O the social choice function APXμ :=
MAX

X∈O′{X} is an α-approximation for μ and is implementable with veri-
fication. Moreover, social choice function APXμ(b) can be computed in time
proportional to the time needed for computing values μ(X,b), for X ∈ O′.

Characterization. The following definition is adapted to the verification setting
from the W-MON condition (see [8]) which has been proved necessary and suf-
ficient for implementation without verification for convex domains.

Definition 6 (WMonVer). A social choice function A is WMonVer for do-
mains D1, . . . , Dm, if, for all i, for all b−i ∈ D−i, the graph V(b−i) does not
contain 2-cycles of negative weight.

Obviously, condition WMonVer is necessary for A to be implementable with
verification. Next we prove that for strongly comparable types (a restriction of
comparable types that includes one-parameter types) WMonVer is a necessary
and sufficient condition for a social choice-function A to be implementable with
verification. In the full version, we give an example of a WMonVer social choice
function that is not implementable with verification for comparable types.

Definition 7 (strongly comparable types). A domain with comparable types
Di is with strongly comparable types if there exists vi ∈ � such that, for all
X ∈ O: (i) a(X) ≤ vi, for all a ∈ Di, and (ii) for all a, b ∈ Di, a(X) = b(X)
implies a(X) = vi.

Theorem 5. For domains with strongly comparable types, social choice function
A is implementable with verification if and only if A is WMonVer.

3 One-Parameter Agents

In this section we present our results about one-parameter agents. One-parameter
agents are a special case of agents with strongly comparable types, and thus The-
orem 5 gives us a necessary and sufficient condition for a social choice function
to be implementable with verification. In this section, the focus is on efficiently
computable social choice functions (which will also be referred to as algorithms).
The main result of this section (see Theorem 9) shows, for a large class of opti-
mization functions μ (see Definitions 10 and 11), how to transform a polynomial-
time α-approximate algorithm for μ into an efficiently computable social choice
function that is implementable with verification for one-parameter agents and
α(1 + ε)-approximates μ. The class of function μ to which our transformation
applies include several classical scheduling problems (see Section 4). In Theo-
rem 11, we give a similar result for online settings.
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Definition 8. [2] The valuation vi of a one-parameter agent can be written as
vi(X) = −wi(X) · ti, for some publicly known non-negative function wi(·) and
some real number ti ≥ 0 that is privately known to agent i.

Observe that the valuation of a one-parameter agent is non-positive. We assume
that when asked to report his type, an agents replies with a real number ri,
implying that he reports his valuation to be bi(X) = −wi(X) · ri. We consider
optimization functions μ(X, b1, . . . , bm) (as opposed to functions of the form
μ(b1(X), . . . , bm(X)) of the previous section) that are non-decreasing in each
valuation bi and thus, equivalently, non-increasing in each reported type ri.

In the rest of this section, we will show how to design social choice functions
for one-parameter agents that are implementable with verification and that can
be computed in polynomial time. By virtue of Theorem 5, it suffices to focus
on social choice functions that are WMonVer for one-parameter agents. We first
observe the following:

Fact 1 For one-parameter agents, a social choice function A is WMonVer if
and only if, for all i, r−i there exists a critical value θi ∈ (�+ ∪ ∞) such that
(i) wi(ri, r−i) = 0 for ri > θi, and (ii) wi(ri, r−i) > 0 for ri < θi.

Notice that with a slight abuse of notation we have denoted the critical value
with θi even though it depends on i and r−i. The above property is called weak
monotonicity in [3], and Theorem 5 implies one of the main results in that work.
The MAX operator. We are given a function μ and want to design a social choice
function A that is implementable with verification (i.e., WMonVer) and, for a
given vector b of declared types, returns an outcome X such that μ(X,b) is
close to the maximum of μ over all choices of X ∈ O. Moreover, we want A
to be efficiently computable. A natural approach is to start from simple social
choice functions and combine them together. Mu’Alem and Nisan [14] consider
the following “MAX” operator:

MAXμ(A1,A2) operator
• compute X1 = A1(b) and X2 = A2(b);
• if μ(X1,b) ≥ μ(X2,b) then return X1 else return X2.

For minimization problems, one can simply consider a ‘MIN’ operator defined as
MINμ(A1, A2) := MAX −μ(A1, A2). Notice the slight abuse of notation in using
MAXμ both with social choice functions (as in the description of the MAXμ

operator) and outcomes (as in Theorem 3) as arguments. In general, the fact
that A1 and A2 are WMonVer does not guarantee that MAXμ(A1, A2) is also
WMonVer. We borrow (and adapt) the following definition.

Definition 9 ([14]). A social choice function A is bitonic w.r.t. μ(·) if it is
WMonVer and, for every i and r−i, one of the following two conditions holds
for the function g(x) := μ(A(x, r−i), (x, r−i)): (i) g(x) is non-increasing for
x < θi and non-decreasing for x ≥ θi; or (ii) g(x) is non-increasing for x ≤ θi

and non-decreasing for x > θi, where θi is the critical value.
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The following is the main technical contribution of this sections and will be used
to prove Theorem 9.

Theorem 6. If each Ai is bitonic w.r.t. μ(·) then social choice function MAXμ

(A1, A2, . . . , Ak):=MAXμ(MAXμ(A1, . . . , Ak−1),Ak) is bitonic w.r.t. μ(·) and
WMonVer for one-parameter agents.

The same results hold for the ‘MIN’ operator if each Ai is bitonic w.r.t. −μ(·).
Theorem 6 is proved by showing a connection between WMonVer social choice
functions and monotone social choice functions for known single minded bidders
(a special type of agents for combinatorial auctions studied in [14]).

Efficient WMonVer social choice functions. Theorem 6 provides a powerful tool
for efficiently building social choice functions starting from simpler ones. In par-
ticular, we will use this result to extend Theorem 3 to a wider class of optimiza-
tion functions of the form μ(X, b1, . . . , bm). This allows us to deal with certain
scheduling problems where the measure depends on the scheduling policy internal
to the machines and therefore cannot be expressed as the machines completion
times (i.e., as a function of wi(X) · ti). We start by defining the notion of neutral
functions.

Definition 10. A function μ(·) is neutral if, for every X such that wi(X) = 0,
it holds that μ(X, (bi,b−i)) = μ(X, (b′i,b−i)), for every bi, b

′
i and every b−i.

We have the following technical lemma.

Lemma 1. Let μ(X, b1, . . . , bm) be neutral and non-decreasing in each bi, for
every X ∈ O. Then any algorithm returning a fixed outcome X is bitonic w.r.t.
μ(·).
Theorem 7. Let μ(X, b1, . . . , bm) be neutral and non-decreasing in each bi,
for every X ∈ O. Then, for any X1, . . . , X� ∈ O, the social choice function
A = MAXμ(X1, . . . , X�) is bitonic w.r.t. μ(·). Hence A is implementable with
verification.

Proof Sketch. The proof is based on the observation that a fixed outcome
Xj can be seen as an algorithm returning Xj for all inputs. We show that such
an algorithm is bitonic and then apply Theorem 6. �

Theorem 7 above has two important consequences. First of all, we can obtain a
result (similar to Theorem 4) that shows that optimization of neutral monotone
functions μ(X, b1, . . . , bm) for one parameter agents can be implemented with
verification.

Theorem 8. For one-parameter agents and for any function μ(X, b1, . . . , bm)
which is neutral and non-decreasing in each bi, there exists a social choice func-
tion OPTμ that maximizes μ(·) and is implementable with verification.

Another consequence is that, if we have an α-approximation preserving set of
outcomes O′ for μ, we can apply the above theorem to all outcomes X ∈ O′.



New Constructions of Mechanisms with Verification 605

This gives us a social choice function A which is implementable with verification,
α-approximates μ and can be computed in time polynomial in |O′|.

We next introduce the class of smooth functions, for which there exists a small
α-approximation preserving set of outcomes.

Definition 11. Fix ε > 0 and γ > 1. A function μ is (γ, ε)–smooth if, for any
pair of declarations r and r̃ such that ri ≤ r̃i ≤ γri for i = 1, 2, . . . , m, and for
all possible outcomes X, it holds that μ(X, r) ≤ μ(X, r̃) ≤ (1 + ε) · μ(X, r).

For smooth, neutral functions μ we can transform any α-approximate polyno-
mial-time algorithm A (which is not necessarily implementable with verifica-
tion) into a social choice function for a constant number of agents which is
computable in polynomial-time, implementable with verification and α(1 + ε)-
approximates μ.

Theorem 9. Let A be a polynomial-time α-approximate algorithm for a neu-
tral, non-decreasing (in each bi) (γ, ε)-smooth objective function μ(·). Then, for
any ε > 0, there exists an α(1 + ε)-approximate social choice function A� im-
plementable with verification. If the number of agents is constant, A� can be
computed in polynomial time.

Proof Sketch. Let O′ be the set of outcomes returned by A when run on bid
vectors whose components are powers of γ. For m agents, |O′| is O(maxi{logγ

|Di|}m) which is polynomial for fixed m, and, since μ is (γ, ε)-smooth, O′ is
an α(1 + ε)−approximation preserving set for μ. Consider social choice function
A� that on input r outputs the outcome X ∈ O′ that maximizes μ(X, r). By
Theorem 7, A� is WMonVer and α(1+ε)-approximates μ. Moreover, for constant
m, A� is polynomial-time computable. �

Online mechanism. A natural way of designing an online algorithm for schedul-
ing problems is to iterate a “basic-step” algorithm B which, given the current
assignment X , the processing requirement of the new job J and the reported
types b1, . . . , bm (that is, the reported speed of machine i is 1/ri) outputs the in-
dex B(X, J,b) of the machine to which the job must be assigned. For algorithm
B, the set of outcomes O consists of all allocations that can be obtained from
X by allocating job J to one of the m machines.

Algorithm B-iterated(b)
• X := ∅;
• while a new job J arrives do
• assign job J to machine of index B(X, J,b) and modify X accordingly.

Observe that a basic-step algorithm B that is implementable with verification
does not necessarily remains implementable with verification when iterated and
we need the stronger property of stability.

Theorem 10. If B is stable then algorithm B-iterated is stable as well.



606 V. Auletta et al.

Therefore, by Theorem 2, B-iterated is implementable with verification. For ex-
ample, Graham’s [16] online greedy algorithm for Q||Cmax can be seen as the
iterated version of a simple basic stable step and thus it is implementable with
verification. This property holds more in general. Consider the greedy algorithm
which, at every step, assigns a newly arrived job to the machine that, given the
current assignment of previous jobs, maximizes the increase of the objective func-
tion μ(·); ties are broken in a fixed manner, and −μ(·) is typically a cost function
that one wishes to minimize (e.g., the Lp norm defined as p

√∑
i(wi(X) · ti)p).

Then next Theorem says that greedy is stable and thus if the greedy algorithm
is α-approximating for μ(·), then one has a α-approximating algorithm imple-
mentable with verification.

Theorem 11. The greedy algorithm is stable for cost functions μ(X, b1, . . . , bm)
that are neutral and non-decreasing in each bi, for every X ∈ O.

4 Applications

We consider scheduling problems on related machines owned by selfish agents as
in [2]. We are given a set of m related machines and a set of n jobs. Each job has
a weight and a job can be assigned to any machine. Assigning a job to machine
i makes the work wi of that machine to increase by an amount equal to the
job weight. Each machine i has a speed si, and the completion time of machine
i is wi/si, where wi is the work assigned to machine i. In the online setting,
jobs arrive one-by-one, the k-th job must be scheduled before next one arrives,
and jobs cannot be reallocated. For an assignment X , we let wi(X) be the work
that this solution assigns to machine i. Each machine i corresponds to a selfish
agent whose valuation is −wi(X)/si = −wi(X) · ti for ti = 1/si. The speed of
machine i is known to agent i only (everything else is known to the mechanism)
and her valuation is the opposite of the completion time of her machine. An
agent can thus misreport her speed (i.e., declare ri �= ti). Mechanisms with
verification compute, for each agent i, an associated payment and award agent
i her payment if and only if all jobs assigned to machine i have been released
by time wi(X) · ri, where X is the outcome selected by the mechanism [1,3].
Machine i can misreport her speed and still receive her associated payment if
one of the following happens: (i) the declared speed is worse (i.e., ri < ti) and
jobs are released accordingly by adding some delay; (ii) the declared speed is
better (i.e., ri < ti) but this makes the allocation algorithm A to compute an
allocation X which does not assign any job to machine i (i.e., wi(X) = 0, in
which case no verification is possible).

We consider several variants of this problem depending on the optimization
function adopted. All of these problems are minimization problems for which
it is NP-hard to compute exact solutions, even for m = 2. The table below
summarizes some of the applications of our techniques to scheduling problems.
For the first three problems, no mechanism without verification can attain an
approximation factor better than 2/

√
3 > 1, for all m ≥ 2 [2]. Our upper bounds

(in bold) are the first bounds on these problems which are all NP-hard to solve
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exactly; bounds for Q||∑j wjCj and Q|rj|
∑

j wjCj break the 2/
√

3 lower bound
in [2], which holds also for exponential-time mechanisms; upper bound for the Lp

norm is obtained via online mechanisms based on the greedy algorithm (for p = 2,
the bound is 1 +

√
2). Our techniques can be used also to obtain mechanisms

without verification for some graph problems (see full version).

Problem version Upper Bound
Exp Time (any m) Polytime (m constant)

Q||∑j wjCj OPT [3] (1 + ε)-approximate [Thm. 9 & [17]]
Q|rj|∑j wjCj OPT [Thm. 8] (1 + ε)-approximate [Thm. 9 & [17]]

Q|prec, rj |∑j wjCj OPT [Thm. 8] O(log m)-approximate [Thm. 9 & [18]]
Lp norm OPT [Thm. 8] O(p)-competitive [Thm. 11]
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