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Abstract

We introduce a novel technique for drawing proximity graphs in polynomial area and volume. Previously
algorithms produce representations whose size increases exponentially with the size of the graph. This h
when we restrict ourselves to binary trees. Our method is quite general and yields the first algorithms to c
(a) polynomial area weak Gabriel drawings of ternary trees, (b) polynomial area weakβ-proximity drawing of
binary treesfor any 0� β < ∞, and (c)polynomial volume weak Gabriel drawings of unbounded degreetrees.
Notice that, in general, the above graphsdo not admit a strong proximity drawing.Finally, we give evidence of th
effectiveness of our technique by showing that a class of graph requiringexponential areaeven for weak Gabrie
drawings, admits alinear-volume strongβ-proximity drawingand arelative neighborhood drawing.All described
algorithms run inlinear time.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A proximity graphis a geometric graph where a given set of points represents the vertices a
vertices are adjacent if and only if they areneighborsaccording to some definitionof neighborhood. For
example, theGabriel graphof a set of points [23,33] is obtained by connecting every two pointsu andv
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ESPRIT Basic Research Action on “Algorithms and Complexity in Information Technology” (ALCOM-IT).
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Fig. 1. The proximity graph of a point set changes when different proximity regions are considered: (a) a strong Gabri
(b) a drawing which is both a strong 2-proximity drawing and a relative neighborhood graph.

Fig. 2.β-proximity regions forβ = 1/2,1,2,3,∞.

such that the closed disk havingu andv as antipodal points does not contain any other point (see
example in Fig. 1(a)). Notice that, to a given set of points corresponds a unique graph whose ver
the points on the plane and edges are determined by the positions of the vertices.

A natural extension of Gabriel graphs consists of defining a suitableproximity regionof the vertices
which determines the set of edges as follows: Two vertices are adjacent if and only if the corresp
proximity region isempty, i.e., it does not contain any other vertex of the graph.

In particular, inβ-proximity graphsthe proximity region (β-region) is a suitable lune depending o
the parameterβ, as shown in Fig. 2 (see Section 1.3 for a formal definition). In Fig. 1(b) we show
β-proximity graph forβ = 2 and for the same set of points in Fig. 1(a). Clearly, for different va
of β, the same set of points may yield different graphs. Variants in which open or closed lun
be also considered. For instance,relative neighborhood graphs(RNG) are proximity graphs where th
proximity region is theopenlune of parameterβ = 2.
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This and other kind of proximity graphs have been deeply investigated due to the many applications
in computational morphology, geographic information systems, pattern recognition and classification,
computational geometry, and computer vision (see e.g. [23,27,33,38,41,42]).
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Because of such applications, one of the most fundamental problem is that ofcharacterizingthe class
of proximity graphs for a given definition of proximity. From the algorithmic point of view, the ab
question corresponds to decide whether a given graph can be realized as a proximity graph
there a set of pointsS such that the Gabriel graphGG(S) is isomorphic to the given graph?). Clearly,
would be extremely helpful for the applications to visualize the proximity graph, if any. This require
computation of aproximity drawing, that is, a geometric representation of the input graph as a prox
graph. (See Section 1.3 for a formal definition ofβ-drawing.)

In general, constructing a “nice” drawing of a given graph is a per se very interesting problem sin
drawing has to be displayed on a physical device with finite resolution. This imposes a finite res
on the drawing as well (e.g., any two vertices must be at distance at least one) and also imposes
of the drawing (e.g., the area of the smallest rectangle containing it) to be polynomially bounded
size of the input graphs.

Therefore, the construction of a proximity drawing can be considered a very challenging pr
since the drawing has to simultaneously satisfy the proximity constraints and some of the “cla
constraints ofgraph drawing(see the book [15] for an overview). In particular, the ability to const
area/volume-efficient drawings is essential in practical visualization applications, where saving
space is of utmost importance. This property is meaningful only if the adopted drawing conve
prevent drawings from being arbitrarily scaled down. This is usually accomplished by assuming avertex
resolution rule, i.e., any two vertices must have distance at least one. For example,grid drawingssatisfy
the vertex resolution rule in that they impose vertices to have integer coordinates.

1.1. Previous related work

Unfortunately, it is quite difficult to characterize proximity graphs. For instance, no characterizat
Gabriel graphs is known so far. Therefore, the research has been focused on the problem of con
proximity drawings of certain classes of graphs. In [31] the drawability of outerplanar graphsas RNGs
has been proved, while in [28] this result has been extended toβ-proximity drawings.

Another well studied class of graphs for proximity drawability is that of trees. Although every t
a subgraph of a maximal outerplanar graph, the positive results in [28,31] do not apply to trees
characterizations of those trees that admit proximity drawings given in [3,4] show.

Motivated by the fact that several interesting classes of graphs do not admit a proximity dr
the notion ofweak proximityhave been first introduced in [17]. Informally, aweak proximity drawing
is a straight-line drawing such that, for any edge(u, v), the proximity region ofu andv is empty. This
definition relaxes the requirement of classicalβ-drawings, allowing theβ-region of non-adjacent vertice
to be empty. Classical, not weak, proximity drawings are generally referred to asstrong proximity
drawings. Interestingly, this simple modification allows for much more flexibility and efficacy.
instance, a tree that has a vertex of degree greater than five has no (strong)β-drawing for anyβ, while it
admits a weakβ-proximity drawing [17].

Another way of extending the class of drawable graphs is to consider 3-dimensional proximity
drawings. In the 3-dimensional space the definition ofβ-proximity is the natural extension in whic
proximity regions are defined as intersections of spheres (e.g., the Gabriel proximity region is aGabriel



94 P. Penna, P. Vocca / Computational Geometry 29 (2004) 91–116

sphereinstead of disk). Three-dimensionalβ-proximity drawings have been investigated in [29] where
characterizations of drawable trees have been presented.

Other results on algorithms to construct proximity drawings of graphs and some related issues can be
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found in [22,35] and [21] (see also [16] for a good survey on proximity drawability).
More generally, algorithms forgraph drawinghave been extensively studied for a number of aesth

criteria (e.g., planar drawings) and optimization functions (e.g., the area of the drawing) depend
the applications at hand (see [14,15] for an overview). For instance, rooted trees can be rep
usingupward straight-line planar drawingsso to emphasize their hierarchical structure: (a) vertices
represented as points and no vertex can be placed above its parent; (b) each edge is represe
straight-line segment connecting its endpoints; and (c) no two edges cross.

Optimal-area algorithms for drawing trees according to the above criteria have been investig
several works [8,11–13,19,34]. Variants in which edges are represented as polylines (i.e., ch
segments connecting the endpoints) [8,24], vertices must be represented as boxes of given s
37], or theaspect ratio(see Section 1.3 for a formal definition) has to be optimized [8], have
also considered. Other classes of graphs for upward drawing have been studied in [18,25,40],
motivated by the availability of low-cost workstations and applications requiring three-dimen
representations of graphs [5,26,32,36,39], the construction ofthree-dimensional drawingsof polynomial
volumehas been investigated in [1,2,6,7,9,10].

It is worth observing that many of the above cited works present algorithms yielding area/vo
efficient grid drawings. For instance, binary trees and bounded degree search trees2 admit �(n logn)-
and �(n)-area algorithms for upward drawing, respectively [11,12,40]. Also, if we relax the up
requirement or we allow polylines to represent edges, than any binary tree admits a linear-area
[24,43]. Similar positive results have been also achieved for three-dimensional drawings (see e.g

On the contrary, all known algorithms that compute both strong and weak proximity drawings pr
representations whose area/volumeincreases exponentiallywith the number of vertices [3,4,16,17,2
22,29–31,33]. This holds even when we restrict ourselves to binary trees and to any vertex re
rule (instead of the more restrictive grid drawings). Indeed, the problem of constructing pro
drawings of graphs that have small size is considered a very challenging one by several author
Additionally, in [30] anexponential lower boundon the area of Gabriel drawings (both weak and stro
has been presented. Hence, the research in this field focused on characterizing classes of gr
admit polynomial-size drawings.

1.2. Our contribution

In this paper, we introduce a general framework for drawing proximity graphs in polyno
area/volume, which starting from a suitable drawing∆ (not a proximity drawing), transforms∆ into
a weak proximity drawing∆′. The drawing∆ can be either 2- and 3-dimensional, and the area/vol
of the final drawing∆′ is polynomially related to the area/volume of∆. Up to our knowledge, this is th
first algorithmic technique for polynomial-size proximity drawing.

The technique is general enough to be applied to a wide class of weak Gabriel drawable gra
particular, we first apply it to 2-dimensional and then to 3-dimensional drawings of trees withn vertices

2 The definition of search tree used in [12] includesk-balanced, red-black and BB[α]-trees.
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and, finally, to the class of planar triangular graphsGn used in [30] to prove the exponential lower bound
on the area of any strong (weak) proximity drawing (see Section 4 for a formal definition ofGn). As a
result we obtain the first algorithms to construct polynomial-sizeβ-proximity drawings for non trivial
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classes of graphs. In the sequel we list our results:

• A linear-timen2/2-area algorithm for (upward) weak Gabriel drawing of ternary (rooted) trees u
integer coordinates and constant aspect ratio;

• A linear-time O(n2)-area algorithm for (upward) weakβ-drawing of binary (rooted) trees, fo
0 � β < ∞, using integer coordinates and constant aspect ratio;

• A linear-time polynomial-volume algorithm for (strictly-upward) 3-dimensional weak Ga
drawing of unbounded degree (rooted) trees, where the coordinates of vertices can be rep
with O(logn)-bits;

• A linear-time and linear-volume strongβ-drawing, for 1� β < 2, and relative neighborhood drawin
(RND) of the class of graphsGn, where the coordinates of vertices can be represented with O(logn)-
bits.

Notice that, in the two dimensional case we use integer coordinates to represent vertice
grid drawing), while the three-dimensional drawings use coordinates which can be represente
�(logn) bits. Indeed, the vertex resolution rule implies a lower bound of�(logn) bits since we need t
represent a set ofn distinct-points. So, O(logn) bit-requirement is an important feature for an efficie
representation.

In Table 1 we compare our results with the previously known results for the same class of gra
consider in this work. Besides the fact that all previously known algorithms yield exponential area/v
drawings, our algorithms produce weak proximityβ-drawings for classes of graphs thatdo not admit
strongβ-proximity drawings, at least for someβ, Moreover, for the only case in which the graphs ad

Table 1
Our results versus previously known results on the existence of weak/strongβ-proximity drawings (whenever
not specified, previous results refer to two-dimensional drawings and/or to the same value ofβ as in our results)

Class Our results Previous results

Size β Weak/strong Drawability

Ternary trees n2/2-area 0� β � 1 Weak Not strong [16]
Binary trees O(n2)-area 0� β < ∞ Weak Not strong for

0 � β �
√

3
2 [3],

strong for√
3

2 < β � ∞ [3]
Unbounded O(n4)-volume 0� β � 1 Weak Not strong [29]
degree trees (even in 3D)
Gn O(n)-volume 1� β < 2, Strong Strong for

RND β � 1
1−cos2π/5 [33]

�(3n)-area [30]
(also for weak)
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strong proximity drawings (i.e., the graphsGn introduced in [33]) our method also yields polynomial-size
strong proximity drawings.

Finally, the importance of our result on the classGn is twofold. First, it shows that our method is
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general enough to be applied to classes of graphs other than trees. Second, the classGn exhibit an
exponential gap between the area and volume requirement. By one hand, in [30] an exponenti
bound on the area, even when restricted to weak proximity drawings, has been proved. By the oth
our technique yields a linear-volume strong proximity drawings. This results shows how the use
third dimension can substantially help in improving the efficiency of the proximity drawings.

Paper organization. In Section 1.3, we recall basic definitions and introduce the notation adopte
Section 2 we describe the drawing framework and state its main properties. In Section 3 and in S
we apply our technique to 2-dimensional and 3-dimensional drawings, respectively. Finally, in Se
future research directions are outlined.

1.3. Preliminaries and notation

Given a pair of points in the planeu andv, let d(u, v) denote the Euclidean distance. The proxim
region ofu andv, also referred to asβ-region of influence ofu andv, denoted byR[u, v,β], is defined
as follows (see also Fig. 2):

(1) For 0< β < 1, R[u, v,β] is the intersection of the two closed disks of radiusd(u, v)/(2β) passing
through bothu andv.

(2) For 1� β < ∞, R[u, v,β] is the intersection of the two closed disks of radiusβd(u, v)/2 and
centered at the points(1− β/2)u + (β/2)v and(β/2)u + (1− β/2)v.

(3) Forβ = 0, R[u, v,0] is the segment havingu andv as endpoints.
(4) R[u, v,∞] is the closed infinite strip perpendicular to the line segmentuv.

A weakβ-drawingof a graphG is a planar straight-line drawing ofG such that, for any two adjacen
verticesu andv, the proximity regionR[u, v,β] does not contain any other vertex of the drawing.3 If the
proximity region of any twonon-adjacentvertices contains at least another vertex then the drawingG
is astrongβ-drawingor simplyβ-drawing (see the example in Fig. 1(b)).

A (weak)Gabriel drawingis a (weak)β-drawing forβ = 1. In this case, the proximity region of an
two pointsu andv is denoted asR[u, v] and it corresponds to the closed disk of radius isd(u, v) and
centered at the middle point betweenu andv.

Similarly, we defineβ-proximity regions of 3-dimensional drawings as the intersection of clo
spheres.

A graphG with n vertices is (weak) β-drawableif it admits a (weak)β-drawing (either 2-dimensiona
or 3-dimensional).

In the 2-dimensional space, alayer li is a horizontal line containing the points havingy-coordinates
equal toYi , whereYi is a positive integer. Similarly, in the 3-dimensional space, alayer li is the plane
containing the points having thez-coordinate equal to a positive integerZi . In the following we assum
thatYi+1 � Yi andZi+1 � Zi , for anyi � 1.

3 To simplify the notation, we denote a vertex and a point representing it with the same symbol.
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A layered drawingin a straight-line drawing such that each vertex is placed on a layer. Notice that,
in this definition vertices on a same layer can be adjacent, and we allow layers not to be equally spaced.
The number of layers of a layered drawing∆ is denoted ash∆.
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Given a vertexu we denote byLu the layer on which the vertex is drawn and, for any vertexv, vu

denotes the projection ofv on layerLu. Moreover, we define

Ru[u, v] �= R[u, vu], du(u, v)
�= d(u, vu),

and for any layerL containing at least one vertex

d(L)
�= argmax

{
du(u, v) | u ∈ L ∧ v adjacent tou

}
.

To simplify the notation usedi as a shorthand ford(li). We also used∆
i to denoted(li) restricted to

vertices that are adjacent in a subdrawing∆, only.
As previously stated, in order to prevent drawings from being arbitrarily scaled down, we a

the vertex resolutionrule, i.e., for any two distinct verticesu andv it must holdd(u, v) � 1. Thebit-
requirementis the number of bits needed to represent the coordinates of the vertices.

Theheight, thewidthand theareaof a 2-dimensional drawing are the height, the width and the are
the smallest isothetic rectangle bounding the drawing, respectively. Analogously, theheight, thewidth,
thedepthand thevolumeof a 3-dimensional drawing are defined as the height, the width, the dept
the volume, respectively, of the smallest isothetic parallelepiped bounding the drawing. Theaspect ratio
is defined as the ratio between the length of the longest side and the length of the shortest sid
smallest rectangle (parallelepiped, in the 3-dimensional case) containing the drawing.

Let u, v andz be any three points. We denote by�(uvz) the triangle whose vertices areu, v andz;
� uzv denotes the angle determined by the two segment linesuz andvz and whose value is in[0, π ].

2. The technique

In this section we introduce a framework for weakβ-proximity drawing in polynomial area/volume
for any 0� β � 1. Since every weak Gabriel drawing is also a weakβ-drawing, forβ � 1, we will
present the technique for Gabriel drawings (i.e.,β = 1).

In particular, our method consists of two main steps: (a) construct a suitable (not Gabriel) draw∆;
(b) transform∆ into a weak Gabriel drawing∆′. The initial drawing∆, titledquasi-Gabriel drawing, can
be both 2- and 3-dimensional and the size (area/volume) of∆′ is polynomially bounded in the size of∆.
Hence, if a graph admits a quasi-Gabriel drawing of polynomial size, then the resulting weak G
drawing is of polynomial size as well.

In the following, we first formally define a quasi-Gabriel drawing∆ and then we describe th
transformation of∆ into a weak Gabriel drawing∆′.

Definition 2.1. A drawing∆ is aquasi-Gabriel drawingif the following constraints hold:

(1) Layered. Vertices lie on layers;
(2) No Transitive Edges. Vertices on non-consecutive layers are not adjacent;
(3) Locally Gabriel. For any edge(u, v), Ru[u, v] ∩ Lu contains no vertices other thanu andv.
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Fig. 3. A quasi-Gabriel drawing.

Fig. 4. Layered drawings with transitive edges cannot be “stretched” without introducing new vertices in a proximity
that was originally empty.

Fig. 3 shows an example of a quasi-Gabriel drawing: notice that the vertexz is contained inR[u, v],
thus, not satisfying the definition of weak Gabriel drawing. However, the drawing can be easily ad
by increasing the distance betweenLz andLu so thatLz does not intersectR[u, v] anymore. In genera
increasing the distance between layers makes some proximity region bigger and may introduc
vertex in a region that was originally empty: Fig. 4 shows an example of a layered drawing whicdoes
not satisfy the “No Transitive Edges” property of Definition 2.1. In the sequel we will show that
problem cannot occur in a quasi-Gabriel drawing.

Informally speaking, our technique is based on the following ideas:

(1) In the starting quasi-Gabriel drawing, ifR[u, v] contains another vertexz, thenz cannot lie onLu

nor onLv.
(2) After spacing out consecutive layers by a suitable amount, every proximity regionR[u, v] intersects

Lu andLv only. Therefore, in the new drawingz /∈ R[u, v].
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Fig. 5. The proof of Lemma 2.2.

(3) Although increasing the distance between two consecutive layersLu andLv makes the proximity
regionR[u, v] bigger, the intersection ofR[u, v] with Lu andLv does not change. This implies th
we never introduce new vertices while enlargingR[u, v].

The following lemma easily implies that, for any two adjacent verticesu andv in a quasi-Gabrie
drawing, no other vertexz ∈ Lu ∪ Lv is contained inR[u, v].

Lemma 2.2. For any two verticesu andv it holds that

R[u, v] ∩ Lu = Ru[u, v] ∩ Lu.

Proof. In the 2-dimensional case we simply observe that bothR[u, v] ∩ Lu andRu[u, v] ∩ Lu coincides
with the segment havingu andv as endpoints.

As for the 3-dimensional case, we first observe thatRu[u, v] ∩ Lu is the closed disk onLu of
endpointsu and vu (see Fig. 5). Indeed,Ru[u, v] is a sphere whose centercu lie on Lu and whose
diameter equalsd(u, vu). In order to prove the lemma, we will show that, for any pointp ∈ Lu, it holds
that

d(c,p) � d(u, v)/2 ⇔ p ∈ Ru[u, v] ∩ Lu, (1)

where c is the center ofR[u, v]. Towards this aim, we consider the two triangles�(u, c, cu) and
�(p, c, cu). As they have a common segmentccu and � ccuv = � ccup = π/2, it holds that

d(c,p) � d(c, u) ⇔ d(p, cu) � d(u, cu).

Sinced(c, u) = d(u, v)/2 andd(u, cu) = d(u, vu)/2, the above condition is equivalent to Eq. (1). T
completes the proof. �

The next lemma specifies how much the distance between layers should be increased.

Lemma 2.3. Let u andv be any two adjacent vertices of a layered drawing and letL be a layer whose
distance from bothLu andLv is bigger thanmax{d(Lu), d(Lv)}/2. Then, it holds thatR[u, v] ∩ L = ∅.

Proof. Without loss of generality, let us suppose that layerL is closer toLu than toLv and letc be the
center of the region of influenceR[u, v] (see Fig. 6). Also letcu andcL be the projection ofc on layerLu
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tes the
Fig. 6. The proof of Lemma 2.3.

andL, respectively. Sinced(cu, cL) = δ > d(Lu)/2� du(u, v)/2= d(cu, v), then the distance betweenc

andL is equal to

d(c, cL) = d(c, cu) + d(cu, cL) � d(c, cu) + d(cu, v) > d(c, v).

Hence the lemma follows. �
We are now in a position to prove the main result of this section. The following theorem evalua

dimensions of a weak Gabriel drawing∆′ derived from a quasi-Gabriel drawing∆.

Theorem 2.4 (Drawing stretching).Let ∆ be a quasi-Gabriel(grid) drawing. A weak Gabriel(grid)
drawing∆′ exists such that:

• width(∆′) = width(∆);
• depth(∆′) = depth(∆);

• height(∆′) < 2
∑h∆

i=1di/2� + 1.

Moreover, ifdi � di−1, for 2� i � h∆, thenheight(∆′) <
∑h∆

i=1di/2� + 1.

Proof. We construct∆′ by increasing the distance between consecutive layers of∆. In particular, let us
denote byδi the distance between layerli and layerli−1 in ∆′, for 2� i � h∆. We set

δi = max
{di−1/2� + 1, di/2� + 1

}
.

Thus

height(∆′) �
h∆∑
i=2

δi < 2
h∆∑
i=1

di/2� + 1.

Moreover, ifdi � di−1 for 2 � i � h∆, then

height(∆′) =
h∆∑
i=2

di/2� + 1.

In order to prove that∆′ is a weak Gabriel drawing we show that the region of influenceR[u, v] of any
two adjacent vertices does not contain any other vertexz. We distinguish the following two cases:
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• z ∈ Lu∪Lv. Without loss of generality, we can assumez ∈ Lu. We first observe that∆′ is also a quasi-
Gabriel drawing since the “Locally Gabriel” property is preserved:Ru[u, v] does not change when
increasing the distance between layers since the projection ofv on Lu does not change. Therefore,
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the fact that∆ was a quasi-Gabriel drawing impliesz /∈ Ru[u, v]. Finally, Lemma 2.2 implies tha
z /∈ R[u, v].

• z /∈ Lu ∪ Lv. Let δ be the distance betweenLz and the nearest betweenLu andLv. By construction,
it holds that

δ � d(Lu)/2 and δ � d(Lv)/2.

Thus by applying Lemma 2.3 we have thatz /∈ R[u, v].

Finally, if ∆ is a grid drawing, then∆′ is a grid drawing as well. �
Let us observe that if∆ is a polynomial area/volume quasi-Gabriel drawing then the area/volume∆′

is polynomial as well. Indeed, width(∆′) = width(∆), depth(∆′) = depth(∆), and height(∆′) is at most
n-times (the maximum number of layers) the maximum between the width(∆) and depth(∆). Hence, the
above theorem implies that classes of graphs that admit polynomial area/volume quasi-Gabriel dr
also admit polynomial area/volume weak Gabriel drawings.

3. Proximity drawings in the plane

This section is devoted to the construction of upward proximity drawings in the plane for rooted
In particular, we will first prove that ternary trees admitn2/2-area weak Gabriel grid drawings. The
we will considerβ-proximity grid drawings of binary trees, for 0� β < ∞. Notice that ternary trees d
not admitstrongGabriel drawings, and binary trees are not strongβ-drawable for 0� β �

√
3/2 (see

Table 1).

3.1. Ternary trees

We apply the method described in Section 2 by showing how to construct a quasi-Gabriel draw∆

of polynomial area.
For any ternary treeT two different drawings∆l and∆r are constructed. LetT1, T2 andT3 be the

ternary trees rooted at the children of the root ofT such thatT1 andT3 are the smallest and the largest o
respectively (ties are solved arbitrarily). We denote with∆l and∆r the two drawings ofT recursively
obtained by combining the drawings ofT1, T2 andT3, as shown in Fig. 7. The compositions of the th
subdrawings used to obtain∆l and∆r are denoted as∆r

1 � ∆l
2 � ∆l

3 and∆r
3 � ∆r

2 � ∆l
1, respectively.

In particular,∆l is obtained by translating both∆r
1 and∆l

2 by one unit to the bottom with respect to∆l
3.

Moreover, the bounding box of∆r
1,∆

l
2 and∆l

3 are pairwise at horizontal unit distance. Finally, the r
of T is drawn on the same layer of the root ofT3 in ∆l

3 and itsx-coordinate is an integer value strict
in between thex-coordinates of the roots ofT1 in ∆r

1 and of T2 in ∆l
2. Notice that this implies tha

� r1r2 < π/2 and� r2r1 < π/2, that isr2 /∈ R[r, r1] andr1 /∈ R[r, r2]. We similarly define∆r
3 � ∆r

2 � ∆l
1.

Algorithm ternary-trees in Fig. 8 constructs the quasi-Gabriel drawings∆l and∆r satisfying
the following invariants:
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rd and

to
Fig. 7. The construction of the quasi-Gabriel drawings∆l and∆r for ternary trees.

algorithm ternary-trees(T )

h ← height ofT
r ← root ofT
if h = 1 then

drawr at (1,1)

∆l,∆r ← drawing ofr
else begin

(∆l
1,∆

r
1) = ternary-trees(T1)

(∆l
2,∆

r
2) = ternary-trees(T2)

(∆l
3,∆

r
3) = ternary-trees(T3)

∆l = ∆r
1 � ∆l

2 � ∆l
3

∆r = ∆r
3 � ∆r

2 � ∆l
1

end
return (∆l,∆r)

end

Fig. 8. Algorithm ternary-trees.

(1) Edges from a vertex to its children are represented with one horizontal, one downward leftwa
one downward rightward line.

(2) The root is the leftmost vertex in∆l (rightmost in∆r , respectively) on the top layer.

Theorem 3.1. ∆l and∆r are quasi-Gabriel grid drawings.

Proof. Let us consider the drawing∆l (the proof for∆r is similar and therefore omitted). It is easy
see that∆l is a layered drawing with no transitive edges. Thus, we have to prove that for any edge(u, v),
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Ru(u, v) ∩ Lu does not contain any vertex other thanu andv. The proof is by induction on the number
of verticesn of the tree.

Base step(n = 1). Trivial.
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Inductive step.We distinguish the following two subcases.

• v = r . In this caseu = ri , for some 1� i � 3. Supposeu = r1 (the other two cases are simila
Notice that(r, r1) is represented as a downward leftward segment. Consider that, by construct
(1) r1 is the rightmost vertex of∆r

1 and on layerLr1;
(2) r2 is the leftmost vertex of∆l

2 on layerLr1 = Lr2;
(3) r is drawn strictly in between thex-coordinates ofr1 and ofr2.
Hence,Rr1[r, r1] ∩ Lr1 does not contain any vertex of∆r

1 and∆l
2. By construction, it also contain

no vertex of∆l
3.

• u = r . In this casev = ri , for somei ∈ {1,2,3}. It easy to verify thatRr [r, ri] is empty fori = 1,2,3.
• u, v �= r . Without loss of generality, we assume thatu, v are vertices of∆r

1. By inductive hypothesis
no other vertex of∆r

1 belongs toRu[u, v] ∩ Lu. It is also easy to see thatRu[u, v] is contained in the
bounding box of∆r

1, thus implying thatRu[u, v]∩Lu does not contain any vertex other thanu andv.

Finally, by construction, every vertex is represented as a point with integer coordinates.�
Lemma 3.2. Let∆ be either∆l or ∆r . For any1� i � h∆, di � n/2h∆−i+1.

Proof. Without loss of generality, we assume∆ = ∆l. The proof proceeds by induction onn. Let us
denote withn1, n2 and n3 the number of nodes of the three immediate subtrees, and let us su
n1 � n2 � n3.

Base step(n = 4). Let us first consider the drawing of the complete ternary tree of height 2. In
case we clearly haveh∆ = 2 andd2 = 2. Moreover, it is easy to see that any other tree with 4 vert
admits a drawing∆ satisfyingdi � n/2h∆−i+1.

Inductive step.We distinguish the following two cases:

• i = h∆. By definition, dh∆ is the length of the longest projection on layerh∆ of any edge among
(r, r1), (r, r2), (r, r3) and an edge on layerh∆3 of ∆l

3 (see Fig. 7). By inductive hypothesis a
considering thatT3 is the largest subtree we have,dh∆ � n/2.

• 2 � i � h∆ −1. Observe that, by construction (see Fig. 7), layerli of ∆ corresponds to layerlij in ∆j ,
where

i1 = i − h∆ + h∆1 + 1;
i2 = i − h∆ + h∆2 + 1;
i3 = i − h∆ + h∆3.

Therefore, by inductive hypothesis we have

d∆
i = max

{
d

∆1

i−h∆+h∆1+1
, d

∆2

i−h∆+h∆2+1
, d

∆3

i−h∆+h∆3

}
� max

{
n1/2h∆−i , n2/2h∆−i , n3/2h∆−i−1} < n/2h∆−i+1,

where the last inequality comes fromn1 < n/2 andn2 < n/2. �
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By combining Lemma 3.2, Theorem 3.1 and Theorem 2.4 and we can state the following result.

2 n

ig. 9.
lanted
nt the
out.

on 2 so

.

Corollary 3.3. Any ternary tree with n nodes admits an /2-area weak Gabriel grid drawing which ca
be constructed inO(n) time.

Proof. The width of the quasi-Gabriel drawing∆ derived by algorithmternary-trees in Fig. 8 is
at mostn. Hence, the weak Gabriel drawing∆′ has:

• width(∆′) � n;
• height(∆′) <

∑h∆

i=1di/2� + 1�
∑h∆

i=1n/2h∆−i+1/2� + 1= n/2,

since, by construction,di � di−1. �
An example of Gabriel drawing of a ternary tree obtained by applying our algorithm is shown in F

It is easy to see that forβ > 1 the above construction does not guarantee the proximity regions of s
edges to be empty. In fact, the third condition of quasi-Gabriel drawing definition does not preve
lune of influence, forβ > 1, of two adjacent vertices from being empty when layers are spaced
However, as we will see in the next section, it is possible to modify the method described in Secti
to obtainβ-proximity drawings of binary trees.

(a)

(b)

(c)

Fig. 9. Ternary trees: an example. (a) The tree given in input. (b) The quasi-Gabriel drawing∆. (c) The weak Gabriel drawing
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3.2. β-proximity drawings of binary trees

In this section, we describe an algorithm to construct O(n2)-areaβ-proximity drawings of binary trees.
modify
izontal

the

y

d

.4 to
We make use of the technique described for ternary trees suitably modified. In particular we
the definition of quasi-Gabriel drawing by imposing the edges to be represented with either hor
or vertical segments. This gives rise to the definition ofquasi-proximitydrawing which allows us to
considerβ-proximity drawings for 0� β < ∞. We then present a linear-time algorithm to construct
quasi-proximity drawing of binary trees. As a consequence, given any binary tree withn nodes, we can
construct polynomial-area weakβ-proximity grid drawing in linear time.

Definition 3.4. A drawing∆ is aquasi-proximity drawingif it satisfies the following constraints:

(1) Layered. Vertices lie on layers.
(2) No Transitive Edges. Vertices on non-consecutive layers are not adjacent.
(3) Orthogonal. Edges are represented as horizontal or vertical segments.

Before presenting the extension of Theorem 2.4 we need a further definition. Letu, v andz be three
points, we define:

α(β) = inf
{ � uzv | z ∈ R[u, v,β]} =

{arcsinβ for 0� β < 1,

arccos(1− 1
β
) otherwise.

In the proof we make use of the following quantity:δ(β) = 1/ tan(α(β)/2). Intuitively, δ(β) represents
the minimum distance such that for a unit-length horizontal edge(u, v), R[u, v,β] does not intersect an
layerL at distanceδ(β)/2 from Lu. Lemma 3.5 is a simple generalization of Lemma 2.3.

Lemma 3.5. Letβ � 0 and letu andv be any two vertices both laying onLu and letL be a layer whose
distance fromLu is bigger thanδ(β) · d(Lu)/2. Then, it holds thatR[u, v,β] ∩ L = ∅.

Similarly to Theorem 2.4, given a quasi-proximity drawing∆, let h∆ denote the number of layers an
let di be the longest projection on layerli among edges whose at least one endpoint belongs toli . Notice
that, for quasi-proximity drawingsdi is equal to the longest horizontal edge drawn on layerli .

We are now in a position to prove the following result, which is an extension of Theorem 2
β-proximity drawings.

Theorem 3.6. Let∆ be a quasi-proximity(grid) drawing. For any0� β < ∞, a weakβ-proximity(grid)
drawing∆β exists such that:

• width(∆β) = width(∆);
• depth(∆β) = depth(∆);

• height(∆β) � 2δ(β)
∑h∆

i=1di/2� + 1.

Moreover, ifdi � di−1 for 2 � i � h, thenheight(∆β) � δ(β)
∑h∆

i=1di/2� + 1.
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Proof. The proof is similar to that of Theorem 2.4. Let us denote byδi the distance between layeri and
layer i − 1 in ∆β , for 2� i � h∆. We define{⌊ ⌋ ⌊ ⌋ }

.5,

at

l-area

t
s [11,

the
e

a

δi = max δ(β)di−1/2 + 1, δ(β)di/2 + 1 .

Thus

height(∆β) �
h∆∑
i=2

δi < 2δ(β)

h∆∑
i=1

di/2� + 1.

Moreover, ifdi � di−1 for 2� i � h∆, then

height(∆β) < δ(β)

h∆∑
i=2

di/2� + 1.

In order to prove that∆β is a weakβ-proximity drawing we show that the region of influenceR[u, v,β]
of any two adjacent vertices does not contain any other vertexz. Let us first observe that, from Lemma 3
if a vertexz is contained inR[u, v,β], then eitherz ∈ Lu or z ∈ Lv.

Without loss of generality we assumez ∈ Lu and we distinguish the following two cases:

• (u, v) is a horizontal edge. In this caseR[u, v,β] ∩ Lu is the segment itself. This clearly implies th
z /∈ R[u, v,β].

• (u, v) is a vertical edge. In this case,R[u, v,β] ∩ Lu = u, which impliesz /∈ R[u, v,β].

Hence the theorem follows.�
Motivated by the previous result we can now turn our attention to the construction of polynomia

quasi-proximity drawings of binary trees.
Similarly to ternary trees, the construction of a quasi-proximity grid drawing∆ can be carried ou

recursively. In particular, we use the well-known recursive construction of so called h-v drawing
19,40]. We denote with∆1 � ∆2 the drawing obtained by combining drawings∆1 and∆2 as follows:
∆1 is translated to the bottom by one unit and∆2 is translated to the right by as many grid points as
width of ∆1 plus 1 (see Fig. 10). It is easy to see that∆ is a quasi-proximity grid drawing and can b
constructed in linear time. Moreover, its width is at most equal to the sizen of the tree. An example of
quasi-proximity drawing is depicted in Fig. 11(b).

The following result can be proved similarly to Lemma 3.2.

Lemma 3.7. For any2� i � h∆, di � δ(β)n/2h∆−i+1.

From Lemma 3.7 and Theorem 3.6 we obtain the following result.

Fig. 10. The h-v drawing∆1 � ∆2 [11,19,40].
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(a)

(b)

(c)

Fig. 11. Binary trees: an example. (a) The tree given in input. (b) The quasi-proximity drawing. (c) Theβ-proximity drawing
with β = 2.

Corollary 3.8. For any 0 � β < ∞ and for any binary treeT with n nodes, a weakβ-proximity grid
drawing ofO(δ(β)n2)-area exists, which can be constructed inO(n) time.

4. Proximity drawings in 3D-space

This section is devoted to the construction of proximity drawings in the 3-dimensional space.
will prove in the sequel, the use of the third dimension, combined with the method described in Se
allows to design efficient proximity drawing algorithms. Indeed, we will prove that it is possib
construct 3-dimensional weak Gabriel drawings of unbounded degree trees inn4 volume. Notice tha
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unbounded degree trees are not strong drawable [29]. Moreover, we will show a class of graphs, requiring
exponential area for weak Gabriel drawings, that admits linear-volume strongβ-proximity drawing
instead, for any 1� β � 2.

l

ce

s
.

drawing;
4.1. Unbounded degree trees

In this section we consider unbounded degree trees and prove that they admitn4-volume weak Gabrie
drawings. To this aim we will show how to construct a quasi-Gabriel drawing∆ whose volume isn3 and
such that any edge has length at mostn/

√
2.

We denote byxu, yu andzu, thex-, y- andz-coordinates of a vertexu. The construction of∆ takes
two steps.

4.1.1. Step 1: front drawing
In the first phase we construct an upward straight-line layered drawing ofT on theyz-plane (i.e., all

the vertices have nullx coordinate).
We want our drawing to satisfy the following invariant:Each internal vertex is at the same distan

from its leftmost and its rightmost child.
Let T be a tree having as immediate subtreesT1, . . . , Tk . The algorithm in Fig. 13 correctly compute

the front drawing ofT in linear time (see also Fig. 12(a)) which satisfies the above stated invariant

(a)

(b)

Fig. 12. The two steps of the construction of 3-dimensional proximity drawings of unbounded degree trees: (a) the front
(b) equally space the children of each node.
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algorithm front_drawing(T )

h ← height ofT
r ← root ofT

nt
iel
if h = 1 then
drawr on layer 1

else begin
T1 ← largest immediate subtree ofT

r1, . . . , rk ← roots ofT1, . . . , Tk children ofr
for i = 1 to k do

∆i = front_drawing(Ti)

translate∆1 so thatr1 is on layerh − 1
for i = 2 to k do

translate∆i so that:
1. ri is on layerh − 1, and
2. ∆i is at unit horizontal distance from∆i−1

drawr on layerh at the same distance fromr1 andrk
connectr to r1, . . . , rk
end

end

Fig. 13. Step 1: Algorithmfront-drawing.

algorithm move(T )

h ← height ofT
r ← root ofT
if h = 1 then

drawr on layer 1
r1, . . . , rk ← roots ofT1, . . . , Tk children ofr
d = d(r1, rk)

for i = 2 to k − 1 do begin
xri = xr + √

d2/2− (yr − yri )
2

end
for i = 1 to k do begin

move(Tri )

end

Fig. 14. Step 2: Algorithmmove.

4.1.2. Step 2: equally space the children
Let v be an internal vertex ofT and v1, . . . , vk be its children. In this step we assign differe

x-coordinates to verticesv1, . . . , vk so that all edges(v, vi) satisfy the third condition of the quasi-Gabr
definition. In particular, we assign differentx-coordinates to verticesv1, . . . , vk so that all edges(u, vi),
with 1 � i � k, have the same length. LetD[v1, vk] be the disk on the layerLv1 containingv1, . . . , vk

and having as antipodal pointsv1 andvk (see Fig. 12(b)). We translatev2, . . . , vk−1 along thex-direction
until they meet the boundary ofD[v1, vk] (see Fig. 12(b)). Algorithmmove(T ) in Fig. 14 implements
the above strategy in linear time.
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4.1.3. Proof of correctness
For any treeT given in input, let us denote with∆ the drawing ofT obtained according to the two

steps previously described. We first prove that the volume of∆ is polynomial.

h
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btree
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Lemma 4.1. For anyn nodes treeT , the drawing∆ has volume at mostn3.

Proof. It is easy to see that the height and the width of∆ are at mostn. Let us consider the depth of∆

and prove by induction onn that it is at mostn.
Step base(n = 1). Trivial.
Inductive step.Let us suppose that the lemma holds for all trees with at mostn− 1 nodes, and letT be

ann node tree. LetT1, . . . , Tk be its immediate subtrees, and letn1, . . . , nk be their size, respectively, wit
n1 � n2 � · · · � nk. We denote by∆1, . . . ,∆k the drawings ofT1, . . . , Tk , respectively.∆ is obtained by
combining these subdrawings as shown in Fig. 12(b), wherer1, . . . , rk denote the roots ofT1, . . . , Tk,
respectively. Sinced(r1, rk) is at mostn, eachri , for 2� i � k − 1, is translated along thex-direction by
at mostn/2. Thus, by inductive hypothesis and considering thatni � n/2, for 2� i � k, we obtain

depth(∆) � max
{
depth(∆1), n/2+ depth(∆2), . . . , n/2+ depth(∆k)

}
� max{n1, n} = n.

The lemma thus follows. �
In order to prove that the drawing∆ is a quasi-Gabriel drawing we make use of the follow

intermediate result.

Lemma 4.2. LetS(u) denote the smallest isothetic parallelepiped containing the drawing of the su
rooted atu. Also letu and v and z be any three vertices such that: (a) u is a child ofv; and (b) the
subtrees rooted atv andz are disjoint. Then, it holds thatRu[u, v] ∩ S(z) = ∅.

Proof. Let v1, v2, . . . , vk denote the children ofv. By construction,Rvi
[v, vi] is contained inD[v1, vk]

(see Fig. 12(b)). Moreover,D[v1, vk] is contained in the strip determined by the smallest and lar
x-coordinate ofS(v). The recursive construction performed by algorithmsfront_drawingandmove
easily implies thatS(v) ∩ S(z) = ∅. Hence the lemma follows.�
Lemma 4.3. For anyn nodes treeT , the drawing∆ is a quasi-Gabriel drawing.

Proof. It is easy to see that∆ is a layered drawing with no transitive edges. Thus, it remains to p
that for any edge(u, v), Ru[u, v] ∩ Lu contains no vertices other thanu andv. The proof is by induction
on the numbern of nodes of the tree.

Base step(n = 1). Trivial.
Inductive step.Let us assume that the theorem holds for any tree with at mostn − 1 nodes, and let u

consider ann nodes treeT . We distinguish the following two subcases:

• v = r . In this caseu = ri , for some 1� i � k. Also, layerLu contains the children ofr only. Let r ′
be the projection ofr onLu. By construction,d(r ′, ri) = d(r ′, rj ), thus implying that� r ′rirj < π/2,
for any i �= j . Hence,rj /∈ Ru[u, v], for anyj �= i.

• u = r . In this case, we simply observe thatu is the only vertexLu.
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• u, v �= r . Let z be any vertex other thanu in Lu. If v is a child ofu, we can apply Lemma 4.2 and
obtainz /∈ Ru[u, v]. Otherwise, that isu is a child ofv, Lemma 4.2 implies thatz ∈ Ru[u, v] only if
z is a child ofv as well. In the latter case, the same proof as the casev = r above applies. �
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By combining Theorem 2.4, Lemmas 4.1 and 4.3 and considering that the length of any e
bounded byn/

√
2, we obtain the following result.

Theorem 4.4. For any treeT with n nodes there exists a weak Gabriel drawing whose volume
mostn4 with O(logn) bit-requirement. Moreover, the drawing can be constructed in linear time.

4.2. Exponential area versus polynomial volume

In this section we consider an infinite class of graphs introduced in [33]. In [30] the authors pro
exponential-area lower bound forβ-proximity drawings, for 1� β � 1/(1− cos 2π/5) � 1.45.

We apply the method described in Section 2 and we show that this class admits a linear volum
β-proximity drawing, for any 1� β < 2, and a linear volume relative neighborhood drawing.

4.2.1. Class of graphs
The class is recursively defined as follows. GraphG1 is the graph shown in Fig. 15(a). The graphGi+1

is obtained fromGi by adding five verticesvi+1
1 vi+1

2 vi+1
3 vi+1

4 vi+1
5 and by connecting them toGi as shown

in Fig. 15(b). Clearly, the number of nodes ofGn is 5n + 1. We denote withPi the pentagon ofGi given
by the 5-cyclevi

1v
i
2v

i
3v

i
4v

i
5. Notice that each side of pentagonPi forms a triangle with a vertex ofPi+1, as

well as each side ofPi+1 with a vertex inPi . We refer to these triangles aspetals.

Theorem 4.5 [30]. A Gabriel drawing and a weak Gabriel drawing of graphGn require area�(3n),
under any resolution rule assumption.

In the same paper, the authors generalized the previous result toβ-drawings, for any 1� β <

1/(1− cos 2π/5).

(a) (b)

Fig. 15. The exponential-area/linear volume class: (a) graphG1; (b) graphGi+1 givenGi .
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4.2.2. Construction of the drawings
In this section we describe a linear-time algorithm to construct alinear-volume strong Gabrieldrawing

of Gn.
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To this aim we will first describe how to construct a linear-volume quasi-Gabriel drawing ofGn such
that the maximum length of any edge is constant. This implies that by suitably choosing a co
distanceδ between consecutive layersGn admits a linear-volume weak Gabriel drawing. In the n
section we will prove the correctness of the algorithm and we will show how to extend it to s
proximity.

The construction of the drawing is defined as follows: PentagonPi , for 1� i � n, is drawn on layeri
as a regular pentagon. Moreover,Pi+1 is rotated by aπ/5 angle with respect toPi (see Figs. 16(a
and 16(c) which show a drawing ofG4). Notice that since the distance between consecutive laye
constant and each pentagonPi is drawn in constant area, the volume is O(n). It is easy to see that th
algorithmpentagons described in Fig. 17 implements the above strategy in linear time.

4.2.3. Proof of correctness
In order to prove the correctness of the algorithm we first show that the resulting drawing is a

Gabriel drawing. This implies that, by suitably choosing the constantδ, it can be transformed into
linear-volume weak Gabriel drawing.

Fig. 16. (a) Two consecutive pentagons viewed from the top. (b) How to draw a single petal. (c) The whole 3-dime
drawing.

algorithm pentagons(Gn)

drawG1 on layer 1 such thatP1 is a regular pentagon centered atv0
for i = 2 to n do begin

drawPi on layeri rotated byπ/5 with respect toPi−1
connectPi with Pi−1

end

Fig. 17. The algorithm to drawGn in linear volume.
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Lemma 4.6. For anyn the algorithmpentagons returns anO(n)-volume quasi-Gabriel drawing.

Proof. Let us first observe that the drawing satisfies the first two properties of Definition 2.1 of quasi-
pt
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trong
Gabriel drawing. Thus we have to prove that for any edge(u, v), Ru[u, v] contains no vertices exce
for u andv. By construction, the following two cases arise:

(1) u and v are on the same layer.Let Pi be the pentagon containingu andv. SincePi is drawn as a
regular pentagon (see Fig. 16(a)), then, obviously, the theorem holds.

(2) u andv are on consecutive layers.Without loss of generality letu ∈ Pi andv ∈ Pi+1. Again, since
Pi andPi−1 are drawn as regular polygons andPi−1 is rotated byπ/5 (see Fig. 16(a)), it is easy t
see thatRu[u, v] does not contain any vertex ofPi other thanu. �

Let us observe that, since pentagons are equally drawn on consecutive layers at unitary distan
the maximum edge length is constant. By Theorem 2.4 we obtain the following result.

Theorem 4.7. For anyn, graphGn admits anO(n)-volume weak Gabriel drawing.

Proof. The proof follows by Theorem 2.4 choosing the distanceδ between layers equal todi , wheredi

is the length of an edge ofPi . �
The above result can be extended to strong Gabriel drawings.

Theorem 4.8. For anyn, graphGn admits aO(n)-volume strong Gabriel drawing.

Proof. Let ∆ be the weak Gabriel drawing obtained by algorithmpentagonswhere layers are space
out by the amountδ specified in Theorem 4.7. Let us first observe that, for anyδ′ � δ, the resulting
drawing still is a weak Gabriel drawing. In the following, we will show that a constantδ′ � δ exists such
that∆ is a strong Gabriel drawing forGn. To this aim we have to prove that the proximity regionR[u, v]
of any two non adjacent verticesu andv contains at least another vertex. We distinguish the follow
three cases:

(1) u and v are not on consecutive layers.Without loss of generality, we assume thatu andv belong
to Pi andPi+2, respectively. It is then easy to see that for a sufficiently (but still constant) largeδ′ at
least one vertex ofPi+1 falls within R[u, v]. Notice that the value ofδ′ depends on the length of th
side of the pentagon only.

(2) u andv are on consecutive layers.In this case consider the diskD[u, v′], wherev′ is the projection
of v on layerLu. Clearly,D[u, v′] contains at least another vertex ofLu (see Fig. 16(a)). This implie
thatR[u, v] also contains the same vertex.

(3) u and v are on the same layer.By construction, the drawing of eachPi is a strong Gabrie
drawing. �

In the following we show that the construction is even more powerful since it allows to derive s
β-proximity drawings, for 1� β < 2.
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Theorem 4.9. For any n, graphGn admits a linear volume relative neighborhood drawing and strong
β-proximity drawing, for any1 � β < 2.
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Proof. We first consider strongβ-proximity drawings. We modify the drawing ofG1 since it is not
β-drawable on a plane forβ � 1/(1 − cos 2π/5) (see Fig. 15(a)). Translatev0 on layer 0 so that i
is at the same distance from all the vertices ofP1 (i.e., the new drawing ofv0 corresponds to th
orthogonal projection on layer 0 of the old drawing ofv0). All other pentagons are drawn as described
Theorem 4.8.

Observe that for any 1� β < 2 and for any two verticesu andv

R[u, v] ⊆ R[u, v,β].
This implies that for anyδβ � δ′, where δ′ is the value defined in the proof of Theorem 4.8,
construction yields a drawing such that the proximity region of any two non-adjacent vertices co
at least another vertex. Thus, in order to prove the theorem it suffices to show that for any two a
verticesu andv, the proximity regionR[u, v,β] is empty. Letd be the maximum edge length in th
drawing of Theorem 4.8 and letδβ = dδ(β), whereδ(β) is as defined in Section 3.2. (Notice that t
value ofδβ is proportional tol and does not depend onn.) We consider the following two cases:

(1) u and v belongs to the same pentagon. Using basic geometry it is possible to prove that no o
vertex of the pentagon containingu andv can fall within R[u, v,β]. Additionally, because of th
choice ofδβ and by Lemma 3.5, no vertex from other pentagons falls withinR[u, v,β].

(2) u andv belongs to consecutive pentagons.Let Pi andPi+1 be the two pentagons containingu andv,
respectively. Again, because of the choice ofδβ and by Lemma 3.5, any vertex not belonging toPi

and toPi+1 cannot be contained onR[u, v,β]. Without loss of generality, let us consider a vertez
of Pi . If z is adjacent tou andv thenu, v andz form a petal (see Figs. 15 and 16(b)). By consider
the plane containing the three vertices and its intersection withR[u, v,β] (see Fig. 16(b)) it is eas
to see thatz lays on the boundary ofR[u, v,2]. Hence, for anyβ < 2, z /∈ R[u, v,β]. Similarly, we
can prove that no other vertex ofPi is contained inR[u, v,β]. The same holds forz in Pi+1.

Finally, the above considerations also apply to relative neighborhood drawings. Indeed, a
neighborhood drawing is a slight modification of strong 2-proximity drawings, where the prox
region is defined as the intersection of twoopen spheres[31]. The theorem thus follows.�

5. Conclusions and open problems

In this paper we have introduced a novel technique to construct proximity drawings. By applyi
technique to trees, we obtain the first algorithms that construct drawings whose size is polynomia
number of the vertices. We also gave some evidence that our method is quite powerful, since it a
construct linear volume proximity drawings of a class of graphs that requires exponential area, in

Several problems are left open by this paper. They mainly concern the construction of polynom
proximity drawings and the study of other classes of graphs to which apply our method. In particu
following research directions seem to us the more promising:
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• Extend the results to other classes of graphs.As for as the 2-dimensional case, it might be interesting
to consider weak Gabriel drawings of trees of degree 4. It is worth observing that even ternary trees
do not admitstrong Gabrieldrawings [4]. Moreover, do ternary trees admitβ-proximity drawings of
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polynomial area for someβ > 1? As for the 3-dimensional case it could be interesting to cons
other classes ofβ-drawable graphs in the plane such as outerplanar graphs.

• Consider strong proximity.Do binary trees admitat least3-dimensionalstrong Gabriel drawings o
polynomial volume?

• Prove lower bounds.A related issue is that of proving a lower bound on the area of trees for
weak and strong proximity. In particular, are the algorithms given in Section 3 optimal?
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