
Collusion-resistant mechanisms with verification

yielding optimal solutions∗

Paolo Penna† Carmine Ventre‡

October 21, 2009

Abstract

A truthful mechanism consists of an algorithm augmented with a suitable payment function
which guarantees that the “players” cannot improve their utilities by “cheating”. Mechanism
design approaches are particularly appealing for designing “protocols” that cannot be manipu-
lated by rational players.

We present new constructions of so called mechanisms with verification introduced by Nisan
and Ronen [NR01]. We first show how to obtain mechanisms that, for single-parameter domains,
are resistant to coalitions of colluding agents even if they can exchange compensations. Based on
this result we derive a class of exact truthful mechanisms with verification for arbitrary bounded
domains. This class of problems includes most of the problems studied in the algorithmic
mechanism design literature and for which exact solutions cannot be obtained with truthful
mechanisms without verification. This result improves over all known previous constructions of
exact mechanisms with verification.

1 Introduction

The emergence of the Internet as the platform for distributed computing posed new questions
on how to design “good” protocols which take into account the lack of a “central authority”
[KP99, NR01, Pap01]. Algorithmic mechanism design [NR01] considers distributed settings where
the participants, termed agents, cannot be assumed to follow the protocol but rather their own
preferences. The designer must ensure in advance that it is in the agents’ interest to behave cor-
rectly. The protocol can be regarded to as an algorithm augmented with a suitable payment rule.
The algorihm needs to collect (part of) the input from the agents and the desired condition is that
agents have no interest in reporting false information. Mechanism design is in fact a beautiful area
in Game Theory which studies precisely the boundary conditions under which it is possible (for
the designer) to achieve a certain goal. The work by Nisan and Ronen [NR01] points out (at least)
two important differences that stem from Computer Science applications: (1) the designer’s goal
is typically different from the “classical” micro-economic setting and (2) new mechanisms become

∗An extended abstract of this work appeared in Proc. of ESA’08.
†Dipartimento di Informatica ed Applicazioni “R.M. Capocelli”, Università di Salerno, Italy. E-mail:

penna@dia.unisa.it. The author is supported by the European Union under IST FET Integrated Project AE-
OLUS (IST-015964).

‡Computer Science Department, University of Liverpool, UK. E-mail: Carmine.Ventre@liverpool.ac.uk. The
author is partially supported by the European Union under IST FET Integrated Project AEOLUS (IST-015964).

1

possible because of the possibility of gaining additional information. These mechanisms, called
mechanisms with verification, are essentially based on the idea that it is possible to partially verify
the agents’ reported information. We explain these issues by means of two examples from [NR01].

Perhaps the simplest mechanism design problem motivated by Computer Science applications
is the following one:

Example 1 (The links problem) We want to transmit one message from a source node to a
destination node and there are two available links. Each link has a transmission rate, say t1 and t2
for link 1 and link 2, respectively. This information is only known to the owner of the link who may
find it convenient to misreport this information for the following reason: If her link is chosen for
transmitting the message, then she will incur a cost specified by the corresponding ti (the amount
of time her link is busy). Without compensations (payments) there is a clear incentive for both
agents to exaggerate their costs so that their link is not selected. Can we find payments such that,
no matter what are the true rates t1 and t2, each agent finds it convenient to report her
transmission rate truthfully?

We can regard to the above question in terms of mechanism design. In fact, we are asking
if there is a truthful mechanism for the problem above, meaning that both agents (the owners of
the links) always maximize their utility (payment minus cost) by reporting their true information
(the rate of their own link). In general, the true information of each agent is referred to as the
type of this agent. The main technique in the field is the so-called Vickrey-Clarke-Groves (VCG)
mechanisms [Vic61, Cla71, Gro73] which deal with the case in which the objective is the (weighted)
social welfare. That is, truthfulness is guaranteed whenever the underlying algorithm minimizes a
global cost functions of the form

α1 · t
1(x) + · · · + αn · tn(x) (1)

where each αi is some nonnegative constant, and ti(x) is the cost incurred by agent i when solution
x is chosen. One one hand, this is very general result because the costs ti of the agents can be
arbitrary functions. On the other hand, it limits to objectives of the form (1). To see why this is
a limitation, consider the following generalization of the problem in Example 1:

Example 2 (Scheduling unrelated machines) We have two machines of type t1 and t2 and a
number of jobs to be scheduled. Every allocation of the jobs, x, results in a completion time t1(x)
and t2(x) given by the sum of the execution time of the jobs that are allocated to each machine:
Each job j requires t1j on the first machine and t2j on the second machine (machines are unrelated
and the execution time of a job on a machine can be an arbitrary positive number). The owners
of each machine incurs a cost equal to the completion time of her machine, and the type of the
machines are only known to the owner. Can we find a truthful mechanism (algorithm + payments)
which minimizes the makespan, that is, the global cost function max{t1(x), . . . , tn(x)}?

In general, the construction of a truthful mechanism is a challenging problem since the mecha-
nism must fix the “rules” in advance without knowing the types of the agents. The only available
information is that each agent’s type belongs to some domain which depends on the problem and
agents can only report types in that domain. Moreover, one may want to guarantee a stronger con-
dition which is the fact that even coalitions of colluding agents cannot manipulate the mechanism:

2

Example 3 (Collusion in a truthful mechanism) The Vickrey auction [Vic61], a special case
of VCG mechanisms, provides a very elegant solution for the links problem in Example 1: We select
the link having the best rate and we pay to its owner an amount equal to the rate of the other link.
For instance, if the true/reported rates are t1 = 5 and t2 = 2, then we select link 2 and pay its
owner an amount equal 5. Note, for instance, that the owner of the selected link has no incentive
to declare a cost equal 3, because in this case her link is still selected and she still receives the same
payment. Indeed, it is known that this mechanism is truthful (see e.g. [NR01]). However, such
mechanism can be easily manipulated if the two agents collude: the owner of the second link can
offer money to the owner of the other link for misreporting her true cost. When they report costs
100 and 2, the second link (the briber) receives 100 as payment and the non-selected one (the bribee)
is also better off because receives money from the other.

Schummer [Sch00] and Goldberg and Hartline [GH05] consider the much stronger solution
concept of c-truthful mechanism which requires that truthtelling remains a dominant strategy
(utility maximizing) for arbitrary coalitions of at most c colluding agents, even when the colluding
agents can exchange compensations among themselves.1

In this work we present new constructions of mechanisms with verification which guarantee c-
truthful mechanisms for certain domains (including Example 1) or exact solutions for a very general
class of problems (including Example 2). Before discussing these and prior results in detail, we
describe informally the main idea of mechanisms with verification:

Mechanisms with verification. In both Example 1 and Example 2, the cost of an agent cor-
responds to the amount of time this agent will have to work for “the system” according to the
computed solution (the link selected, or the tasks’ allocation). Here is it possible to use mechanisms
with verification meaning that certain lies can be detected by the mechanism. For the scheduling
problem, machine i cannot provide the output of its tasks before ti(x) time steps. Therefore, if
agent i reports a type bi and a solution x is implemented, the mechanism is able to detect that bi

is not the true type of machine i if bi(x) < ti(x). A similar argument can be applied to the links
problem when the selected link reported a better (smaller) transmission rate.

Mechanisms with verification can be applied to the following general framework (see Section 1.2 for
a formal definition). For every feasible solution x, an agent of type ti has a cost ti(x) associated to
this solution. The simplest way to view this cost is to consider it as the time that this agent must
spend for implementing solution x. (In general, the verification paradigm can be applied to all
“measurable” types such as amounts of traffic, routes availability [LSZ08] and distance.) Artificial
delays can be introduced at no cost since an agent can use the idle time for other purposes.2 Agent
i is caught lying if her reported type bi and the computed solution x are such that bi(x) < ti(x).
Agents who are caught lying receive no payment. In contrast, the classical approach in mechanism
design is to provide always each agent with a payment that depends only on the reported types.

1In fact, Schummer [Sch00] considers bribeproof mechanisms which correspond to the case of two colluding agents,
one briber and one bribee as in Example 3. He proves impossibility results which clearly apply to any c-truthful
mechanism for c ≥ 2, being the latter notion a stronger one.

2Nisan and Ronen [NR01] considered the case in which an agent introducing an artificial delay to her computations
will pay this augmented cost. This is one of the differences between mechanisms with verification we consider and
those in [NR01]. See [PV09, full version] for a discussion.

3

In order to distinguish these mechanisms from mechanisms with verification, in the sequel we use
the term mechanisms without verification.

1.1 Our contribution and related work

We study the existence of truthful (or even c-truthful) mechanisms with verification that guarantee
exact solutions for problems in which the objective is to minimize some global cost function of
interest. Intuitively speaking, our basic question is whether one can augment an optimal algorithm
with a suitable payment function in order to guarantee that no agent (or even coalitions of colluding
agents) can benefit from misreporting their types (i.e., part of the input of the algorithm). We
consider a rather general class of objective functions in which the global cost of a solution depends
on the various costs that the agents associate to that solution; Naturally, the overall cost cannot
decrease if the cost of one agent increases (see Section 2 for a formal definition). The contribution
of this work is twofold:

• We provide a sufficient condition for which an algorithm can be turned into a c-truthful
mechanism with verification, for any c ≥ 1. This result applies to the class of single-parameter
bounded domains (see Section 3 for a formal definition).

• We then show how to obtain optimal truthful mechanisms with verification for the much more
general case of arbitrary bounded domains, i.e., the mechanism needs only an upper bound
on the agents’ costs (see Section 1.2). Despite the fact that these domains are extremely rich,
we provide exact truthful mechanisms with verification for every problem in which the global
cost function is of the form

Cost(t1(x), . . . , tn(x)) (2)

where ti(x) is the cost that agent i associates to solution x and the above function is naturally
nondecreasing in its arguments.

The conditions for obtaining these mechanisms are stated in terms of algorithmic properties so that
the design of the entire mechanism reduces to the design of an algorithm that fulfills these condi-
tions. All our mechanisms satisfy also the voluntary participation condition saying that truthful
agents have always a nonnegative utility.

The result on single-parameter bounded domains is the first technique for obtaining c-truthful
mechanisms, for c > 1, without restricting to a particular class of global cost functions and it might
be of some independent interest. For instance, certain non-utilitarian graph problems studied
in [PW05] have single-parameter domains and thus are the right candidate for studying exact
n-truthful mechanisms based on our constructions (namely Theorems 15 and 19). Interestingly
enough, the only way to guarantee c-truthfulness without verification, for c ≥ 2, is to run a
(useless) mechanism which returns always the same fixed solution [Sch00, GH05].

The result on arbitrary bounded domains extends significantly the class of problems for which
it is possible to have exact truthful mechanisms with verification. In particular, [Ven06] shows
exact mechanisms for the case of finite domains (i.e., there is a finite set of possible types that each
agent can report to the mechanism) but does not need to assume functions of the form (2). Exact
n-truthful mechanisms with verification for so-called weakly utilitarian costs (see Section 2.1) are
presented in [PV09]: weakly utilitarian costs do not cover all costs of the form (2) like, for instance,
the cost function maxi ti(x). These so called min-max problems received a lot of attention in the
algorithmic mechanism design literature [NR01, CKV07, KV07, MS07, Gam07]. These works prove

4

that there is no exact or even r-approximate mechanism without verification, for some r > 1; These
results apply also to finite domains and to mechanisms without verification that run in exponential
time and/or use randomization [MS07].

We instead show exact mechanisms with verification for any global cost function of the form
(2) without assuming finite domains like in [Ven06] (see Corollary 27). Indeed, we only need to
consider an (arbitrarily large) upper bound on the agents’ costs, which turns out to be reasonable
in practice. These arbitrary bounded domains are, in general, infinite because there are infinitely
many types that an agent can report. Since the “cycle-monotonicity” approach adopted in all
recent constructions [ADPP09, ADP+06, Ven06] cannot deal with infinite domains, we use a totally
different idea which is to turn c-truthful mechanisms for single-parameter domains into truthful
mechanisms for arbitrary domains (see Section 4). The result of Corollary 27 is “tight” in the
sense that one cannot relax any of the assumptions without introducing additional conditions (see
Theorems 28 and 29). Finally, an explicit formula for the payments guarantees that the entire
mechanism runs in polynomial-time if the algorithm is polynomial-time and the domain is finite
(Corollary 30).

In this work we do not consider frugality issues, that is, how much the mechanism pays the
agents. The optimality of the payments is an important issue in general since even truthful mech-
anisms must have large payments for rather simple problems [ESS04]. Our positive results pose
another interesting question that is to design computationally-efficient algorithms satisfying the
conditions required by our methods.

Roadmap. Preliminary definitions are given in Section 1.2. In Section 2 we introduce the class of
optimal algorithms leading to (c-)truthful mechanisms. Mechanisms for single-parameter domains
are given in Section 3, while those for arbitrary domains are presented in Section 4.

1.2 Preliminaries

We have a finite set S of feasible solutions. We let s := |S| denote the number of feasible solutions.
There are n selfish agents, each of them having a so called type

ti : S → R
+ ∪ {0}

which associates a monetary cost to every feasible solution. If an agent i receives a payment equal
to ri and a solution x is selected, then her utility is equal to

ri − ti(x). (3)

Each type ti belongs to a so called domain Di which consists of all admissible types, that is, a
subset of all functions u : S → R

+ ∪ {0}. The type ti is private knowledge, that is, it is known to
agent i only. Everything else, including each domain Di, is public knowledge. Hence, each agent i

can misreport her type to any other element bi in the domain Di. We sometimes call such bi the
bid or reported type of agent i. We let D being the cross product of all agents domains, that is, D

contains all bid vectors b = (b1, . . . , bn) with bi in Di. An algorithm A is a function

A : D → S

5

which maps all agents (reported) types b into a feasible solution x = A(b).3 A mechanism is a
pair (A, p), where A is an algorithm and p = (p1, . . . , pn) is a vector of suitable payment functions,
one for each agent, where each payment function

pi : D → R

associates some amount of money to agent i. We say that D is a bounded domain if there exists ℓ

such that bi(x) belongs to the interval [0, ℓ], for all solutions x, for all bi in Di, and for all agents i.
Unless we make further assumptions on the domain D, we have (algorithms over) arbitrary bounded
domains. Throughout the paper we consider only type vectors t in the domain D and we denote
by ti the type corresponding to agent i.

We say that an agent i is truthtelling if she reports her type, that is, the bid bi coincides with
her type ti. Given an algorithm A and bids b = (b1, . . . , bi, . . . , bn), we say that agent i is caught
lying by the verification if the following inequality holds:

ti(A(b)) > bi(A(b)).

A mechanism (A, p) is a mechanism with verification if, on input bids b, every agent that is caught
lying does not receive any payment, while every other agent i receives her associated payment pi(b).
Hence, the utility of an agent i whose type is ti is equal to

utilityi(b) :=

{

pi(b) if i is not caught lying
0 otherwise

}

− ti(A(b)).

On the contrary, we say that (A, p) is a mechanism without verification if every agent receives
always her associated payment pi(b).

For any two type vectors t and b, we say that a coalition C can misreport t to b if the vector
b is obtained by changing the type of some of the agents in C, i.e., ti = bi for every agent i not
in the coalition C. For any two type vectors t and b, we say that verification does not catch t
misreported to b if ti(A(b)) ≤ bi(A(b)) for every agent i. Conversely, we say that verification
catches t misreported to b if ti(A(b)) > bi(A(b)) for some agent i.

Mechanisms (with verification) which are resistant to coalitions of c ≥ 1 colluding agents that
can exchange side payments satisfy the following definition.

Definition 4 (c-truthfulness [GH05]) A mechanism (with verification) is c-truthful if, for any
coalition of size at most c and any bid of agents not in the coalition, the sum of the utilities of the
agents in the coalition is maximized when all agents in the coalition are truthtelling.

Mechanisms (with verification) satisfying the definition above only for c = 1 are called truthful
mechanisms (with verification).

Since the above condition must hold for all possible bids of agents outside the coalition under
consideration, one can restrict the analysis to the case in which these agents are actually truthtelling.
Thus the following known fact holds (for the sake of completeness we give a proof in Appendix A:

Fact 5 A mechanism (with verification) is c-truthful if and only if, for any coalition C of size at
most c and for any two type vectors t and b such that C can misreport t to b, the corresponding
agents’ utilities satisfy

∑

i∈C

utilityi(t) ≥
∑

i∈C

utilityi(b). (4)

3In the Game Theory literature A is often referred to as social choice function.

6

Notation. Given a type vector v = (v1, . . . , vn), we let v−i := (v1, . . . , vi−1, vi+1, . . . , vn) that
is the vector of length n − 1 obtained by removing vi from v. Finally, we let (w,v−i) :=
(v1, . . . , vi−1, w, vi+1, . . . , vn) denote the vector obtained by replacing the i-th entry of v with w.

2 Optimization problems and exact algorithms

We focus on algorithms which minimize some global cost function of interest. Our ultimate goal
is to derive a general technique to augment these algorithms with a suitable payment function so
that the resulting mechanism with verification is truthful or even n-truthful.

2.1 Cost functions

We will consider problems where the goal is to minimize some cost function

Cost(x, t) = Cost(t1(x), . . . , tn(x)) (5)

which is monotone non-decreasing in each ti(x).

Example 6 (utilitarian problems) Utilitarian problems are those corresponding to the case

Cost(x, t) =
∑

i

αi · t
i(x)

where αi ≥ 0 are constants. VCG mechanisms [Vic61, Cla71, Gro73] are truthful and guarantee
exact solutions for any such problem, without using any verification. For arbitrary domains, the
only truthful mechanisms are those that minimize some utilitarian cost function [Rob79].4

Example 7 (min-max problems) These problems deal with cost functions

Cost(x, t) = max
i

ti(x)

and no truthful mechanism without verification can achieve exact or even approximate solutions
[NR01, CKV07, KV07, MS07, Gam07, LS07]. These problems admit (1+ε)-approximate collusion-
resistant mechanisms with verification for arbitrary bounded domains [PV09], for any ε > 0.

Example 8 (weakly utilitarian) Weakly utilitarian cost functions “mix” utilitarian costs with
arbitrary costs:

Cost(x, t) =
∑

i

αi · t
i(x) + AnyCost(x, t)

where αi > 0 are constants and AnyCost() is an arbitrary monotone non-decreasing cost function.
These problems admit exact collusion-resistant mechanisms with verification for arbitrary bounded
domains [PV09].

4Robert’s theorem [Rob79] states that, if we impose no restriction on the agents’ domains, then every truthful
mechanism is an affine maximizer which, is our terminology, means that there exists a subset S ⊆ S of solutions,
constants αi ≥ 0, and constants {βx}x∈S such that the algorithm guarantees A(t) ∈ arg min

x∈S
{βx +

P

i
αi · t

i(x)}
for all t in the domain. By adding a dummy player to incorporate the constants βx, the condition says that the
algorithm minimizes some utilitarian cost function over a fixed subset of solutions.

7

1. Fix a subset S of the feasible solutions and some order over these solutions (this step is
independent of the bids in input);

2. According to the fixed order above, return the first solution minimizing Cost(x,b) over all
x in S, where b are the bids in input.

Figure 1: A class of exact algorithms.

Our goal is to show that exact truthful mechanisms with verification are possible for any cost
cost function of the form (5). This includes utilitarian and min-max problems as special cases, and
a subclass of weakly utilitarian ones in which AnyCost() is of the form (5).

Remark 9 One might consider arbitrary monotone nondecreasing costs that need not obey the
form in (5). In this case, truthful mechanisms with verification can be obtained for finite domains
[Ven06] or by restricting to weakly utilitarian costs [PV09]. The latter mechanisms are extremely
powerful in that they guarantee collusion resistance, a much stronger version of truthfulness, but
they can only achieve approximate solutions for several problems (for instance min-max or others
that do not obey the form (5)). It is then natural to ask if there is a general result saying that for
all costs of the form (5) it is possible to have exact truthful mechanisms with verification.

2.2 Algorithms

To obtain truthful mechanisms with verification, we need to impose some restriction on the algo-
rithm. In Figure 1 we show a class of algorithms that optimize some cost function Cost(). Intuitively
speaking, these algorithms enjoy two important properties: they optimize the cost function (over
some set of solutions) and they break ties in a fixed manner. These two properties will suffices
for obtaining truthful mechanisms with verification. Instead of restricting to the algorithms in
Figure 1, we consider all algorithms that satisfy these two conditions:

Definition 10 (exact algorithm) An algorithm is exact if it is optimal in the range of solutions
that it possibly returns and it breaks ties in a fixed manner. That is, for any b and b′ in the
domain, Cost(A(b),b) ≤ Cost(A(b′),b). Moreover, there exists a total order � over the solutions
such that, if for b and b′ it holds that Cost(A(b),b) = Cost(A(b′),b) then A(b′) � A(b).

In Section 4, we shall prove that any such algorithm admits a truthful mechanism with verifica-
tion for arbitrary bounded domains. Mechanisms that return exact solutions for any such problem
correspond to the case S = S in Figure 1. Note also that the class of exact algorithms is very reach:
it contains many of the algorithms that have been proposed in the literature for obtaining truth-
ful mechanisms without verification [NR07, BKV05, AT01, AAS05, MS07] and with verification
[ADP+06, Ven06].

3 Collusion-resistant mechanisms for single-parameter agents

In this section we consider the case of single-parameter agents (see e.g. [GH05]). Here, each solution
partitions the agents into two sets: those that are selected and those that are not selected. The

8

value ti(x) depends uniquely on the fact that i is selected in x or not and it is completely specified
by a parameter ti, which is a real number such that

ti(x) =

{

ti if i selected in x,
0 if i not selected in x.

(6)

Whether i is selected in x is publicly known, for every solution x, and thus each agent can only
specify (and misreport) the parameter ti. We assume single-parameter bounded domains, that is,
each parameter ti belongs to the interval [0, ℓ]. From (6) we immediately get the following:

Fact 11 For single-parameter agents, it holds that verification does not catch t misreported to b if
and only if ti ≤ bi for every i selected in A(b).

In the sequel we will provide sufficient conditions for the existence of c-truthful mechanisms,
for any given c ≤ n.

3.1 A general sufficient condition for c-truthfulness

We begin with a necessary condition. Observe that in order to have truthful mechanisms for single-
parameter agents the algorithm must select agents “monotonically”, even when using verification
[ADPP09]:

Definition 12 (monotone) We say that algorithm A is monotone if the following holds. Having
fixed the bids of all agents but i, agent i is selected if bidding a cost less than a threshold value b⊕i ,
and is not selected if bidding a cost more than a threshold value b⊕i . In particular, for every b ∈ D

and for every i, there exists a value b⊕i which depends only on b−i such that

1. i is selected in A(bi,b−i) for all bi < b⊕i

2. i is not selected in A(bi,b−i) for all bi > b⊕i .

From Definition 12 we can easily obtain the following:

Fact 13 If A is monotone and i is selected in A(b), then bi ≤ b⊕i . Moreover, if i is not selected
in A(b) then bi ≥ b⊕i . Hence, for bounded domains the threshold values of Definition 12 are in the
interval [0, ℓ].

We next give a general sufficient condition for c-truthfulness on single-parameter bounded
domains. In the next subsection, we show how this leads to a simpler condition for n-truthfulness
in the case of exact algorithms.

Definition 14 (c-resistant) We say that b is c-different from t if these two type vectors differ for
at most c agents’ types. A monotone algorithm A is c-resistant if, for every b which is c-different
from t and such that verification does not catch t misreported to b, it holds that t⊕i ≤ b⊕i for all i

that are not selected in A(b).

Thinking of t as the true types and b as the bids, the c-resistant condition says that, if the
solution at b does not select any of the underbidding agents, then the thresholds of all non-selected
agents cannot decrease when moving from t to b.

9

Theorem 15 Every c-resistant algorithm A admits a c-truthful mechanism with verification for
single-parameter bounded domains.

Proof. We define the payment functions as follows:

pi(b) :=

{

~ − b⊕i if i not selected in A(b)
~ otherwise

(7)

where ~ := c · ℓ.
Let us consider an arbitrary coalition C of size at most c and any two type vectors t and b such

that C can misreport t to b. Because of Fact 5, it suffices to prove (4). Either verification does
not catch t misreported to b or verification catches t misreported to b. We consider the two cases
separately.

If verification catches t misreported to b, then we have at least one agent j ∈ C which does not
receive any payment for b. Moreover, the payment received by every other agent i in the coalition
is at most ~. Hence, we have

∑

i∈C

utilityi(b) ≤ (c − 1)~ = c~ − ~.

We next show that the utility of every truthtelling agent is at least ~− ℓ. Indeed, the definition of
pi() implies that utilityi(t) is either ~ − t⊕i if i not selected in A(t), or ~ − ti if i selected in A(t).
Fact 13 says that t⊕i ≤ ℓ and, if i selected in A(t), then ti ≤ t⊕i . Hence, utilityi(t) ≥ ~ − ℓ. From
this and from our choice of ~, we obtain

∑

i∈C

utilityi(t) ≥ c(~ − ℓ) = c~ − cℓ = c~ − ~.

The two inequalities above clearly imply (4).
If verification does not catch t misreported to b then we can show that for any i ∈ C it holds

utilityi(t) ≥ utilityi(b),

which clearly implies (4). There are four possible cases:

Case 1 (i selected in A(t) and i selected in A(b)). In this case nothing changes for i. Indeed, by
the definition of pi(), we have utilityi(t) = ~ − ti = utilityi(b).

Case 2 (i not selected in A(t) and i selected in A(b)). Fact 13 implies that t⊕i ≤ ti. This and the
definition of pi() imply utilityi(t) = ~ − t⊕i ≥ ~ − ti = utilityi(b).

Case 3 (i not selected in A(t) and i not selected in A(b)). Since A is c-resistant, we have that
t⊕i ≤ b⊕i . This and the definition of pi() imply utilityi(t) = ~ − t⊕i ≥ ~ − b⊕i = utilityi(b).

Case 4 (i selected in A(t) and i not selected in A(b)). Since i selected in A(t), Fact 13 implies
ti ≤ t⊕i . Since i not selected in A(b) and as A is c-resistant, we have that t⊕i ≤ b⊕i , thus
implying ti ≤ b⊕i . This and the definition of pi() imply utilityi(t) = ~ − ti ≥ ~ − b⊕i =
utilityi(b).

This concludes the proof. 2

10

3.2 A simpler sufficient condition for exact algorithms

In this section we show that, for exact algorithms, a “threshold-monotonicity” condition suffices
for obtaining n-truthful mechanisms. The advantage is that this condition is simpler to exhibit
because we only need to see what happens when increasing exactly one bid:

Definition 16 (threshold-monotone) A monotone algorithm A is threshold-monotone if, for
every t and every b obtained by increasing one agent entry of t, the inequality t⊕i ≤ b⊕i holds for
all i, where t⊕i and b⊕i are the threshold values of Definition 12.

Our strategy is to show that threshold-monotonicity implies n-resistance and then apply the
result in the previous section (Theorem 15). We begin with the following technical lemma:

Lemma 17 Let A be an exact algorithm for single-parameter agents. Consider any two vectors b
and b̃ which differ only in the agent i’s entry. If it holds that i is not selected in A(b) and i is not
selected in A(b̃), then A(b) = A(b̃).

Proof. From i not selected in A(b) and i not selected in A(b̃) and since the two vectors agree
in every coordinate other than i, we have the following two identities:

Cost(A(b),b) = Cost(A(b), b̃) and Cost(A(b̃),b) = Cost(A(b̃), b̃).

From this and since A is an exact algorithm we obtain

Cost(A(b),b) ≤ Cost(A(b̃),b) (8)

= Cost(A(b̃), b̃)

≤ Cost(A(b), b̃) (9)

= Cost(A(b),b).

Hence, the two inequalities must hold with ‘=’. Since A uses a fixed tie breaking rule, from equalities
(8) and (9) we have A(b) � A(b̃) and A(b̃) � A(b), respectively. Therefore, it holds A(b) = A(b̃).
2

The following result will be also useful for constructing mechanisms for arbitrary domains in
Section 4.

Theorem 18 Every threshold-monotone exact algorithm is n-resistant.

Proof. By contradiction, assume that A is not n-resistant. That is, there exists a vector b which
is n-different from t and such that verification does not catch t misreported to b with t⊕i > b⊕i , for
some i not selected in A(b). Consider the following two vectors obtained from t and b, respectively,
by replacing their i-th entry with the same value:

t̃ := (t1, . . . , ti−1, t̃i, ti+1, . . . , tn)

b̃ := (b1, . . . , bi−1, b̃i, bi+1, . . . , bn)

with t̃i = b̃i satisfying
b⊕i < b̃i = t̃i < t⊕i .

11

Observe that i is not selected in A(b̃) and by Lemma 17 we have that the solution does not change,
that is, A(b) = A(b̃). Next, we increase some of the entries of t̃ in order to obtain a new vector t̂
such that t̂j ≥ b̃j for all j. This implies the following inequality that will be used later in the proof:

Cost(A(t̂), b̃) ≤ Cost(A(t̂), t̂). (10)

We define the vector t̂ as follows:

t̂j :=

{

b̃j if t̃j < b̃j ,
t̃j otherwise.

By definition of t̂ and since A is threshold-monotone, we have t̃⊕i ≤ t̂⊕i . Since t̃ and b̃ differ
respectively from t and b only in the i-th entry, we have t̃⊕i = t⊕i and b̃⊕i = b⊕i . In particular, since
t̃i = b̃i, the construction of t̂ implies that t̂i = t̃i. Putting all these things together we have

b̃⊕i = b⊕i < b̃i = t̃i = t̂i < t⊕i = t̃⊕i ≤ t̂⊕i .

This implies that i is selected in A(t̂) and it is not selected in A(b). Therefore these two solutions
are different, that is, A(b) 6= A(t̂).

We conclude the proof by showing that A(b) = A(t̂), thus contradicting this fact. Towards this
end, we prove another inequality to be used together with (10):

Cost(A(b̃), t̂) ≤ Cost(A(b̃), b̃). (11)

Since verification does not catch t misreported to b we have that tj ≤ bj for every j selected in
A(b). This and the definition of t̂ imply that also t̂j ≤ bj for every j selected in A(b). Finally,
since A(b) = A(b̃) and since i is not selected in A(b), we can conclude that t̂j ≤ bj = b̃j for every
j selected in A(b̃). This inequality and the monotonicity of the cost function imply (11).

Then we have the following inequalities:

Cost(A(t̂), t̂) ≤ (since A is an exact algorithm) (12)

Cost(A(b̃), t̂) ≤ (by Equation 11)

Cost(A(b̃), b̃) ≤ (since A is an exact algorithm)

Cost(A(t̂), b̃) ≤ (by Equation 10) (13)

Cost(A(t̂), t̂).

Hence, these inequalities must hold with ‘=’. Since A uses a fixed tie breaking rule, from equalities
(12) and (13) we obtain A(t̂) � A(b̃) and A(b̃) � A(t̂), respectively. This implies A(t̂) = A(b̃).
Since A(b̃) = A(b) and A(b) 6= A(t̂) we reach a contradiction: A(t̂) = A(b̃) = A(b) 6= A(t̂). 2

This theorem combined with Theorem 15 implies:

Corollary 19 Every threshold-monotone exact algorithm admits an n-truthful mechanism with
verification for single-parameter bounded domains.

12

2 2

221 2

threshold = 1 threshold = 0

Figure 2: Path auctions are not threshold-monotone.

3.3 Two examples

Consider a procurement auction in which the mechanism wants two procure exactly k items. All
items are identical and each agent can procure exactly one item. Selecting an agent means that she
will have to procure the item. In a k-items auction the algorithm selects the agents corresponding
to the k lowest bids, breaking ties arbitrarily. We consider only the case in which the number
of agents is larger than the number of items we want to procure (k < n) because otherwise the
problem is trivial.

Theorem 20 Every k-items (procurement) auction is threshold-monotone.

Proof. By definition, an agent i is selected if her bid is below the k-th smallest value in b−i, and
is not selected if it is larger than this value. Let valk(v) denote the k-th smallest value in a vector
v. For any t and b obtained from t by increasing one of its entries, we have valk(t

−i) ≤ valk(b
−i).

The proof thus follows from the observation that t⊕i = valk(t
−i) and b⊕i = valk(b

−i). 2

The next example is the path auction that is a procurement auction in which agents correspond
to the edges of communication network. The mechanism wants to procure the cheapest path
connecting two nodes, where the cost of an edge is the type of the corresponding agent [NR01].

Theorem 21 Path auctions are, in general, not threshold-monotone and the mechanism with ver-
ification using the payments of Theorem 15 is not even 2-truthful.

Proof. Figure 2 shows an instance for which the path auction is not threshold-monotone. We
focus on the threshold of the edge (agent) connecting the middle node to the rightmost node. In
the left instance, the threshold is 1: when the edge in question costs less than 1, the lower path is
cheaper than the upper one and thus the agent in question is selected; conversely, when the cost
of the edge is larger than 1 the upper path is cheaper and the agent in question is not selected. In
the right instance, the threshold is 0 because the lower path is never better than the upper one.
Hence, the path auction is not threshold-monotone because a smaller threshold has been obtained
by increasing one type (see Definition 16)

We conclude by observing that a mechanism based on the payments of Theorem 15 would not
guarantee 2-truthfulness: the coalition formed by the two lower agents can improve the utility of
one of its members, while the other member has the same utility. Consider the types on the left as
the true types and those on the right as the bids. Then the utility of the agent we have considered
before improves from ~ − 1 to ~, while the utility of the other agent remains ~. (Note that these
agents are not selected in either scenario.) 2

13

In the above proof we have shown that a coalition of two agent can improve the utility of one
of its members, while the other member has the same utility. So, the mechanism is not bribeproof
[Sch00]. We remark that path auctions are utilitarian and thus they admit n-truthful mechanisms
via the technique in [PV09].

4 Truthful mechanisms for arbitrary bounded domains

In this section we derive truthful mechanisms for any exact algorithm over arbitrary bounded
domains. The main idea is to regard each agent as a coalition of (virtual) single-parameter agents.

4.1 Arbitrary domains as coalitions of single-parameter agents

We call every agent whose domain is an arbitrary bounded domain a multidimensional agent. Since
there are s = |S| feasible solutions, any type ti in the domain of the multidimensional agent i can
be seen as a vector

ti := (ti1, . . . , tis),

with tix = ti(x) for every feasible solution x. With this mapping in mind, we can regard each agent
i as a coalition

Ci := {i1, . . . , is}

of (virtual) single-parameter agents with agent ij having type tij . In this “new game” we have the
same set S of s feasible solutions and, whenever solution x is chosen, in each coalition Ci only the
(virtual) single-parameter agent ix is selected. This means that each coalition Ci has globally a
cost identical to the cost, ti(x), of multidimensional agent i.

Consider an exact algorithm B over the multidimensional agents, and fix the bids b−i of all
agents but i. Then the resulting single player function B(bi,b−i) can be seen as another exact
algorithm A(bi) whose domain (input) is restricted to the domains of the s single-parameter agents
in Ci.

4.2 The mechanism and its analysis

It turns out that every single player function B(bi,b−i) as above is s-resistant. Based on this fact,
we can apply the techniques developed for single-parameter agents and define the following class
of mechanisms:

Definition 22 (threshold-based mechanism) For any exact algorithm B we consider its single
player function, depending on b−i, as A(bi) := B(bi,b−i). In this case, we say that the single player
function A has Ci as the set of virtual single-parameter agents. We define payment functions
qi(bi,b−i) :=

∑

j∈Ci
pj(bi) where each pj() is the payment function of Theorem 15 when applied to

A above and to the single-parameter agents in Ci. The resulting mechanism with verification (B, q)
is called threshold-based mechanism.

In the sequel we prove that every threshold-based mechanism is truthful for multidimensional
agents. In order to prove this result, we first observe that the threshold-based mechanism needs
only be resistant to the “known” coalitions defined above (recall that we have one virtual single-
parameter agent per solution and thus coalitions are of size at most s):

14

Lemma 23 If every single player function A of B is s-resistant with respect to its virtual single-
parameter agents, then the threshold-based mechanism is truthful for the multidimensional agents.

Proof. We observe that the utility of a multidimensional agent i is the sum of the utilities of
all single-parameter agents in the corresponding coalition Ci. Therefore, if (B, q) was not truthful,
then the mechanism (A, p) would not be s-truthful. Since A is s-resistant, this would contradict
Theorem 15. 2

Lemma 24 Every single player function A of an exact algorithm B is threshold-monotone.

Proof. Fix an agent i and an arbitrary bid vector b−i for all other agents. Consider the corre-
sponding single player function A(bi) := B(bi,b−i), with bi in the domain of the multidimensional
agent i. We shall prove that A is threshold-monotone with respect to its virtual single-parameter
agents.

We first show that A is monotone. By way of contradiction, suppose that a virtual single-
parameter agent ij is not selected in A(bi) but she is selected in A(b̃i), where b̃i obtained from
bi by increasing bij to b̃ij > bij . For x := A(bi) = B(bi,b−i) and x̃ := A(b̃i) = B(b̃i,b−i) we have
that

Cost(x̃, b̃) ≥ (since b̃ij > bij and the cost function is monotone)

Cost(x̃,b) ≥ (since B is an exact algorithm)

Cost(x,b) = (since ij is not selected in x its cost is independent of ij’s entry)

Cost(x, b̃) ≥ (since B is an exact algorithm)

Cost(x̃, b̃)

Since B uses a fixed ties breaking rule, these equalities imply that x = x̃, thus contradicting the
fact that ij is selected only in one of these two solutions.

We next show that A is threshold-monotone. We proceed by way of contradiction and assume
that there exist two vectors ti and bi such that the following happens. The vector bi is obtained
from ti by increasing only the value of tij to some bij > tij

ti := (ti1, . . . , tij−1, tij , tij+1, . . . , tia)

bi := (ti1, . . . , tij−1, bij , tij+1, . . . , tia)

and there is a (virtual) single-parameter agent ik such that t⊕ik > b⊕ik. Observe that it must be k 6= j

since ti and bi are identical apart from the j-th entry and thus b⊕ij = t⊕ij. Consider the following

two vectors obtained from ti and bi, respectively, by replacing the k-th entry with the same value
t̃ik = b̃ik satisfying

b⊕ik < t̃ik = b̃ik < t⊕ik.

Since A is monotone, we have that ik is selected in A(t̃i), ik is not selected in A(b̃i), and A(b̃i) =
A(bi) = y because of Lemma 17. Since ik is not selected in y we have k 6= y and thus biy = b̃iy.
That is, bi(y) = b̃i(y) which implies the following identity:

Cost(B(b̃i,b−i), (b̃i,b−i)) = Cost(b1(y), . . . , bi−1(y), b̃i(y), bi+1(y), . . . , bn(y))

= Cost(b1(y), . . . , bi−1(y), bi(y), bi+1(y), . . . , bn(y))

= Cost(B(b̃i,b−i), (bi,b−i)). (14)

15

Putting things together we have

Cost(B(t̃i,b−i), (t̃i,b−i)) ≤ (since B is an exact algorithm) (15)

Cost(B(ti,b−i), (t̃i,b−i)) = (since j 6= k and thus t̃ik = tik)

Cost(B(ti,b−i), (ti,b−i)) ≤ (since B is an exact algorithm) (16)

Cost(B(b̃i,b−i), (ti,b−i)) ≤ (since til ≤ bil for all l)

Cost(B(b̃i,b−i), (bi,b−i)) = (from Equation 14)

Cost(B(b̃i,b−i), (b̃i,b−i)) ≤ (since B is an exact algorithm) (17)

Cost(B(t̃i,b−i), (b̃i,b−i)) = (since k = A(t̃i) = B(t̃i,b−i) and b̃ik = t̃ik)

Cost(B(t̃i,b−i), (t̃i,b−i)).

Hence, these inequalities must hold with ‘=’. Since B uses a fixed tie breaking rule, we have the
following implications:

(15) =⇒ B(t̃i,b−i) � B(ti,b−i)

(16) =⇒ B(ti,b−i) � B(b̃i,b−i)

(17) =⇒ B(b̃i,b−i) � B(t̃i,b−i)

This implies B(t̃i,b−i) = B(b̃i,b−i). This is a contradiction to the fact that ik is selected only in
one of these two solutions: recall that agent ik is selected in A(t̃i) = B(t̃i,b−i) and is not selected
in A(b̃i) = B(b̃i,b−i). We conclude that A is threshold-monotone. 2

Theorem 25 Every threshold-based mechanism is a truthful mechanism with verification if the
domain is bounded.

Proof. Since every single player function A is threshold-monotone (Lemma 24) it is also s-resistant
(Theorem 18). The theorem thus follows from Lemma 23. 2

Corollary 26 Every exact algorithm admits a truthful mechanism with verification over any arbi-
trary bounded domain.

In particular, by taking the exact algorithm in Figure 1 with S = S we obtain:

Corollary 27 Every problem in which the domain is bounded and the cost function is monotone
nondecreasing of the form (5) admits an exact truthful mechanism with verification.

4.3 Extensions

In this section we discuss the optimality of our positive results and conclude by showing how
to efficiently compute the payments (and the whole mechanism). Observe that exact truthful
mechanisms can be obtained under the following two hypothesis:

1. The cost function is monotone non-decreasing in its arguments (Section 2.1);

2. The algorithm uses a fixed tie breaking rule (Section 2.2).

16

We next show that both hypothesis are necessary as relaxing any of them would make it impossible
to have truthful mechanisms with verification.

Theorem 28 For any cost function that is not monotone nondecreasing there exists a bounded
domain such that no algorithm that minimizes such a cost function admits a truthful mechanism
with verification.

Proof. We show that, for any cost function which is not monotone nondecreasing, it is possible
to construct a bounded domain such that no algorithm minimizing this cost function admits a
truthful mechanism. The result applies to any set of solutions with at least two elements.5

Consider an arbitrary cost function Cost() which is not monotone nondecreasing meaning that
there exist n nonnegative values b1, . . . , bn such that increasing the i-th value reduces the cost, that
is,

Cost(b1, . . . , bi, . . . , bn) > Cost(b1, . . . , ci, . . . , bn) for some ci > bi.

We think of each value bj as the “constant type” which maps all solutions into the same fixed value
bj . The domain of each agent j contains this constant type bj. Moreover, the domain of agent i

contains the following two types. Fix a solution y and let us consider types

α(x) :=

{

bi if x = y

ci otherwise,
ᾱ(x) :=

{

bi if x 6= y

ci otherwise.

Consider the situation in which every agent j, excluding i, reports her constant type bj. We
first observe that, because of the inequality on the cost function, any exact algorithm must choose
the solution that costs ci > bi to agent i. That is, it must give the following output:

types optimal solution

(b1, . . . , α, . . . , bn) x 6= y

(b1, . . . , ᾱ, . . . , bn) y

We claim that, if there exists an exact truthful mechanism with verification (A, p), then the pay-
ments pα := pi(b1, . . . , α, . . . , bn) and pᾱ := pi(b1, . . . , ᾱ, . . . , bn) should satisfy the following two
inequalities:

pα − ci ≥ pᾱ − bi (18)

pᾱ − ci ≥ pα − bi (19)

By summing them up, we obtain ci ≤ bi, which contradicts our initial hypothesis that ci > bi.
We conclude the proof by proving that the above inequalities are in fact implied by the truth-

fulness of (A, p). Essentially, they correspond to the case in which the true type of i is α and ᾱ,
respectively, and and that reporting the other type does not improve i’s utility. More in detail,
suppose first that ti = α and bi = ᾱ are the true and the reported types of i, respectively. On input
bi = ᾱ, the exact algorithm A outputs solution y. The important thing to observe is that agent i

is not caught lying when reporting bi because

ti(A(b)) = ti(y) = α(y) = bi < ci = ᾱ(y) = bi(A(b))

5Obviously the case in which there is only one solution is of no interest.

17

where b = (b1, . . . , b
i, . . . , bn). Thus (18) is simply equivalent to the condition

utilityi(t) ≥ utilityi(b) (20)

for type vectors t = (b1, . . . , t
i, . . . , bn) and b = (b1, . . . , b

i, . . . , bn), when ti = α and bi = ᾱ.
Similarly, we can show that (19) is equivalent to (20) when ti = ᾱ and bi = α. All we need to
prove is that, also in this case, agent i is not caught lying when reporting bi. Since the output of
the exact algorithm on input bi = α is some x 6= y, we have

ti(A(b)) = ti(x) = ᾱ(x) = bi < ci = α(x) = bi(A(b)).

We have thus shown that both (18) and (19) must hold, if the mechanism (A, p) is truthful, because
truthfulness implies that (20) holds for all t = (b1, . . . , t

i, . . . , bn) and b = (b1, . . . , b
i, . . . , bn). (See

Fact. 5 with coalition C consisting of agent i only.) Since (18) and (19) contradict ci > bi, we
conclude that no exact truthful mechanism for this cost function exists if the domain Di of agent i

contains the types α and ᾱ, and the domain Dj of every other agent j contains the constant type
bj . In particular, the theorem holds for the finite domain containing only these types. 2

If we remove the “fixed tie breaking rule” assumption from the definition of exact algorithm,
then it is no longer possible to obtain truthful mechanisms:

Theorem 29 There exists a bounded domain and a monotone cost function such that the following
holds. There exists an algorithm that minimizes such cost function (not using a fixed tie breaking
rule) which does not admit any truthful mechanism with verification.

Proof. The proof of the theorem is basically the same observation made by Archer and Tardos
[AT01] that not all optimal mechanisms for minimizing the makespan on related machines are
monotone. We give an algorithm and an instance for which each machine is allocated either one
particular job or no jobs at all. So, the resulting problem can be seen as a single-parameter problem.

Consider the following algorithm for allocating two tasks on three related machines. Tasks have
weights, and the algorithm allocates the task with larger weight to the fastest machine. This step
is optimal for the makespan. Further, if it is possible to allocate the second task to the slowest
machine without exceeding the current completion time (of the machine that gets the first task),
then the second task is allocated to that machine. Otherwise, the second task is allocated so to
minimize the makespan.

It is easy to see that this algorithm for two jobs minimizes the makespan. However, the algorithm
does not use a fixed tie breaking rule and, because of this, it turns out to be not monotone according
to Definition 12. This is shown by the following example in which jobs have weights 4 and 1, and
the algorithm produces the following two allocations on input these types:

machine1 machine2 machine3

types 1 2 3
allocation 4 − 1

types 1 4 3
allocation 4 1 −

Following the terminology of Definition 12, we say that a machine (agent) is selected if it is allocated
the second job.6 To see that these agents are indeed single-parameter, we observe that the cost for

6Assuming the first machine has type 1 or smaller and that the other two machines have types 2 or larger, the
first job goes always to the first machine. Notice that this gives a bounded domain.

18

a machine that is selected is equal to its type, and it is equal zero if not selected.7 Then observe
that machine2 is not selected for type 2, while it is selected for type 4. That is, the algorithm is
not monotone, though it minimizes the makespan which is clearly a monotone cost function. 2

We conclude this section by observing that the mechanisms presented here have a further
advantage of giving an explicit formula for the payments (see Equation 7 and Definition 22). In
particular, this improves over the construction in [Ven06] since it gives efficient mechanisms for the
case of arbitrary finite domains. The idea is to perform a binary search to determine the threshold
values of Definition 12. For threshold-based mechanisms the running time is polynomial in the
size of the input t, where each ti is a vector of s values, one for each solution. Such an “explicit”
representation of the input is in general necessary, as implied by communication complexity lower
bounds for certain instances of combinatorial auction [NS06] which fall into the class of finite
domains.

Corollary 30 Every polynomial-time exact algorithm over an arbitrary finite domain admits a
polynomial-time truthful mechanism with verification. For finite single-parameter domains, every
polynomial-time c-resistant exact algorithm admits a polynomial-time c-truthful mechanism with
verification.

Acknowledgements. We wish to thank Riccardo Silvestri for several useful comments on an
earlier version of this work.

References

[AAS05] Nir Andelman, Yossi Azar, and Motti Sorani. Truthful approximation mechanisms for
scheduling selfish related machines. In Proc. of STACS, pages 69–82, 2005. 8

[ADP+06] Vincenzo Auletta, Roberto De Prisco, Paolo Penna, Giuseppe Persiano, and Carmine
Ventre. New constructions of mechanisms with verification. In Proc. of ICALP, pages
596–607, 2006. 5, 8

[ADPP09] Vincenzo Auletta, Roberto De Prisco, Paolo Penna, and Giuseppe Persiano. The power
of verification for one-parameter agents. Journal of Computer and System Sciences,
75(3):190–211, 2009. 5, 9

[AT01] Aaron Archer and Éva Tardos. Truthful mechanisms for one-parameter agents. In Proc.
of FOCS, pages 482–491, 2001. 8, 18, 19

[BKV05] Patrick Briest, Piotr Krysta, and Berthold Vöcking. Approximation techniques for
utilitarian mechanism design. In Proc. of STOC, pages 39–48, 2005. 8

[CKV07] George Christodoulou, Elias Koutsoupias, and Agelina Vidali. A lower bound for
scheduling mechanisms. In Proc. of SODA, pages 1163–1170, 2007. 4, 7

7In the general scenario considered by Archer and Tardos [AT01], the cost for an agent is the completion time of
her machine, that is, the product of the work assigned to that machines times her type. In our instance, machine2

and machine3 receive exactly one unit of work and thus they are single-parameter agents. Also machine1 can be
regarded as a single-parameter agent by taking the type of this agent being equal to the cost for executing four units
of work.

19

[Cla71] Edward H. Clarke. Multipart Pricing of Public Goods. Public Choice, pages 17–33,
1971. 2, 7

[ESS04] Edith Elkind, Amit Sahai, and Ken Steiglitz. Frugality in path auctions. In Proc. of
SODA, pages 701–709, 2004. 5

[Gam07] Iftah Gamzu. Improved lower bounds for non-utilitarian truthfulness. In Proc. of
WAOA, volume 4927, pages 15–26, 2007. 4, 7

[GH05] Andrew V. Goldberg and Jason D. Hartline. Collusion-resistant mechanisms for single-
parameter agents. In Proc. of SODA, pages 620–629, 2005. 3, 4, 6, 8

[Gro73] Theodore Groves. Incentive in Teams. Econometrica, 41:617–631, 1973. 2, 7

[KP99] Elias Koutsoupias and Christos H. Papadimitriou. Worst-case equilibria. In Proc. of
STACS, pages 404–413, 1999. 1

[KV07] Elias Koutsoupias and Angelina Vidali. A lower bound of 1 + φ for truthful scheduling
mechanisms. In Proc. of MFCS, pages 454–464, 2007. 4, 7

[LS07] Ron Lavi and Chaitanya Swamy. Truthful mechanism design for multi-dimensional
scheduling via cycle monotonicity. In Proc. of EC, pages 252–261, 2007. To appear in
Games and Economic Behavior. 7

[LSZ08] Hagay Levin, Michael Schapira, and Aviv Zohar. Interdomain routing and games. In
Proc. of STOC, pages 57–66, 2008. 3

[MS07] Ahuva Mu’alem and Michael Schapira. Setting lower bounds on truthfulness. In Proc.
of SODA, pages 1143–1152, 2007. 4, 5, 7, 8

[NR01] Noam Nisan and Amir Ronen. Algorithmic Mechanism Design. Games and Economic
Behavior, 35:166–196, 2001. Extended abstract in STOC’99. 1, 2, 3, 4, 7, 13

[NR07] Noam Nisan and Amir Ronen. Computationally Feasible VCG Mechanisms. Journal of
Artificial Intelligence Research, 29:19–47, 2007. Extended abstract in EC’00. 8

[NS06] Noam Nisan and Ilya Segal. The communication requirements of efficient allocations
and supporting prices. Journal of Economic Theory, 129(1):192–224, 2006. 19

[Pap01] Christos H. Papadimitriou. Algorithms, Games, and the Internet. In Proc. of STOC,
pages 749–753, 2001. 1

[PV09] Paolo Penna and Carmine Ventre. Optimal collusion-resistant mechanisms with
verification. In Proc. of EC, pages 147–156, 2009. Full version available at
http://www.dia.unisa.it/∼penna/papers/collusion.pdf. 3, 4, 7, 8, 14

[PW05] Guido Proietti and Peter Widmayer. A truthful mechanism for the non-utilitarian
minimum radius spanning tree problem. In Proc. of SPAA, pages 195–202, 2005. 4

[Rob79] Kevin Roberts. The characterization of implementable choice rules. Aggregation and
Revelation of Preferences, pages 321–348, 1979. 7

20

http://www.dia.unisa.it/~penna/papers/collusion.pdf

[Sch00] James Schummer. Manipulation through bribes. Journal of Economic Theory,
91(3):180–198, 2000. 3, 4, 14

[Ven06] Carmine Ventre. Mechanisms with verification for any finite domain. In Proc. of WINE,
volume 4286, pages 37–49, 2006. 4, 5, 8, 19

[Vic61] William Vickrey. Counterspeculation, Auctions and Competitive Sealed Tenders. Jour-
nal of Finance, pages 8–37, 1961. 2, 3, 7

21

A Proof of Fact 5

In order to prove Fact 5, we extend the notation (α,b−i) to subsets C of agents in the natural way.
Hence (uC ,b−C) denotes the vector whose entry i is ui for i ∈ C and bi otherwise.

Proof. Let (A, p) be an arbitrary mechanism (with verification). By Definition 4, this mechanism
is c-truthful if and only if the following condition holds:

(c-truthfulness) For every C of size at most c, for every t, and for every b, it holds that

∑

i∈C

utilityi((tC ,b−C)) ≥
∑

i∈C

utilityi(b). (21)

The condition in Fact 5 can be rewritten as follows:

(condition in Fact 5) For every C of size at most c, for every u, and for every v such that u
and v agree in all entries not in C, that is, C can misreport u to v and thus v = (vC ,u−C),
it holds that

∑

i∈C

utilityi(u) ≥
∑

i∈C

utilityi(v). (22)

We have to show that the two conditions above are equivalent.

(c-truthfulness)⇒(condition in Fact 5). We define vectors u and v by means of t and b as in
(21). Consider the following vectors: u := (tC ,b−C) and v := (bC ,b−C). Thus (22) follows
from (21).

(c-truthfulness)⇐(condition in Fact 5). We define type vectors t and b as function of u and
v as in (22). Take t := u and b := (vC ,u−C). Thus (21) follows from (22).

This completes the proof. 2

22

	Introduction
	Our contribution and related work
	Preliminaries

	Optimization problems and exact algorithms
	Cost functions
	Algorithms

	Collusion-resistant mechanisms for single-parameter agents
	A general sufficient condition for c-truthfulness
	A simpler sufficient condition for exact algorithms
	Two examples

	Truthful mechanisms for arbitrary bounded domains
	Arbitrary domains as coalitions of single-parameter agents
	The mechanism and its analysis
	Extensions

	Proof of Fact 5

