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Abstract

We introduce a novel technique for drawing proximity graphs in polynomial area and volume. Previously known
algorithms produce representations whose size increases exponentially with the size of the graph. This holds ever
when we restrict ourselves to binary trees. Our method is quite general and yields the first algorithms to construct
(a) polynomial area weak Gabriel drawings of ternary treés) polynomial area wealg-proximity drawing of
binary treesfor any 0< 8 < oo, and (c)polynomial volume weak Gabriel drawings of unbounded detyesss.

Notice that, in general, the above graplosnot admit a strong proximity drawinginally, we give evidence of the
effectiveness of our technique by showing that a class of graph regekpanential areaven for weak Gabriel
drawings, admits near-volume strongs-proximity drawingand arelative neighborhood drawindill described
algorithms run irlinear time.

0 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A proximity graphis a geometric graph where a given set of points represents the vertices and two
vertices are adjacent if and only if they areighborsaccording to some definitioof neighborhoodFor
example, the&sabriel graphof a set of points [23,33] is obtained by connecting every two paeirgedv
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(@) (b)

Fig. 1. The proximity graph of a point set changes when different proximity regions are considered: (a) a strong Gabriel graph;
(b) a drawing which is both a strong 2-proximity drawing and a relative neighborhood graph.

o
=3
2

Fig. 2. B-proximity regions for8 =1/2, 1, 2, 3, co.

such that the closed disk havimgandv as antipodal points does not contain any other point (see the
example in Fig. 1(a)). Notice that, to a given set of points corresponds a unique graph whose vertices are
the points on the plane and edges are determined by the positions of the vertices.

A natural extension of Gabriel graphs consists of defining a suifabbdmity regionof the vertices
which determines the set of edges as follows: Two vertices are adjacent if and only if the corresponding
proximity region isemptyi.e., it does not contain any other vertex of the graph.

In particular, ing-proximity graphsthe proximity region g-region) is a suitable lune depending on
the parametep, as shown in Fig. 2 (see Section 1.3 for a formal definition). In Fig. 1(b) we show the
B-proximity graph forg = 2 and for the same set of points in Fig. 1(a). Clearly, for different values
of B, the same set of points may yield different graphs. Variants in which open or closed lunes can
be also considered. For instancelative neighborhood graph@NG) are proximity graphs where the
proximity region is theopenlune of parameteg = 2.
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This and other kind of proximity graphs have been deeply investigated due to the many applications
in computational morphology, geographic information systems, pattern recognition and classification,
computational geometry, and computer vision (see e.g. [23,27,33,38,41,42]).

Because of such applications, one of the most fundamental problem is ttratratterizingthe class
of proximity graphs for a given definition of proximity. From the algorithmic point of view, the above
question corresponds to decide whether a given graph can be realized as a proximity graph (e.g., is
there a set of point§ such that the Gabriel gragBG(S) is isomorphic to the given graph?). Clearly, it
would be extremely helpful for the applications to visualize the proximity graph, if any. This requires the
computation of groximity drawing that is, a geometric representation of the input graph as a proximity
graph. (See Section 1.3 for a formal definitiongatirawing.)

In general, constructing a “nice” drawing of a given graph is a per se very interesting problem since the
drawing has to be displayed on a physical device with finite resolution. This imposes a finite resolution
on the drawing as well (e.g., any two vertices must be at distance at least one) and also imposes the siz¢
of the drawing (e.g., the area of the smallest rectangle containing it) to be polynomially bounded in the
size of the input graphs.

Therefore, the construction of a proximity drawing can be considered a very challenging problem
since the drawing has to simultaneously satisfy the proximity constraints and some of the “classical”
constraints ofyraph drawing(see the book [15] for an overview). In particular, the ability to construct
area/volume-efficient drawings is essential in practical visualization applications, where saving screen
space is of utmost importance. This property is meaningful only if the adopted drawing conventions
prevent drawings from being arbitrarily scaled down. This is usually accomplished by assuveirigxa
resolution rule i.e., any two vertices must have distance at least one. For exagniplerawingssatisfy
the vertex resolution rule in that they impose vertices to have integer coordinates.

1.1. Previous related work

Unfortunately, it is quite difficult to characterize proximity graphs. For instance, no characterization of
Gabriel graphs is known so far. Therefore, the research has been focused on the problem of constructing
proximity drawings of certain classes of graphs[31] the drawability of owtrplanar gaphsas RNGs
has been proved, while in [28] this result has been extendgeptmximity drawings.

Another well studied class of graphs for proximity drawability is that of trees. Although every tree is
a subgraph of a maximal outerplanar graph, the positive results in [28,31] do not apply to trees as the
characterizations of those trees that admit proximity drawings given in [3,4] show.

Motivated by the fact that several interesting classes of graphs do not admit a proximity drawing,
the notion ofweak proximityhave been first introduced in [17]. Informallyweeak proximity drawing
is a straight-line drawing such that, for any edgev), the proximity region ofx andv is empty. This
definition relaxes the requirement of classigallrawings, allowing the-region of non-adjacent vertices
to be empty. Classical, not weak, proximity drawings are generally referred straasy proximity
drawings. Interestingly, this simple modification allows for much more flexibility and efficacy. For
instance, a tree that has a vertex of degree greater than five has no (gtdwagying for anys, while it
admits a wealg-proximity drawing [17].

Another way of extending the class of drawable graphs is to considbm@&nasional proximity
drawings.In the 3-dimensional space the definition @fproximity is the natural extension in which
proximity regions are defined as intersections of spheres (e.g., the Gabriel proximity regi@alisiel
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sphereinstead of disk). Three-dimensiongtproximity drawings have been investigated in [29] where
characterizations of drawable trees have been presented.

Other results on algorithms to construct proximity drawings of graphs and some related issues can be
found in [22,35] and [21] (see also [16] for a good survey on proximity drawability).

More generally, algorithms fagraph drawinghave been extensively studied for a number of aesthetic
criteria (e.g., planar drawings) and optimization functions (e.g., the area of the drawing) depending on
the applications at hand (see [14,15] for an overview). For instance, rooted trees can be representec
usingupward straight-line planar drawingso to emphasize their hierarchical structure: (a) vertices are
represented as points and no vertex can be placed above its parent; (b) each edge is represented as
straight-line segment connecting its endpoints; and (c) no two edges cross.

Optimal-area algorithms for drawing trees according to the above criteria have been investigated in
several works [8,11-13,19,34]. Variants in which edges are represented as polylines (i.e., chains of
segments connecting the endpoints) [8,24], vertices must be represented as boxes of given sizes [20
37], or theaspect ratio(see Section 1.3 for a formal definition) has to be optimized [8], have been
also considered. Other classes of graphs for upward drawing have been studied in [18,25,40], Finally,
motivated by the availability of low-cost workstations and applications requiring three-dimensional
representations of graphs [5,26,32,36,39], the constructithred-dimensional drawings polynomial
volumehas been investigated in [1,2,6,7,9,10].

It is worth observing that many of the above cited works present algorithms yielding area/volume-
efficient grid drawings. For instance, binary trees and bounded degree searélathe@s® (n logn)-
and ® (n)-area algorithms for upward drawing, respectively [11,12,40]. Also, if we relax the upward
requirement or we allow polylines to represent edges, than any binary tree admits a linear-area drawing
[24,43]. Similar positive results have been also achieved for three-dimensional drawings (see e.qg. [7]).

On the contrary, all known algorithms that compute both strong and weak proximity drawings produce
representations whose area/voluinereases exponentiallwith the number of vertices [3,4,16,17,21,
22,29-31,33]. This holds even when we restrict ourselves to binary trees and to any vertex resolution
rule (instead of the more restrictive grid drawings). Indeed, the problem of constructing proximity
drawings of graphs that have small size is considered a very challenging one by several authors [4,21].
Additionally, in [30] anexponential lower boundn the area of Gabriel drawings (both weak and strong)
has been presented. Hence, the research in this field focused on characterizing classes of graphs th
admit polynomial-size drawings.

1.2. Our contribution

In this paper, we introduce a general framework for drawing proximity graphs in polynomial
area/volume, which starting from a suitable drawingnot a proximity drawing), transforma into
a weak proximity drawingd’. The drawingA can be either 2- and 3-dimensional, and the area/volume
of the final drawingA’ is polynomially related to the area/volume 4f Up to our knowledge, this is the
first algorithmic technique for polynomial-size proximity drawing.

The technique is general enough to be applied to a wide class of weak Gabriel drawable graphs. In
particular, we first apply it to 2-dimensional and then to 3-dimensional drawings of trees wattiices

2 The definition of search tree used in [12] includebalanced, red-black and B&]-trees.
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and, finally, to the class of planar triangular graghsused in [30] to prove the exponential lower bound
on the area of any strong (weak) proximity drawing (see Section 4 for a formal definitiGp)ofAs a
result we obtain the first algorithms to construct polynomial-gizeroximity drawings for non trivial
classes of graphs. In the sequel we list our results:

e Alinear-timen?/2-area algorithm for (upward) weak Gabriel drawing of ternary (rooted) trees using
integer coordinates and constant aspect ratio;

e A linear-time Qn?)-area algorithm for (upward) weaR-drawing of binary (rooted) trees, for
0 < B8 < o0, using integer coordinates and constant aspect ratio;

e A linear-time polynomial-volume algorithm for (strictly-upward) 3-dimensional weak Gabriel
drawing of unbounded degree (rooted) trees, where the coordinates of vertices can be representec
with O(logn)-bits;

e Alinear-time and linear-volume strorgydrawing, for 1< 8 < 2, and relative neighborhood drawing
(RND) of the class of graphs,,, where the coordinates of vertices can be represented wiitly @)-
bits.

Notice that, in the two dimensional case we use integer coordinates to represent vertices (i.e.,
grid drawing), while the three-dimensional drawings use coordinates which can be represented using
©®(logn) bits. Indeed, the vertex resolution rule implies a lower boung @bgn) bits since we need to
represent a set of distinct-points. So, Qogn) bit-requirement is an important feature for an efficient
representation.

In Table 1 we compare our results with the previously known results for the same class of graphs we
consider in this work. Besides the fact that all previously known algorithms yield exponential area/volume
drawings, our algorithms produce weak proximgydrawings for classes of graphs thdd not admit
strong 8-proximity drawings at least for somg, Moreover, for the only case in which the graphs admit

Table 1
Our results versus previously known results on the existence of weak/gtrpruximity drawings (whenever
not specified, previous results refer to two-dimensional drawings and/or to the same yaaiofour results)

Class Our results Previous results
Size B Weak/strong Drawability

Ternary trees n2/2-area KBl Weak Not strong [16]
Binary trees @n?)-area KB <oo Weak Not strong for

0<p< 23l

strong for

B p<oof3]
Unbounded @*-volume 0<p<1 Weak Not strong [29]
degree trees (even in 3D)
Gy, O(n)-volume 1< B <2, Strong Strong for

RND B < r-egszs 139

Q(3")-area [30]
(also for weak)
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strong proximity drawings (i.e., the grapi introduced in [33]) our method also yields polynomial-size
strong proximity drawings.

Finally, the importance of our result on the claSs is twofold. First, it shows that our method is
general enough to be applied to classes of graphs other than trees. Second, tlie, dabgbit an
exponential gap between the area and volume requirement. By one hand, in [30] an exponential lower
bound on the area, even when restricted to weak proximity drawings, has been proved. By the other hand,
our technique yields a linear-volume strong proximity drawings. This results shows how the use of the
third dimension can substantially help in improving the efficiency of the proximity drawings.

Paper organization. In Section 1.3, we recall basic definitions and introduce the notation adopted. In
Section 2 we describe the drawing framework and state its main properties. In Section 3 and in Section 4
we apply our technique to 2-dimensional and 3-dimensional drawings, respectively. Finally, in Section 5,
future research directions are outlined.

1.3. Preliminaries and notation

Given a pair of points in the planeandv, let d(u, v) denote the Euclidean distance. The proximity
region ofu andwv, also referred to ag-region of influence of andv, denoted byR[u, v, 8], is defined
as follows (see also Fig. 2):

(1) For O< B < 1, R[u, v, B] is the intersection of the two closed disks of radilgs, v)/(28) passing
through both: andv.

(2) For 1< B < o0, R[u, v, B] is the intersection of the two closed disks of radb(u, v)/2 and
centered at the pointd — 8/2)u + (8/2)v and(B8/2)u + (1 — B/2)v.

(3) Forg =0, R[u, v, 0] is the segment having andv as endpoints.

(4) R[u,v, o] is the closed infinite strip perpendicular to the line segnaent

A weakg-drawing of a graphG is a planar straight-line drawing @f such that, for any two adjacent
verticesu andv, the proximity regionR[«, v, 8] does not contain any other vertex of the drawirifithe
proximity region of any twaion-adjacentsertices contains at least another vertex then the drawiidg of
is astrong S-drawing or simply g-drawing (see the example in Fig. 1(b)).

A (weak) Gabriel drawingis a (weak)g-drawing for 8 = 1. In this case, the proximity region of any
two pointsu andv is denoted aR[u, v] and it corresponds to the closed disk of radiug (g, v) and
centered at the middle point betwee@andv.

Similarly, we defineg-proximity regions of 3-dimensional drawings as the intersection of closed
spheres.

A graphG with n vertices is yveak g-drawableif it admits a (weak)3-drawing (either 2-dimensional
or 3-dimensional).

In the 2-dimensional space layer [; is a horizontal line containing the points havipgcoordinates
equal toY;, whereY; is a positive integer. Similarly, in the 3-dimensional spackyar I; is the plane
containing the points having thecoordinate equal to a positive integér. In the following we assume
thatY;,, > Y; andZ; .1 > Z;, for anyi > 1.

3 To simplify the notation, we denote a vertex and a point representing it with the same symbol.
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A layered drawingn a straight-line drawing such that each vertex is placed on a layer. Notice that,
in this definition vertices on a same layer can be adjacent, and we allow layers not to be equally spaced.
The number of layers of a layered drawings denoted ag“.

Given a vertexu we denote byL, the layer on which the vertex is drawn and, for any ventex,
denotes the projection efon layerL,. Moreover, we define

Rulu,v12 Rlu, vl dy(u,v) 2 du, vy),

and for any layel. containing at least one vertex

d(L) = argmax{d, (u, v) | u € L A v adjacent ta:}.

To simplify the notation use; as a shorthand faf(l;). We also usel/” to denoted(/;) restricted to
vertices that are adjacent in a subdrawifigonly.

As previously stated, in order to prevent drawings from being arbitrarily scaled down, we assume
the vertex resolutiorrule, i.e., for any two distinct vertices and v it must holdd («, v) > 1. Thebit-
requirements the number of bits needed to represent the coordinates of the vertices.

Theheight thewidth and theareaof a 2-dimensional drawing are the height, the width and the area of
the smallest isothetic rectangle bounding the drawing, respectively. Analogoushgitig the width,
the depthand thevolumeof a 3-dimensional drawing are defined as the height, the width, the depth and
the volume, respectively, of the smallest isothetic parallelepiped bounding the drawingsjdwt ratio
is defined as the ratio between the length of the longest side and the length of the shortest side of the
smallest rectangle (parallelepiped, in the 3-dimensional case) containing the drawing.

Letu, v andz be any three points. We denote hyuvz) the triangle whose vertices atev andz;

Luzv denotes the angle determined by the two segment libesd vz and whose value is if0, ].

2. Thetechnique

In this section we introduce a framework for wegdproximity drawing in polynomial area/volume,
for any 0< B8 < 1. Since every weak Gabriel drawing is also a wgallrawing, forg < 1, we will
present the technique for Gabriel drawings (ie= 1).

In particular, our method consists of two main steps: (a) construct a suitable (not Gabriel) drawing
(b) transformA into a weak Gabriel drawing’. The initial drawingA, titled quasi-Gabriel drawingcan
be both 2- and 3-dimensional and the size (area/volumé) &f polynomially bounded in the size af.
Hence, if a graph admits a quasi-Gabriel drawing of polynomial size, then the resulting weak Gabriel
drawing is of polynomial size as well.

In the following, we first formally define a quasi-Gabriel drawiag and then we describe the
transformation ofA into a weak Gabriel drawing\’.

Definition 2.1. A drawing A is aquasi-Gabriel drawingf the following constraints hold:
(1) Layered Vertices lie on layers;

(2) No Transitive Edges/ertices on non-consecutive layers are not adjacent;
(3) Locally Gabriel For any edg€u, v), R,[u, v] N L, contains no vertices other tharandv.
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Fig. 4. Layered drawings with transitive edges cannot be “stretched” without introducing new vertices in a proximity region
that was originally empty.

Fig. 3 shows an example of a quasi-Gabriel drawing: notice that the versesontained inR[u, v],
thus, not satisfying the definition of weak Gabriel drawing. However, the drawing can be easily adjusted
by increasing the distance betweknandL, so thatL, does not intersec®[u, v] anymore. In general,
increasing the distance between layers makes some proximity region bigger and may introduce a new
vertex in a region that was originally empty: Fig. 4 shows an example of a layered drawing dadgish
not satisfy the “No Transitive Edges” property of Definition 2.1. In the sequel we will show that this
problem cannot occur in a quasi-Gabriel drawing.

Informally speaking, our technique is based on the following ideas:

(1) In the starting quasi-Gabriel drawing, Rff«, v] contains another vertex thenz cannot lie onL,
noronL,.

(2) After spacing out consecutive layers by a suitable amount, every proximity r&fiom] intersects
L, andL, only. Therefore, in the new drawing¢ R[u, v].
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Fig. 5. The proof of Lemma 2.2.

(3) Although increasing the distance between two consecutive ldyeesd L, makes the proximity
region R[u, v] bigger, the intersection a®[u, v] with L, and L, does not change. This implies that
we never introduce new vertices while enlargiR, v].

The following lemma easily implies that, for any two adjacent verticeend v in a quasi-Gabriel
drawing, no other vertexe L, U L, is contained inR[u, v].

Lemma 2.2. For any two vertices: andv it holds that
Rlu,v]NL,=R,[u,v]NL,.
Proof. Inthe 2-dimensional case we simply observe that Rjth v] N L, andR,[u, v] N L, coincides
with the segment having andv as endpoints.
As for the 3-dimensional case, we first observe tRafu, v] N L, is the closed disk oL, of
endpointsu and v, (see Fig. 5). IndeedR,[u, v] is a sphere whose centey lie on L, and whose

diameter equald(u, v,). In order to prove the lemma, we will show that, for any pgirt L, it holds
that

d(c,p)<du,v)/2 < peR,u,vINL,, Q)

where ¢ is the center ofR[u, v]. Towards this aim, we consider the two trianglésu, ¢, ¢,) and
A(p, c, c,). As they have a common segmenf and/cc,v = Zcc, p = /2, it holds that

d(c,p)<d(c,u) < d(p,c,) <du,c,).
Sinced(c,u) = d(u,v)/2 andd(u, ¢,) = d(u, v,)/2, the above condition is equivalent to Eq. (1). This
completes the proof. O

The next lemma specifies how much the distance between layers should be increased.

Lemma 2.3. Letu andv be any two adjacent vertices of a layered drawing and.ldte a layer whose
distance from bottL, and L, is bigger thanmax{d(L,), d(L,)}/2. Then, it holds thaR[u, v] N L = @.

Proof. Without loss of generality, let us suppose that lages closer toL, than toL, and letc be the
center of the region of influenck[u«, v] (see Fig. 6). Also let, andc; be the projection of on layerL,
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Fig. 6. The proof of Lemma 2.3.

andL, respectively. Sincé(c,,c;) =8 >d(L,)/2>d,(u,v)/2=d(c,, v), then the distance between
andL is equal to

d(c,cp)=d(c,c,) +d(cy,cr) = d(c,c,) +d(c,,v) >d(c,v).
Hence the lemma follows. O

We are now in a position to prove the main result of this section. The following theorem evaluates the
dimensions of a weak Gabriel drawiny derived from a quasi-Gabriel drawing.

Theorem 2.4 (Drawing stretching)Let A be a quasi-Gabrielgrid) drawing. A weak Gabrie(grid)
drawing A’ exists such that

e width(A") = width(A);
e depth(A’) = depth(A);
o heightA’) <25 1d:/2) + 1.

Moreover, ifd; > d;_1, for 2<i < h?, thenheight{A’) < Zfﬁl ld; /2] + 1.

Proof. We constructA’ by increasing the distance between consecutive layess of particular, let us
denote bys; the distance between laykerand layer;_; in A’, for 2<i < h?. We set
8 =max{|di—1/2] + 1, |d;/2] +1}.
Thus
h4 h4
heighta) <> "6, <2) "|di/2] + 1.
i=2 i=1
Moreover, ifd; > d;_1 for 2<i < h?, then
hA
heighta’) = "|d;/2] + 1.
i=2
In order to prove that\’ is a weak Gabriel drawing we show that the region of influeRge, v] of any
two adjacent vertices does not contain any other vert&d¥e distinguish the following two cases:
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e z € L,UL,. Without loss of generality, we can assume L,. We first observe that’ is also a quasi-
Gabriel drawing since the “Locally Gabriel” property is preservRgiu, v] does not change when
increasing the distance between layers since the projectioroofL,, does not change. Therefore,
the fact thatA was a quasi-Gabriel drawing impliesz R,[u, v]. Finally, Lemma 2.2 implies that
z ¢ Rlu, v].

e z¢ L,UL,. Leté be the distance betwedr and the nearest betwedr) andL,. By construction,
it holds that

8>d(L,)/2 and §>d(L,)/2.
Thus by applying Lemma 2.3 we have that R[u, v].

Finally, if A is a grid drawing, them\’ is a grid drawing as well. O

Let us observe that ifi is a polynomial area/volume quasi-Gabriel drawing then the area/volume of
is polynomial as well. Indeed, widta") = width(A), depti(A’) = depth(A), and heightA’) is at most
n-times (the maximum number of layers) the maximum between the idtand deptla). Hence, the
above theorem implies that classes of graphs that admit polynomial area/volume quasi-Gabriel drawings,
also admit polynomial area/volume weak Gabriel drawings.

3. Proximity drawingsin the plane

This section is devoted to the construction of upward proximity drawings in the plane for rooted trees.
In particular, we will first prove that ternary trees admft/2-area weak Gabriel grid drawings. Then,
we will considerg-proximity grid drawings of binary trees, forQ g < co. Notice that ternary trees do
not admitstrong Gabriel drawings, and binary trees are not strgadrawable for 0< B < v/3/2 (see
Table 1).

3.1. Ternary trees

We apply the method described in Section 2 by showing how to construct a quasi-Gabriel dfawing
of polynomial area.

For any ternary tred two different drawingsA’ and A” are constructed. Lef;, 7> and Tz be the
ternary trees rooted at the children of the rooT'afuch thatl; andTs are the smallest and the largest one,
respectively (ties are solved arbitrarily). We denote withand A" the two drawings off’ recursively
obtained by combining the drawings ®f, T, and T3, as shown in Fig. 7. The compositions of the three
subdrawings used to obtait’ and A" are denoted ag; &6 AL, 6 AL and A3 6 A © A, respectively.

In particular,A’ is obtained by translating both; and A} by one unit to the bottom with respect 18,.
Moreover, the bounding box af;, A, and A} are pairwise at horizontal unit distance. Finally, the root
of T is drawn on the same layer of the root®fin A% and itsx-coordinate is an integer value strictly
in between thex-coordinates of the roots df; in A} and of 73 in A’2. Notice that this implies that
lrirp <m/2 andlrory < /2, thatisry ¢ R[r, r1] andry ¢ R[r, r2]. We similarly defineA; & AL © A{L.

Algorithm t er nar y-t r ees in Fig. 8 constructs the quasi-Gabriel drawingsand A" satisfying
the following invariants:
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Fig. 7. The construction of the quasi-Gabriel drawinfsand A” for ternary trees.

algorithmt ernary-trees(T)
h < height of T
r < rootofT
if h=1then
drawr at (1, 1)
Al AT « drawing ofr
else begin
(Al, Ay =ternary-trees(Ty)
(A, ALy =ternary-trees(T)
(AL, AL =ternary-trees(Ts)
1 1 )
Al = Ao Ao Al
AT =AL6 Ayo A
end
return (Af, A”)
end

Fig. 8. Algorithm ternary-trees.

(1) Edges from a vertex to its children are represented with one horizontal, one downward leftward and
one downward rightward line.
(2) The root is the leftmost vertex in’ (rightmost inA”, respectively) on the top layer.

Theorem 3.1. A’ and A" are quasi-Gabriel grid drawings.

Proof. Let us consider the drawing’ (the proof forA” is similar and therefore omitted). It is easy to
see thata! is a layered drawing with no transitive edges. Thus, we have to prove that for anyieaye
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R, (u,v) N L, does not contain any vertex other thamandv. The proof is by induction on the number
of verticesn of the tree.

Base stefin = 1). Trivial.

Inductive stepWe distinguish the following two subcases.

e v =r. In this casex = r;, for some 1< i < 3. Suppose: = r; (the other two cases are similar).
Notice that(r, 1) is represented as a downward leftward segment. Consider that, by construction:
(1) rq1is the rightmost vertex af\] and on layer, ;

(2) ryis the leftmost vertex oft, on layerL,, = L,,;

(3) r is drawn strictly in between the-coordinates of, and ofr,.

Hence,R,,[r, r1]1 N L,, does not contain any vertex af; and A,. By construction, it also contains
no vertex ofAj.

e u =r.Inthis case =r;, for somei € {1, 2, 3}. It easy to verify tharR,[r, r;] is empty fori =1, 2, 3.

e u,v #r. Without loss of generality, we assume that are vertices ofA’. By inductive hypothesis,
no other vertex ofA’] belongs toR,[u, v]N L,. Itis also easy to see th&,[u, v] is contained in the
bounding box ofA’, thus implying that®R, [u, v] N L, does not contain any vertex other thaandv.

Finally, by construction, every vertex is represented as a point with integer coordinates.
Lemma 3.2. Let A be eitherA! or A”. For anyl<i < h?,d; < n/2t"=i+1,

Proof. Without loss of generality, we assume= A’. The proof proceeds by induction @n Let us
denote withnq, n, and nz the number of nodes of the three immediate subtrees, and let us suppose
ny <np < ng.

Base stef{n = 4). Let us first consider the drawing of the complete ternary tree of height 2. In this
case we clearly have® = 2 andd, = 2. Moreover, it is easy to see that any other tree with 4 vertices
admits a drawingA satisfyingd; < n/2""~i+1.

Inductive stepWe distinguish the following two cases:

e i = h“. By definition, d,» is the length of the longest projection on layet of any edge among
(r,r1), (r,r2), (r,r3) and an edge on layer*s of A} (see Fig. 7). By inductive hypothesis and
considering thaf3 is the largest subtree we havks < n/2.

e 2<i < h?—1.0bserve that, by construction (see Fig. 7), ldyef A corresponds to layér. in A,

where
iv=i—h*+h*+1;
ip=i—h*+h*+1;
is=1i—h®+h*e.
Therefore, by inductive hypothesis we have
A _ A Az Az
di = max{di—hA+hA1+1’ di—hA+hA2+1’ di—hA+hA3}

A_; A A . A -
gmax{nl/z’“ iy 2V g 2t _’_1} <n/2M L

where the last inequality comes from < n/2 andn, <n/2. O
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By combining Lemma 3.2, Theorem 3.1 and Theorem 2.4 and we can state the following result.

Corollary 3.3. Any ternary tree with n nodes admits:4/2-area weak Gabriel grid drawing which can
be constructed i©O() time.

Proof. The width of the quasi-Gabriel drawing derived by algorithnt er nar y-tr ees in Fig. 8 is
at mostz. Hence, the weak Gabriel drawinf has:

o width(A") <n;
o heightA) < Y7 1di/2) + 1< Y0 1n/2 " =i+ /2) +1=n/2,

since, by constructionf; > d;_;. O

An example of Gabriel drawing of a ternary tree obtained by applying our algorithm is shown in Fig. 9.
It is easy to see that fg# > 1 the above construction does not guarantee the proximity regions of slanted
edges to be empty. In fact, the third condition of quasi-Gabriel drawing definition does not prevent the
lune of influence, ford > 1, of two adjacent vertices from being empty when layers are spaced out.
However, as we will see in the next section, it is possible to modify the method described in Section 2 so
to obtaing-proximity drawings of binary trees.

@

(b)

(©)
Fig. 9. Ternary trees: an example. (a) The tree given in input. (b) The quasi-Gabriel drawic)dThe weak Gabriel drawing.
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3.2. B-proximity drawings of binary trees

In this section, we describe an algorithm to construgtip-areas-proximity drawings of binary trees.
We make use of the technique described for ternary trees suitably modified. In particular we modify
the definition of quasi-Gabriel drawing by imposing the edges to be represented with either horizontal
or vertical segments. This gives rise to the definitionqahsi-proximitydrawing which allows us to
considerg-proximity drawings for 0< 8 < oo. We then present a linear-time algorithm to construct the
quasi-proximity drawing of binary trees. As a consequence, given any binary tree wittles, we can
construct polynomial-area wegkproximity grid drawing in linear time.

Definition 3.4. A drawing A is aquasi-proximity drawindf it satisfies the following constraints:

(1) Layered Vertices lie on layers.
(2) No Transitive Edges/ertices on non-consecutive layers are not adjacent.
(3) Orthogonal Edges are represented as horizontal or vertical segments.

Before presenting the extension of Theorem 2.4 we need a further definition, .ahdz be three
points, we define:

arcsing for0< B <1,

a(B) =inf{/uzv|z € Ru, v, Bl} = {arcco$1 — 1) otherwise
B

In the proof we make use of the following quantiB(g) = 1/ tan(w(8)/2). Intuitively, §(8) represents
the minimum distance such that for a unit-length horizontal €dge), R[u, v, ] does not intersect any
layer L at distance’(8)/2 from L,,. Lemma 3.5 is a simple generalization of Lemma 2.3.

Lemma3.5. Let 8 > 0 and letu andv be any two vertices both laying dr, and letL be a layer whose
distance fronL, is bigger thans(8) - d(L,)/2. Then, it holds thaRr[u, v, B]N L = @.

Similarly to Theorem 2.4, given a quasi-proximity drawinglet24 denote the number of layers and
let d; be the longest projection on layeramong edges whose at least one endpoint belonggsNotice
that, for quasi-proximity drawings; is equal to the longest horizontal edge drawn on ldyer

We are now in a position to prove the following result, which is an extension of Theorem 2.4 to
B-proximity drawings.

Theorem 3.6. Let A be a quasi-proximitygrid) drawing. For any0 < 8 < oo, a weakB-proximity (grid)
drawing Az exists such that

o Width(Ap) = width(A);
o depth(Az) = depthA);

o heightas) <25(8) Y17, 1di/2) + 1.

Moreover, ifd; > d;_; for 2<i < h, thenheight ) < 8(8) Y1 1di /2] + 1.
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Proof. The proof is similar to that of Theorem 2.4. Let us denotéhe distance between layeand
layeri —1in Ag, for 2<i < h*. We define

8 =max{|8(B)di—1/2| + 1, |8(B)d; /2| + 1].
Thus

hA hA

height ) <) "8 <25(B) > Ld;/2] + 1.
i=2 i=1

Moreover, ifd; > d;_1 for 2<i < h*, then
hA
height4s) < 8(8) Y Ldi/2] + 1.
i=2
In order to prove that\g is a weakg-proximity drawing we show that the region of influenRéu, v, ]
of any two adjacent vertices does not contain any other vertest us first observe that, from Lemma 3.5,
if a vertexz is contained inR[u, v, 8], then eithez e L, orz € L,.
Without loss of generality we assume L, and we distinguish the following two cases:

e (u,v) is a horizontal edgeln this caseR[u, v, B]1N L, is the segment itself. This clearly implies that

7 ¢ Rlu, v, B].
e (u,v) is a vertical edgeln this caseR[u, v, 81N L, = u, which impliesz ¢ R[u, v, B].

Hence the theorem follows.O

Motivated by the previous result we can now turn our attention to the construction of polynomial-area
quasi-proximity drawings of binary trees.

Similarly to ternary trees, the construction of a quasi-proximity grid drawingan be carried out

recursively. In particular, we use the well-known recursive construction of so called h-v drawings [11,
19,40]. We denote withd; © A, the drawing obtained by combining drawings and A, as follows:
A1 is translated to the bottom by one unit and is translated to the right by as many grid points as the
width of A, plus 1 (see Fig. 10). It is easy to see thais a quasi-proximity grid drawing and can be
constructed in linear time. Moreover, its width is at most equal to thersafehe tree. An example of a
quasi-proximity drawing is depicted in Fig. 11(b).

The following result can be proved similarly to Lemma 3.2.

Lemma3.7. For any2 <i < h?4,d; < 8(B)n/2"" —+1,

From Lemma 3.7 and Theorem 3.6 we obtain the following result.

A,

AN

Fig. 10. The h-v drawingl1 © A5 [11,19,40].
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(b)
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(©)

Fig. 11. Binary trees: an example. (a) The tree given in input. (b) The quasi-proximity drawing. (g)-gfoimity drawing
with g = 2.

Corollary 3.8. For any 0 < 8 < oo and for any binary treel” with n nodes, a weal8-proximity grid
drawing ofO(8(8)n?)-area exists, which can be constructeddr) time.

4. Proximity drawingsin 3D-space

This section is devoted to the construction of proximity drawings in the 3-dimensional space. As we
will prove in the sequel, the use of the third dimension, combined with the method described in Section 2,
allows to design efficient proximity drawing algorithms. Indeed, we will prove that it is possible to
construct 3-dimensional weak Gabriel drawings of unbounded degree treés/aume. Notice that
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unbounded degree trees are not strong drawable [29]. Moreover, we will show a class of graphs, requiring
exponential area for weak Gabriel drawings, that admits linear-volume spemgximity drawing
instead, for any X 8 < 2.

4.1. Unbounded degree trees

In this section we consider unbounded degree trees and prove that they: &dwlitme weak Gabriel
drawings. To this aim we will show how to construct a quasi-Gabriel drawiinghose volume is* and
such that any edge has length at mosy/2.

We denote by,, y, andz,, thex-, y- andz-coordinates of a vertex. The construction ofA takes
two steps.

4.1.1. Step 1: front drawing

In the first phase we construct an upward straight-line layered drawifigoof the yz-plane (i.e., all
the vertices have nul coordinate).

We want our drawing to satisfy the following invariafiach internal vertex is at the same distance
from its leftmost and its rightmost child.

Let T be a tree having as immediate subtr@&es .., T;. The algorithm in Fig. 13 correctly computes
the front drawing off" in linear time (see also Fig. 12(a)) which satisfies the above stated invariant.

z
|

S(ri) :S(r3) ! lS(rk)i

P

F oD
e

(b)

Fig. 12. The two steps of the construction of 3-dimensional proximity drawings of unbounded degree trees: (a) the front drawing;
(b) equally space the children of each node.
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algorithm f r ont _dr awi ng(7T)
h < height of T
r < rootof T
if h =1then
drawr on layer 1
else begin
T1 < largestimmediate subtree of
r1,...,rx < roots ofTy, ..., Ty children ofr
fori=1tok do
A; =front_draw ng(T;)
translateA; so thatr1 is on layerh — 1
for i =2tok do
translateA; so that:
1.r;isonlayerh — 1, and
2. A; is at unit horizontal distance from;_1
drawr on layerh at the same distance from andry
connectrtory, ..., rg
end
end

Fig. 13. Step 1: Algorithnfir ont - dr awi ng.

algorithm nove(T)
h < height of T
r < rootof T
if h=1then
drawr on layer 1
r1, ..., < roots ofTy, ..., T; children ofr
d=d(r1, ry)
for i =2tok — 1 dobegin
Xr; = Xp + \/dz/z - = )’ri)z

end

for i = 1tok do begin
nmove(7;,)

end

Fig. 14. Step 2: Algorithnmove.

4.1.2. Step 2: equally space the children

Let v be an internal vertex of" and vq,..., v, be its children. In this step we assign different
x-coordinates to vertices, ..., v, so that all edgeév, v;) satisfy the third condition of the quasi-Gabriel
definition. In particular, we assign differemtcoordinates to vertices,, ..., v; so that all edgesu, v;),
with 1 <i <k, have the same length. Lét[v1, v¢] be the disk on the layek,, containingvs, ..., vk
and having as antipodal pointg andv; (see Fig. 12(b)). We translats, . .., v,_; along thex-direction
until they meet the boundary dd[v;, v;] (see Fig. 12(b)). Algorithmmove(T) in Fig. 14 implements
the above strategy in linear time.
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4.1.3. Proof of correctness
For any treeT” given in input, let us denote with the drawing of7’ obtained according to the two
steps previously described. We first prove that the voluma & polynomial.

Lemma4.1. For anyn nodes treel’, the drawingA has volume at most®.

Proof. Itis easy to see that the height and the widthmoére at mosk:. Let us consider the depth af
and prove by induction on that it is at mosk.

Step basé&n = 1). Trivial.

Inductive steplLet us suppose that the lemma holds for all trees with at mest nodes, and IeT’ be
ann node tree. LeTq, ..., T; be its immediate subtrees, and#dgt . . ., n; be their size, respectively, with
ny =np > --- > ng. We denote by, ..., A, the drawings off, ..., T, respectivelyA is obtained by
combining these subdrawings as shown in Fig. 12(b), whgre ., r, denote the roots ofy, ..., T,
respectively. Sincé(ry, ry) is at mostn, eachr;, for 2<i < k — 1, is translated along thedirection by
at mostn /2. Thus, by inductive hypothesis and considering that n/2, for 2< i < k, we obtain

depth(A) < max{depth(A1), n/2+ depth(Ay), ..., n/2+ depthAy)} < max(ni, n} =n.

The lemma thus follows. O

In order to prove that the drawing is a quasi-Gabriel drawing we make use of the following
intermediate result.

Lemma4.2. Let S(u) denote the smallest isothetic parallelepiped containing the drawing of the subtree
rooted atu. Also letu and v and z be any three vertices such thgh) « is a child ofv; and (b) the
subtrees rooted at andz are disjoint. Then, it holds thak, [u, v]1 N S(z) = @.

Proof. Let vy, vy, ..., v denote the children of. By construction,R,,[v, v;] is contained inD[vq, vk]

(see Fig. 12(b)). Moreovei)[v1, v;] is contained in the strip determined by the smallest and largest
x-coordinate ofS(v). The recursive construction performed by algoritfm®nt _dr awi ng andnove
easily implies thafS(v) N S(z) = @. Hence the lemma follows. O

Lemma 4.3. For anyn nodes tre€l’, the drawingA is a quasi-Gabriel drawing.

Proof. It is easy to see thatl is a layered drawing with no transitive edges. Thus, it remains to prove
that for any edgéu, v), R, [u, v]N L, contains no vertices other tharandv. The proof is by induction
on the number of nodes of the tree.

Base stefin = 1). Trivial.

Inductive steplLet us assume that the theorem holds for any tree with at mest nodes, and let us
consider am nodes tred’. We distinguish the following two subcases:

e v =r. Inthis case: = r;, for some 1< i < k. Also, layerL, contains the children of only. Let#’
be the projection of on L,. By constructiond(r’, r;) = d(r’, r;), thus implying that/r'r;r; < /2,
foranyi # j. Hencey; ¢ R,[u, v], foranyj #i.

e u =r. In this case, we simply observe thais the only vertex’.,.
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e u,v #r. Letz be any vertex other thamin L,. If v is a child ofu, we can apply Lemma 4.2 and
obtainz ¢ R,[u, v]. Otherwise, that i& is a child ofv, Lemma 4.2 implies that € R,[u, v] only if
z is a child ofv as well. In the latter case, the same proof as the case above applies. O

By combining Theorem 2.4, Lemmas 4.1 and 4.3 and considering that the length of any edge is
bounded by:/+/2, we obtain the following resuilt.

Theorem 4.4. For any treeT with n nodes there exists a weak Gabriel drawing whose volume is at
mostn* with O(logn) bit-requirement. Moreover, the drawing can be constructed in linear time.

4.2. Exponential area versus polynomial volume

In this section we consider an infinite class of graphs introduced in [33]. In [30] the authors proved an
exponential-area lower bound fgrproximity drawings, for 1< 8 < 1/(1 — cos 2r/5) ~ 1.45.

We apply the method described in Section 2 and we show that this class admits a linear volume strong
B-proximity drawing, for any X 8 < 2, and a linear volume relative neighborhood drawing.

4.2.1. Class of graphs

The class is recursively defined as follows. Graphis the graph shown in Fig. 15(a). The gra@h, 1
is obtained fronG, by adding five vertices: v viH v vl and by connecting them @; as shown
in Fig. 15(b). Clearly, the number of nodes@j is 5 + 1. We denote withP; the pentagon of;; given

by the 5-cycleviv,vzv,vs. Notice that each side of pentagénhforms a triangle with a vertex af; .1, as
well as each side af;,; with a vertex inP;. We refer to these triangles pstals.

Theorem 4.5 [30]. A Gabriel drawing and a weak Gabriel drawing of grajgh, require area (3"),
under any resolution rule assumption.

In the same paper, the authors generalized the previous resghdtawings, for any K 8 <
1/(1 — cosZ/5).

(a) (b)
Fig. 15. The exponential-area/linear volume class: (a) g@ph(b) graphG;1 givenG;.
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4.2.2. Construction of the drawings

In this section we describe a linear-time algorithm to constrilioear-volume strong Gabriedrawing
of G,.

To this aim we will first describe how to construct a linear-volume quasi-Gabriel drawiag stich
that the maximum length of any edge is constant. This implies that by suitably choosing a constant
distances between consecutive laye(s, admits a linear-volume weak Gabriel drawing. In the next
section we will prove the correctness of the algorithm and we will show how to extend it to strong
proximity.

The construction of the drawing is defined as follows: Penta@ofor 1 <i < n, is drawn on layer
as a regular pentagon. Moreovét,,; is rotated by ar/5 angle with respect t@; (see Figs. 16(a)
and 16(c) which show a drawing @f,). Notice that since the distance between consecutive layers is
constant and each pentagénis drawn in constant area, the volume i&:Q It is easy to see that the
algorithmpent agons described in Fig. 17 implements the above strategy in linear time.

4.2.3. Proof of correctness

In order to prove the correctness of the algorithm we first show that the resulting drawing is a quasi-
Gabriel drawing. This implies that, by suitably choosing the constaittcan be transformed into a
linear-volume weak Gabriel drawing.

Fig. 16. (a) Two consecutive pentagons viewed from the top. (b) How to draw a single petal. (c) The whole 3-dimensional
drawing.

algorithm pent agons(G,)
drawG1 on layer 1 such thaP; is a regular pentagon centeredat
for i =2ton dobegin
draw P; on layer: rotated by /5 with respect taP;_1
connectP; with P;_1
end

Fig. 17. The algorithm to draw,, in linear volume.
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Lemma 4.6. For anyn the algorithmpent agons returns anO(n)-volume quasi-Gabriel drawing.

Proof. Let us first observe that the drawing satisfies the first two properties of Definition 2.1 of quasi-
Gabriel drawing. Thus we have to prove that for any efdge), R,[u, v] contains no vertices except
for u andv. By construction, the following two cases arise:

(1) « and v are on the same layeket P; be the pentagon containingandv. SinceP; is drawn as a
regular pentagon (see Fig. 16(a)), then, obviously, the theorem holds.

(2) u andv are on consecutive layersVithout loss of generality let € P, andv € P;,;. Again, since
P; and P;_; are drawn as regular polygons aRd ; is rotated byr /5 (see Fig. 16(a)), it is easy to
see thatR,[u, v] does not contain any vertex &f other tharu. O

Let us observe that, since pentagons are equally drawn on consecutive layers at unitary distance, ther
the maximum edge length is constant. By Theorem 2.4 we obtain the following result.

Theorem 4.7. For anyn, graph G,, admits anO(n)-volume weak Gabriel drawing.

Proof. The proof follows by Theorem 2.4 choosing the distafidetween layers equal th, whered;
is the length of an edge @f,. O

The above result can be extended to strong Gabriel drawings.
Theorem 4.8. For anyn, graph G,, admits aO(n)-volume strong Gabriel drawing.

Proof. Let A be the weak Gabriel drawing obtained by algorithent agons where layers are spaced
out by the amouné specified in Theorem 4.7. Let us first observe that, for éiny §, the resulting
drawing still is a weak Gabriel drawing. In the following, we will show that a constapts exists such
that A is a strong Gabriel drawing fag,,. To this aim we have to prove that the proximity regi®p:, v]

of any two non adjacent verticesandv contains at least another vertex. We distinguish the following
three cases:

(1) u and v are not on consecutive layerg/ithout loss of generality, we assume thaandv belong
to P; and P, ,, respectively. It is then easy to see that for a sufficiently (but still constant) daage
least one vertex of;, 1 falls within R[u, v]. Notice that the value of depends on the length of the
side of the pentagon only.

(2) u andv are on consecutive layerb this case consider the didik[u, v'], wherev’ is the projection
of v on layerL, . Clearly, D[u, v'] contains at least another vertexlof (see Fig. 16(a)). This implies
that R[u, v] also contains the same vertex.

(3) u and v are on the same layeBy construction, the drawing of each; is a strong Gabriel
drawing. O

In the following we show that the construction is even more powerful since it allows to derive strong
B-proximity drawings, for 1< 8 < 2.



114 P. Penna, P. Vocca / Computational Geometry 29 (2004) 91-116

Theorem 4.9. For any n, graph G,, admits a linear volume relative neighborhood drawing and strong
B-proximity drawing, for anyl < g < 2.

Proof. We first consider strong-proximity drawings. We modify the drawing af; since it is not
B-drawable on a plane fo8 > 1/(1 — cos2r/5) (see Fig. 15(a)). Translate on layer 0 so that it
is at the same distance from all the verticesRyf (i.e., the new drawing oby corresponds to the
orthogonal projection on layer 0 of the old drawingugj. All other pentagons are drawn as described in
Theorem 4.8.

Observe that for any & 8 < 2 and for any two verticeg andv

R[u,v] € R[u, v, B].

This implies that for anysz > 6, where§’ is the value defined in the proof of Theorem 4.8, the
construction yields a drawing such that the proximity region of any two non-adjacent vertices contains
at least another vertex. Thus, in order to prove the theorem it suffices to show that for any two adjacent
verticesu and v, the proximity regionR[u, v, 8] is empty. Letd be the maximum edge length in the
drawing of Theorem 4.8 and 6 = d5(8), whered(p) is as defined in Section 3.2. (Notice that the
value ofdg is proportional td and does not depend an) We consider the following two cases:

(1) u and v belongs to the same pentagddsing basic geometry it is possible to prove that no other
vertex of the pentagon containingandv can fall within R[u, v, 8]. Additionally, because of the
choice oféz and by Lemma 3.5, no vertex from other pentagons falls wiRtfim, v, 8].

(2) u andv belongs to consecutive pentagohst P; and P;.1 be the two pentagons containingandv,
respectively. Again, because of the choicelptind by Lemma 3.5, any vertex not belongingAo
and toP;; cannot be contained oR[u«, v, 8]. Without loss of generality, let us consider a vertex
of P;. If z is adjacent tar andv thenu, v andz form a petal (see Figs. 15 and 16(b)). By considering
the plane containing the three vertices and its intersection Rjith v, 8] (see Fig. 16(b)) it is easy
to see that, lays on the boundary a®[u, v, 2]. Hence, for an\8 < 2, z ¢ R[u, v, B]. Similarly, we
can prove that no other vertex &f is contained inR[u, v, 8]. The same holds farin P; ;.

Finally, the above considerations also apply to relative neighborhood drawings. Indeed, a relative
neighborhood drawing is a slight modification of strong 2-proximity drawings, where the proximity
region is defined as the intersection of tejpen spheref31]. The theorem thus follows. O

5. Conclusions and open problems

In this paper we have introduced a novel technique to construct proximity drawings. By applying our
technique to trees, we obtain the first algorithms that construct drawings whose size is polynomial in the
number of the vertices. We also gave some evidence that our method is quite powerful, since it allows to
construct linear volume proximity drawings of a class of graphs that requires exponential area, instead.

Several problems are left open by this paper. They mainly concern the construction of polynomial size
proximity drawings and the study of other classes of graphs to which apply our method. In particular, the
following research directions seem to us the more promising:
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e Extend the results to other classes of grapgksfor as the 2-dimensional case, it might be interesting
to consider weak Gabriel drawings of trees of degree 4. It is worth observing that even ternary trees
do not admitstrong Gabrieldrawings [4]. Moreover, do ternary trees adgiproximity drawings of
polynomial area for somg > 1? As for the 3-dimensional case it could be interesting to consider
other classes g8-drawable graphs in the plane such as outerplanar graphs.

e Consider strong proximityDo binary trees admit least3-dimensionalstrong Gabriel drawings of
polynomial volume?

e Prove lower boundsA related issue is that of proving a lower bound on the area of trees for both
weak and strong proximity. In particular, are the algorithms given in Section 3 optimal?
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