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Abstract

We present the first general positive result on the construction of collusion-resistant mech-
anisms, that is, mechanisms that guarantee dominant strategies even when agents can form
arbitrary coalitions and exchange compensations (sometimes referred to as transferable utilities
or side payments). This is a much stronger solution concept as compared to truthful or even
group strategyproof mechanisms, and only impossibility results were known for this type of
mechanisms in the “classical” model.

We describe collusion-resistant mechanisms with verification that return optimal solutions
for a wide class of mechanism design problems (which includes utilitarian ones as a special case).
Note that every collusion-resistant mechanism without verification must have an unbounded ap-
proximation factor and, in general, optimal solutions cannot be obtained even if we content
ourselves with truthful (“non-collusion-resistant”) mechanisms. All these results apply to prob-
lems that have been extensively studied in the algorithmic mechanism design literature like, for
instance, task scheduling and inter-domain routing.
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1 Introduction

Computations over the Internet often involve self-interested parties which may manipulate the
protocol by misreporting some information. For instance, the protocol may be designed to route
packets so that no router is congested. The protocol takes its decision based on the information
reported by the owners of the routers (in the Internet protocol these are the so-called Autonomous
Systems [FPSS]) who might have an incentive in exaggerating their costs for forwarding packets
(the protocol gives them less traffic or a higher compensation). In a mechanism design approach
[NR] the algorithm used by the protocol is augmented with suitable payments which are supposed
to motivate the parties involved (called selfish agents) to report the true information (their private
costs or types).

A mechanism is said truthful if it guarantees that each agent can maximize her utility by
truthfully reporting her type. Unfortunately, truthful mechanisms can be manipulated by colluding
agents (several agents acting as a single one). This behavior is very common and thus one needs
collusion-resistant mechanisms: no coalition of agents can raise the utilities of its members even if
these can exchange compensations [Sch][GH].
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The construction of truthful mechanisms is already a challenging problem and it seems to be
confined to the class of so called utilitarian problems (roughly speaking, the goal is to minimize
the sum of all agents’ costs). Many problems of practical interest are not utilitarian and truthful
mechanisms for them do not exist, even if we consider approximate solutions and mechanisms
running in exponential time (these inapproximability results stem from “incentive compatibility”
considerations and not from computational ones).

The class of collusion-resistant mechanisms is even more limited as it essentially consists of only
trivial mechanisms that output a fixed solution [Sch, GH]: these mechanisms ignore the input and
thus are of no use (their approximation guarantee is unbounded).

1.1 Our contribution

This work presents the first general positive result on the construction of collusion-resistant mech-
anisms.1 This becomes possible by considering so-called mechanisms with verification, that is,
mechanisms that gain a limited information on the agents’ types based on the observation of the
computed solution. Mechanisms with verification are introduced in [NR] and further developed in
[ADPP, ADP+, Ven] where a generalization of the original notion is considered. Verification model
we consider obeys to this more general definition (the interested reader may refer to Appendix D
where we highlight the differences and show how the new model is more general than the original
one) and is presented in Section 2 where we give examples and formal definitions.

The main result of this work is a general construction of mechanisms with verification which
are collusion-resistant and return optimal solutions for a generalization of utilitarian problems (see
Theorem 9). Under a mild assumption on the domain (an upper and a lower bound on the costs),
these new mechanisms “kill two birds with one stone” because we can deal with non-utilitarian
problems and guarantee the strongest solution concept simultaneously.

To get a feel of the implications of this result, we compare the performance of these new
mechanisms with verification against the “classical” mechanism design approach, which in the
sequel we denote to as mechanisms without verification. To this aim, we consider one of the most
studied problems in (algorithmic) mechanism design, that is, scheduling selfish unrelated machines
[NR, KV, MS, Gam]:

Without verification, collusion-resistant mechanisms must have an unbounded ap-
proximation ratio even for two machines. The best known truthful (“non-collusion-
resistant”) mechanism is only O(n)-approximate, with n being the number of machines.

With verification, there exists a collusion-resistant mechanism whose approximation
factor is (1 + ε), for any ε > 0.

We give several other applications of our result to problems studied in the literature. The results
are similar to those above with the notable fact that, in some cases, we obtain polynomial-time
mechanisms, while the impossibility results (e.g., unbounded approximation ratio for collusion-
resistant mechanisms) holds for mechanisms that are computationally unbounded (see Table 1).

Our construction relies on payments similar to those used in VCG mechanisms [Vic, Cla, Gro],
and it gives an explicit and computationally-efficient way of constructing the whole mechanism (see
Corollary 12). A well-known drawback of VCG mechanisms is that of being far from frugal (see, e.g.,

1Goldberg and Hartline [GH] describe several mechanisms that achieve a weaker “collusion-resistant with high
probability” condition for a simple “unstructured” problem in which identical goods are sold to the users.
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[AT2]) and therefore our mechanisms are not frugal as well. We note however that, when applied
to the two-values scheduling problem in [LS], our mechanisms pay an amount which is comparable
to what their mechanism pays in the worst case. In this work we do not consider frugality issues
directly (that is, how much the mechanism overpays the agents) since our aim is that of giving
a general technique for the construction of collusion-resistant mechanisms. The optimality of the
payments is an important issue in general since even truthful (not necessarily VCG) mechanisms
must have large payments for rather simple problems [ESS, KKT].

The conditions for obtaining our mechanisms are stated in terms of certain algorithmic properties
so that the design of the entire mechanism reduces to the design of an algorithm that fulfills these
conditions. Theorem 9 says that every algorithm that is optimal for what we call a weakly utilitarian
cost function (see Definition 7) can be turned into a collusion-resistant mechanism with verifica-
tion. The same result can be obtained if the algorithm satisfies a condition independent from the
optimality (see Theorem 15). This poses a new algorithmic challenge: designing computationally-
efficient algorithms that obey these conditions. This work provides the first positive results in this
direction.

1.2 Related Work

Every utilitarian problem admits an exact truthful mechanism (without verification) via VCG
mechanisms [Vic, Cla, Gro]. The inapproximability of non-utilitarian problems has been extensively
studied [NR, AT1, CKV, MS, Gam, LS]. These works prove lower bounds on the approximation
ratio that any truthful mechanism without verification must have on the problem(s). These lower
bounds hold for exponential-time mechanisms and for finite domains, a special case of the bounded
domains studied here.

Mechanisms with verification are introduced in [NR] in order to overcome these impossibility
results and the limitations of VCG mechanisms. The model of verification is then generalized
and truthful constructions are given for simple (“one-dimensional”) domains in [ADPP, ADP+]
where they attain provably better approximations for specific problems. Exact mechanisms with
verification for a very general class of problems and agents bidding from finite domains is given in
[Ven] and extended to (not finite) bounded domains in [PV]. Interestingly enough, the technique in
[PV] consists in designing collusion-resistant mechanisms with verification for very simple problems
with single-parameter (“binary”) agents, and then view a “multidimensional” agent as a coalition
of these agents. The construction of collusion-resistant mechanisms therein requires, in addition
to the optimality of the algorithm, certain additional technical conditions. In fact, that method
in [PV] does not give collusion-resistant mechanisms even for the simple utilitarian path-auction
problem described below as Problem 1 (see Appendix B for the details), while the method in this
work deals with a generalization of utilitarian problems and general domains (and not just single-
parameter agents). These considerations show how our technique is of a completely different flavor
because of its wider applicability and provably generality.

Impossibility results for collusion-resistant mechanisms have been proved in [Sch] where, among
others, it has been shown that for “sufficiently rich” domains, every such mechanism must output
a fixed solution. The result is actually stronger since it even applies to bribeproof mechanisms,
that is, mechanisms that resist to coalitions of two agents (one bribing another for misreporting
the type). Analogous results are also obtained in [GH] for single-parameter domains and even for
randomized mechanisms. These negative results do not apply to group strategyproof mechanisms
which do not consider compensations among the agents (see discussion in [GH]).

3



1

ds

2

2

(truthful scenario)

ds
2

0.1 1

ds

2

10

0.1

(collusion scenario I) (collusion scenario II)

Figure 1: Collusion and verification.

Roadmap. We introduce mechanisms with verification in Section 2, where we give a few examples
followed by the formal model (Section 2.1). The construction of collusion-resistant mechanisms is
given in Section 3. We present various applications of this result in Section 4. In Section 5 we
give the algorithmic approach to the design of collusion-resistant mechanisms with verification. For
sake of readability, some of the proofs are postponed to the appendix.

2 Examples and the model

We begin by giving three examples of widely-studied problems in the mechanism design literature.
These problems have increasing difficulty and they will serve to introduce the formal model of
mechanisms with verification.

Problem 1 (Path auction [NR]) Suppose you want to route traffic through a network and,
naturally, you want to pick the path of minimal cost connecting the source to the destination in
a given network. This is modelled by the following path auction problem. Here, each link of the
network corresponds to a router that is owned by a selfish agent. The cost for using link i is known
only to agent i and it is equal to some nonnegative value ti which is the time needed by the link
to forward traffic. This is also the cost that agent i incurs if her link is used to route traffic. VCG
mechanisms [Vic, Cla, Gro] provide an elegant solution to this problem: Each selected link is payed
its “marginal contribution”, that is, the difference between the best alternative path minus the
cost of the chosen path without counting the link itself. For the simple network in Fig. 1 in the
truthful scenario, the lower path is chosen, the lower link is payed an amount 3, and the other two
non-selected links receive no money. Since true cost for the lower link is 2, the corresponding agent
derives a utility of 3−2 = 1. We describe two examples in which two colluding agents (shown in the
dashed area) misreport their costs and improve their utilities, compared to the truthful scenario.
In both cases, the mechanism chooses the upper (“wrong”) path and the agent whose link costs 1
is offering a suitable compensation to the other colluding agent. In the collusion scenario I, each
of the chosen link is payed an amount 2− 0.1 and a compensation equal to 0.2 makes both the two
utilities strictly positive (while in the truthful scenario these agents are not payed). Similarly, in
collusion scenario II the agent whose link costs 1 is payed 10 − 1 by the mechanism and offering
a compensation equal to 2 makes the utilities of both of them largely better than in the truthful
scenario. Note that there are several other possible collusion scenarios, including the one in which
all three agents collude. ⋄

The above problem has a rather simple (“one-dimensional”) structure since the cost of each
agent is either 0, when her link is not selected, or a private value otherwise. In the next problem
agents have a more complex (“multidimensional”) type.
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Problem 2 (Scheduling unrelated machines [NR]) We have a number of different tasks to
execute and n machines are available for this purpose. Each machine is of a different type, meaning
that a machine of type ti can execute task j in tji time steps. Each machine is owned by a selfish
agent who is the only one to know the type of her machine. Agents can misreport the execution
time of the jobs, that is, the type of her machine. Each allocation of the tasks to the machines
specifies a cost of the corresponding agent that is the completion time of her machine (how much
time the machine has to work for the “system”). The objective is to pick an allocation minimizing
the makespan, that is, the maximum completion time over all machines. ⋄

The above problem turns out to be a special case of the following one for which we give only a
very high-level description.

Problem 3 (Inter-domain routing [FPSS, MS]) We are given an undirected graph where each
node represents an Autonomous System (AS) of which the Internet is comprised. Traffic originating
at different sources towards a common destination must be routed through a confluent tree (this
condition is imposed by the fact that loops cannot occur). Every such tree specifies a cost for each
AS which depends on the amount of traffic to be forwarded and on the next hop in the routing. In
particular, each AS has a per-packet cost associated to each of its neighbors. The per-packet cost
is determined by a number of parameters “internal” to the AS and it is essentially the latency ex-
perienced by a packet traveling “inside” the AS. Two objectives have been considered: minimizing
the total cost [FPSS] or minimizing the maximum cost [MS]. ⋄

We now want to move towards a fully general model which turns out to be a generalization
of the one introduced in [NR] (see Appendix D for a discussion). Each feasible solution, say x,
specifies some cost which is the time ti(x) that agent i has to work if solution x is implemented.
Note that the function ti is not publicly known and thus agent i could report a (possibly different)
cost function bi, which in the auction theory terminology is called the bid of agent i. Now observe
that the solution is computed according to the bid bi and, if the computed solution xchosen is such
that bi(xchosen) < ti(xchosen), the mechanism can detect that agent i misreported her type. Indeed,
the cost ti(xchosen) is the (minimal) time needed by i to provide her “contribution” to the solution
(time to forward traffic, time to execute tasks, etc.). Thus agent i is caught lying because she is not
able to provide her contribution within the time bi(xchosen) that she reported to the mechanism.
Observe that there are still many ways in which an agent can lie to the mechanism without being
caught lying. For instance, in the scheduling problem, she can always report higher execution times
for the tasks that the mechanism assigns to her machine. Moreover, the mechanism cannot gain
any extra information on the task that are not allocated to this agent/machine. In the path-auction
problem above, instead, verification would be effective only in the collusion scenario I and not in
the collusion scenario II.

2.1 Model

We have a finite set of feasible solutions S. The set of possible types or domain includes real-valued
functions ti(x), where x is any feasible solution. We focus on arbitrary bounded domains, that is,
there exist two constants tinf and tsup such that,

tinf ≤ ti(x) ≤ tsup,
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for every type ti and every x. This is the only restriction we make and thus each agent can report
any type bi such that tinf ≤ bi(x) ≤ tsup, for all feasible solutions x.

A mechanism is a pair (A, p) where A is an algorithm (or social choice function) and p is a
suitable payment function. The input to the mechanism are the types reported by each agent, that
is, the bids b = (b1, . . . , bn) with bi being the type reported by agent i. The mechanism returns a
feasible solution A(b) and a payment associated to every agent which is equal to pi(b). Note that
p is a vector of n functions p1(), . . . , pn(), where the domain consists of all possible bid vectors b
as above.2

Definition 4 Given a mechanism (A, p) and bids b = (b1, . . . , bi, . . . , bn), we say that agent i is
caught lying if her type ti and her bid bi are such that bi(x) < ti(x), where x = A(b). A mechanism
with verification (A, p) provides no payment to agent i if she is caught lying, and it provides her a
payment pi(b) otherwise.

An agent naturally derives a utility which is the difference between the money she receives
minus the cost she associates to the chosen solution. In the case of a mechanism with verification
(A, p) this is equal to

utilityi(b) :=

{
pi(b) if i is not caught lying
0 otherwise

}

− ti(b).

On the contrary, in a mechanism without verification (A, p) each agent receives always her associated
payment and thus the utility of agent i is equal to pi(b) − ti(b).

We say that a mechanism satisfies the voluntary participation condition if truthtelling agents
have always a nonnegative utility. We consider mechanisms for which truthtelling is a dominant
strategy for every possible coalition of agents that can exchange side payments:

Definition 5 ([GH]) A mechanism (with verification) is collusion-resistant if, for any coalition
of agents and any bid of agents not in the coalition, the sum of the utilities of the agents in the
coalition is maximized when all agents in the coalition are truthtelling.3

Since the above condition must hold for all possible bids of agents outside the coalition under
consideration, one can restrict the analysis to the case in which these agents are actually truthtelling
(see Appendix A.1 for a proof of the following known fact):

Fact 6 A mechanism is collusion-resistant if and only if for any true type vector t and for any
coalition C, it holds that

∑

i∈C

utilityi(t) ≥
∑

i∈C

utilityi(b) (1)

for any type vector b in which some agents in C are lying and all other agents bid as in t.

2Observe that the domain of agent i is Rk with R = [tinf , tsup] since each bi can be seen as a k-tuple bi =
(bi(x1), . . . , bi(xk)) where {x1, . . . , xk} is the set of feasible solutions. The domain is the cross-product of all agents
domains, that is, a subset of Rnk.

3These mechanisms are also termed t-truthful to denote the fact that they resist to coalitions of up to t agents
[GH]. Truthful mechanisms are the special case of them for which t = 1 and the negative results in [GH, Sch] are
proved for 2-truthful mechanisms or even weaker notions.
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A cost function is a function cost() that associates, to every feasible solution, a real-valued cost
which depends on the costs (types) of all agents. Naturally, the cost associated to a solution cannot
decrease if the cost of one agent increases and all others remain the same. That is, for every feasible
solution x, for every vector b, and every b′i such that b′i(x) > bi(x), it holds that

cost(x,b) ≤ cost(x, (b′i,b−i))

where (b′i,b−i) = (b1, . . . , bi−1, b
′
i, bi+1, . . . , bn) is the vector obtained from b by changing bi into b′i.

In such a case we say that the cost function is monotone nondecreasing. A cost function satisfies
the boundness condition if, for every tinf and tsup as above, there exist inf cost and sup cost such
that

inf cost ≤ cost(x,b) ≤ sup cost,

for all b such that tinf ≤ bi(x) ≤ tsup.

3 Construction of optimal collusion-resistant mechanisms

In this section we present the main positive result of this work which is a class of collusion-resistant
mechanisms with verification. We shall see that any algorithm minimizing a weakly utilitarian cost
function (see below) can be turned into a collusion-resistant mechanism with verification.

Definition 7 A cost function cost+() is weakly utilitarian if there exist αi > 0, for i = 1, . . . , n,
and an arbitrary monotone nondecreasing cost function cost() satisfying the boundness condition
such that

cost+(x, t) = cost(x, t) +
∑

i

αi · ti(x) (2)

for every x and t.

Our goal is to construct collusion-resistant mechanisms that minimize any given weakly util-
itarian cost function. We shall prove a stronger result; these mechanisms exist for the following
algorithms:

Definition 8 We say that an algorithm A is weakly utilitarian if there exists some S ′ ⊆ S such
that, for all type vectors t, it holds that

A(t) ∈ arg min
x∈S′

cost+(x, t), (3)

for some weakly utilitarian cost function cost+().

This is the main result of this section:

Theorem 9 Every weakly utilitarian algorithm over an arbitrary bounded domain admits a collusion-
resistant mechanism with verification. The mechanism satisfies the voluntary participation condi-
tion.
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Before proving this theorem, we wish to give an idea of the power of such a result. First, utilitar-
ian algorithms are a special case of weakly utilitarian algorithms since they concern with the case
cost+(x, t) =

∑

i αi · ti(x), and thus we have exact collusion-resistant mechanisms with verification
for a generalization of utilitarian problems. Second, one can easily obtain approximations for more
problems in which the objective is to minimize an arbitrary cost function cost(). This can be done
by “tuning” the constants αi so that the inequalities

cost(x, t) ≤ cost+(x, t) ≤ c · cost(x, t)

hold for all x and t, with c ≥ 1. The resulting weakly utilitarian algorithm A returns a c-
approximation for cost() and so does the mechanism in Theorem 9.

3.1 The mechanism and its analysis

In this section we show that, for any weakly utilitarian algorithm A, there exist payments p such
that (A, p) is a collusion-resistant mechanism with verification. The idea is to relate the utility of
an agent to the global cost and use the algorithm “optimality” to reduce the analysis to the case
in which at least one agent in the coalition is caught lying.

We give an explicit formula for the payments which are defined as follows:

pi(b) := ~ − 1

αi




∑

j 6=i

αj · bj(A(b)) + cost(A(b),b)



 (4)

with ~ being a suitable constant to be given below. These payments actually “relate” the utility
of each agent to the global cost function:

Lemma 10 For every b and t such that agent i is not caught lying, it holds that

utilityi(b) ≤ ~ − cost+(A(b), (ti,b−i))

αi
.

Moreover, for b = t, the inequality holds with ‘=’.

Proof. Since agent i is not caught lying, she receives her payment and her utility is

utilityi(b) = pi(b) − ti(A(b))

= ~ − 1

αi




∑

j 6=i

αj · bj(A(b)) + cost(A(b),b)



 − ti(A(b))

= ~ − 1

αi



αi · ti(A(b)) +
∑

j 6=i

αj · bj(A(b)) + cost(A(b),b)



 .

Since i is not caught lying the inequality ti(A(b)) ≤ bi(A(b)) holds. Because cost() is monotone
nondecreasing, we have that cost(A(b), (ti,b−i)) ≤ cost(A(b),b) which, combined with (5), implies

utilityi(b) ≤ ~ − cost+(A(b), (ti,b−i))

αi
.
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This proves the first part of the lemma. For b = t, the quantity in (5) is precisely ~−cost+(A(t), t)/αi,
and thus the second part of the lemma holds. 2

The second main ingredient is to show that truthtelling minimizes the “global cost”, when no
agent is caught lying. The proof of this lemma adapts an idea in [Ven].

Lemma 11 Every weakly utilitarian algorithm A satisfies the inequality

cost+(A(t), t) ≤ cost+(A(b), (ti,b−i)).

for all t and b such that no agent is caught lying.

Proof. Consider any two vectors t and b such that no agent is caught lying. That is, tj(A(b)) ≤
bj(A(b)) for all 1 ≤ j ≤ n. Since αi > 0 and cost() is nondecreasing, it holds that cost+() is
nondecreasing as well. This implies

cost+(A(b), t) ≤ cost+(A(b), (ti,b−i)).

Since A is a weakly utilitarian algorithm, condition (3) says that

cost+(A(t), t) ≤ cost+(A(b), t).

The lemma follows from these two inequalities. 2

We are now in a position to prove the main result of this section:

Proof of Theorem 9. Consider an arbitrary coalition C and let t and b be defined as in
Fact 6. If no agent in the coalition is caught lying, then Lemma 10 and Lemma 11 imply that the
utility of each single agent is better in the truthful case, that is

utilityi(b) ≤ ~ − cost+(A(b), (ti,b−i))

αi

≤ ~ − cost+(A(t), t)

αi

= utilityi(t)

which clearly implies (1).
Let us then assume that at least one agent in the coalition is caught lying. In this case, we

make use of the following simple observation. From the boundness condition of cost() and because
the domain is bounded, there exist two constants κinf and κsup ≥ κinf such that ~−κsup ≤ pi(b) ≤
~ − κinf for all bid vectors b. (See Appendix A.2 for the details proving these inequalities.) Since
at least one agent j ∈ C does not receive any payment for b, by setting ℓ = min{0, tinf}, we have

∑

i∈C

utilityi(b) ≤ (|C| − 1)(~ − κinf − tinf) − ℓ

Since in t all agents get their payments, we have

∑

i∈C

utilityi(t) ≥ |C|(~ − κsup − tsup).
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In order to guarantee (1) it is enough to set

~ := |C|(κsup − κinf + tsup − tinf) + κinf + tinf + ℓ

for |C| = n. This value of ~ guarantees that (1) holds for any C. Fact 6 implies that the mechanism
(A, p) is collusion-resistant.

Finally, the voluntary participation condition can be guaranteed by setting ~ ≥ tsup +κsup since
this inequality yields pi(ti,b−i) ≥ ~ − κsup ≥ tsup ≥ ti(x) for all x. 2

Note that the payments in (4) can be computed in polynomial time if the algorithm is polynomial-
time computable. Hence, the following holds.

Corollary 12 Every polynomial-time weakly utilitarian algorithm over an arbitrary bounded do-
main admits a polynomial-time collusion-resistant mechanism with verification. The mechanism
satisfies the voluntary participation condition.

4 Applications

We apply our technique to a number of mechanism design problems studied in the literature. We
start by studying min-max mechanism design problems, that is, problems in which the objective
is to compute a solution x minimizing

max
i

ti(x)

and agents’ costs ti(x) are always non-negative, that is, tinf ≥ 0.4 Min-max problems have been
widely studied in the algorithmic mechanism design literature and most of the known negative
results on truthful mechanisms concern with this class of problems [NR, AT1, MS, CKV, Gam].

We next show how simple it is to obtain (1 + ε)-approximation mechanisms, for every ε > 0,
using the result in the previous section. Consider the weakly utilitarian algorithm minimizing

cost+(x, t) = max
i

ti(x) + ε ·
∑

i ti(x)

n
. (5)

Simple calculations show that the optimum for this weakly utilitarian cost function is a (1 + ε)-
approximation for the corresponding min-max problem (see Appendix A.3 for the details). The
following is thus a simple corollary of Theorem 9.

Corollary 13 Every min-max problem over an arbitrary bounded domain admits a (1+ε)-approximation
collusion-resistant mechanism with verification, for every ε > 0. The mechanism satisfies the vol-
untary participation condition.

This general result immediately applies to a number of problems which do not even admit op-
timal or (1 + ε)-approximate truthful (“non-collusion-resistant”) mechanisms without verification.
These problems include the scheduling unrelated machines (Problem 2) and the workload mini-
mization in inter-domain routing (Problem 3). It is well-known that both problems are min-max
problems [MS] and the bounded domain condition holds in practice: for instance, it is unreasonable
to consider the possibility that routing packets over the Internet takes thousands years.
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Without verification With verification
Problem lower bounds upper bounds

truthful collusion-resistant collusion-resistant

Inter-domain routing

lowest cost (utilitarian) exact ∞ exact

workload (min-max) 2 ∞ 1 + ε

Scheduling selfish machines

unrelated (min-max) 1 + Φ ≈ 2.618 ∞ 1 + ε

related∗ (min-max) exact ∞ 1 + ε

weighted sum# 2/
√

3 ∞ 1 + ε

Table 1: Known lower bounds and new upper bounds derived in this work. Framed bounds can be
achieved in polynomial-time. The mechanism marked by ‘∗’ (resp.‘#’) is an FPTAS (resp. PTAS)
for any fixed number of agents. (However, claimed bounds can be derived in general though not in
polynomial time.)

All the applications of our technique are not confined to min-max problems. All mechanisms
we obtain by applying our technique are shown in Table 1.

We next argue about the the lower bounds in the table. The results in [Sch] say that the only
collusion-resistant mechanisms without verification are those that output a fixed solution. This
implies an unbounded approximation ratio which holds even for mechanisms that resist to coalitions
of only two agents.The existing lower bounds on truthful (“non-collusion-resistant”) mechanisms
proved in the literature also hold for exponential running-time mechanisms and bounded domains.
That is, the proof exhibits a bounded domain for which the lower bound holds even for inefficient
mechanisms (see results on unrelated machines [NR, KV, MS, Gam], workload minimization in
inter-domain routing [MS, Gam], and weighted sum schedule [AT1]).

We next argue about the upper bounds in the table. For min-max problems they are a direct
consequence of Corollary 13. (We give further details respectively in Appendix C.1 for scheduling
unrelated machines problems and C.4 for workload minimization in inter-domain routing.)

As for the lowest total cost minimization problem in inter-domain routing (see Example 3 and
Section C.4) we observe that it belongs to the class of so-called utilitarian problems [FPSS]. The
polynomial-time exact algorithm for the problem in [FPSS], which the authors give to obtain a
truthful mechanism without verification, can be also used in our construction for obtaining an
exact polynomial-time collusion-resistant mechanism with verification. The key observation is that
such an algorithm is, by definition, a weakly utilitarian algorithm and thus Corollary 12 can be
applied.

A second efficient collusion-resistant mechanism can be obtained for another scheduling problem
studied in [AT1] in which the objective is to minimize the makespan on related machines. For
a constant number of machines, we obtain the first FPTAS collusion-resistant mechanism with
verification for this problem (no positive result on polynomial-time mechanisms was known). We
use an idea suggested in [AAS]. We compute a polynomial number of feasible solutions S ′ (this
step is independent of the bids) such that the best solution in S ′ has a makespan which is a (1+ε′)-
approximation of the optimum in S. (This step relies on an FPTAS for the makespan, e.g., the

4With such an assumption min-max problems preserve the essence of their raison d’être as many of them involving
agents supporting costs are NP-hard.
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one in [HS].) We then select an optimal solution for the weakly utilitarian cost function (5) among
the computed ones in time |S ′|. (We remark that the size of S ′ is also polynomial in 1/ε′.) This
solution will be a (1+ ε) · (1+ ε′)-approximation of the optimum in S. Since ε, ε′ > 0 can be chosen
arbitrarily small, Corollary 12 implies the existence of an FPTAS collusion-resistant mechanism
with verification. (Details can be found in Appendix C.2.)

Another efficient mechanism can be derived for a different scheduling problem again on related
machines studied in [AT1] in which the objective is to minimize the weighted sum of all jobs com-
pletion times. We derive a PTAS collusion-resistant mechanism with verification for this problem.
Also this mechanism is based on the idea of computing a subset of “good” solutions S ′ and output
out of it the optimal solution for a carefully designed weakly utilitarian cost function. (The compu-
tation of S ′ relies on the PTAS for the weighted completion time in [CK].) Similar arguments also
show that when the number of machines is not constant is it possible to have a (1+ε)-approximate
collusion-resistant mechanisms with verification though not running in polynomial-time. (Details
can be found in Appendix C.3.)

5 An algorithmic approach

We next present generalize the result in Theorem 9 and prove the following type of result. If
the algorithm satisfies a “cost monotonicity” condition, then it can be used to obtain a collusion-
resistant mechanism with verification.

Definition 14 An algorithm A is cost monotone if there exists a weakly utilitarian cost function
cost+() such that the following holds. For any t and b such that ti(A(b)) ≤ bi(A(b)), it holds

cost+(A(t), t) − cost+(A(b),b) ≤ αi · (ti(A(b)) − bi(A(b))),

where αi is the constant in the definition of weakly utilitarian cost function cost+().

Lemma 11 says that every weakly utilitarian algorithm is cost motonote. Interestingly, a proof
similar to that of Theorem 9 proves the following (more general) result.

Theorem 15 Every (polynomial-time) cost monotone algorithm over an arbitrary bounded domain
admits a (polynomial-time) collusion-resistant mechanism with verification satisfying the voluntary
participation condition.

Proof. If no agent is caught lying, then by (5) we have

utilityi(b) = ~ − cost+(A(b),b)

αi
+ bi(A(b)) − ti(A(b))

≤ ~ − cost+(A(t), t)

αi

= utilityi(t).

where the inequality follows from the fact that A is cost monotone. This reduces the analysis to
the case in which there is at least one agent in the coalition under consideration who is caught
lying. This case is the same as in Theorem 9. 2

We note that we can further extend the result since we do not need the “monotonicity” of cost()
when defining the weakly utilitarian cost function cost+() (see Definitions 7 and 14).
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A Postponed proofs

A.1 Proof of Fact 6

In this section, we prove Fact 6. To this end, we extend the notation (α,b−i) to subsets C of
agents in the natural way. Hence (uC ,b−C) denotes the vector whose entry i is ui for i ∈ C and bi

otherwise.

Proof. Let (A, p) be an arbitrary mechanism (with verification). By Definition 5, this mechanism
is c-truthful if and only if the following condition holds:

(c-truthfulness) For every C of size at most c, for every t, and for every b, it holds that

∑

i∈C

utilityi((tC ,b−C)) ≥
∑

i∈C

utilityi(b). (6)

The condition in Fact 6 can be rewritten as follows:

(condition in Fact 6) For every C of size at most c, for every u, and for every v such that u
and v agree in all entries not in C, that is, v = (vC ,u−C), it holds that

∑

i∈C

utilityi(u) ≥
∑

i∈C

utilityi(v). (7)

We have to show that the two conditions above are equivalent.

(c-truthfulness)⇒(condition in Fact 6). We define vectors u and v by means of t and b as in
(6). Consider the following vectors: u := (tC ,b−C) and v := (bC ,b−C). Thus (7) follows
from (6).

(c-truthfulness)⇐(condition in Fact 6). We define type vectors t and b as function of u and
v as in (7). Take t := u and b := (vC ,u−C). Thus (6) follows from (7).

This completes the proof. 2

A.2 Payments are bounded by two constants

From the boundness condition of cost() and because the domain is bounded, we show that there
exist two constants κinf and κsup ≥ κinf such that

~ − κsup ≤ pi(b) ≤ ~ − κinf

for every bid vector b. Let αmin := mini{αi} and αmax := maxi{αi}. We define

κinf :=
tinf ·

(
∑

j 6=i αj

)

+ inf cost

αmax
, and

κsup :=
tsup ·

(
∑

j 6=i αj

)

+ sup cost

αmin
.

The inequality above follows from the definition of the payments (see Equation 4).
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A.3 How to guarantee approximations

Suppose there exists a constant c ≥ 1 such that following inequalities hold for all x and t:

cost(x, t) ≤ cost+(x, t) ≤ c · cost(x, t). (8)

Let x′ and x∗ be the optimal solutions for cost+() and cost(), respectively. We show that x′ is a
c-approximation for cost(), that is

cost(x′, t) ≤ c · cost(x∗, t).

By contradiction, assume cost(x′, t) > c · cost(x∗, t). Since x′ is optimal for cost+(), we have that

cost+(x′, t) ≤ cost+(x∗, t).

Because of (8) for x∗ and t we have

c · cost(x∗, t) ≥ cost+(x∗, t).

Then we reach a contradiction with (8) for x′ and t:

cost(x′, t) > c · cost(x∗, t) ≥ cost+(x∗, t) ≥ cost+(x′, t).

This argument shows that assuming (8) the weakly utilitarian algorithm

A(t) ∈ arg min
x∈S

cost+(x, t)

returns a c-approximation for cost(). Suppose further that there exists a subset S ′ of feasible
solutions with the following property: For any t, the set S ′ contains a c′-approximate solution, that
is, a solution x′ ∈ S ′ such that

cost(x, t) ≤ c′ · min
x∈S

cost(x, t).

Then the weakly utilitarian algorithm

A(t) ∈ arg min
x∈S′

cost+(x, t)

returns a cc′-approximation for cost().

Min-max approximations. In a min-max problem the goal is to minimize the cost function

cost(x, t) = max
i

ti(x).

We can guarantee (1 + ε)-approximations, for any ε > 0, by considering the weakly utilitarian cost
function (5):

cost+(x, t) = max
i

ti(x) + ε ·
∑

i ti(x)

n
.

We simply have to show that (8) holds with c = 1 + ε, that is

max
i

ti(x)
︸ ︷︷ ︸

cost

≤ max
i

ti(x) + ε ·
∑

i ti(x)

n
︸ ︷︷ ︸

cost+

≤ (1 + ε) · max
i

ti(x)
︸ ︷︷ ︸

cost

. (9)

These inequalities follows from 0 ≤ ∑

i ti(x) ≤ n · maxi ti(x).
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Figure 2: For Problem 1 the technique in [PV] does not provide collusion-resistant mechanisms.

B A simple utilitarian problem not addressed in [PV]

Consider the Problem 1 above that we called the path auction problem. Although the declara-
tion domain of the problem is “binary” the technique in [PV] does not provide collusion-resistant
mechanisms with verification for it. Indeed, no optimal algorithm for Problem 1 above satisfies the
additional technical properties needed by the technique in [PV]. Their payments are related to the
threshold values5: they pay an agent that is not selected a suitable constant diminished by this
threshold value.

Consider the graph in Figure 2(left) where numbers represent the true costs associated to each
edge (i.e., the true type of the corresponding agent). The algorithm has to choose the shortest
path connecting the leftmost node to the rightmost node. Assume that for the true type vector
either agent i and agent j are not selected. According to the payments in [PV] they both receive a
payment of ~− 1 for a suitable constant ~. (Notice that their threshold values are equal to 1 since
the upper path is selected as long as its length is less than 2.) Agent i can get a better payment if
this threshold value decreases. In particular, agent j can bid 2 as in Figure 2(right) and still being
not selected. In this case she receives the same payment ~− 1. This however, causes the agent i to
get a strictly better utility since now her threshold becomes 0 (she receives a payment ~ and she is
not selected as in the previous case).

Observe that this example shows that the mechanism in [PV] is neither bribeproof or group
strategyproof for this problem.

C Applications to various mechanism design problems

In this section, we describe in detail the mechanism design problems considered in the literature
and to which we applied our results.

C.1 Scheduling unrelated machines

The problem of scheduling unrelated machines is one of the most studied problems in the algorithmic
mechanism design literature. Here we are given m tasks that have to be scheduled on n machines,
each corresponding to a selfish agent. The type of a machine specifies the time the machine takes

5The threshold value distinguishes “winning” from “losing” bids. By declaring a bid lower than the threshold
value an agent is selected. On the contrary, by declaring values greater of the threshold value an agent is not selected.
Any truthful mechanism with verification admits these threshold values [ADPP].
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to complete all tasks that a schedule x assigned it (this time being the cost for the corresponding
agent). The objective is to minimize the makespan, that is, the cost function maxi ti(x). For this
min-max problem Corollary 13 implies the following:

Corollary 16 The scheduling unrelated machines problem admits a collusion-resistant (1 + ε)-
approximate mechanism with verification, for every ε > 0, if machines execution times are bounded
from above by some constant. The mechanism satisfies the voluntary participation condition.

Nisan and Ronen [NR] introduced this problem and proved that no deterministic mechanism
without verification can achieve approximations better than 2 for two or more machines. This
lower bound have been recently improved to 1 +

√
2 in [CKV] for 3 or more machines and to

1 + Φ ≈ 2.618 as n goes to infinity [KV]. A deterministic n-approximation mechanism is given in
[NR] and a randomized (7n/8)-approximation one is given in [MS].

C.2 Scheduling related machines

Archer and Tardos [AT1] considered the case of related machines in which machines’ execution
times differ only by a multiplicative factor (the speed of the machine). One of the problem versions
they considered is that of minimizing the makespan. For this problem [AAS] provides a (1 + ε)-
approximate polynomial-time (also in 1/ε) truthful mechanism without verification for any fixed
number of machines. We have the following result.

Theorem 17 The scheduling related machines problem (so as to minimize the makespan) admits
a collusion-resistant FPTAS mechanism with verification for any fixed number of machines, if
machines execution times are bounded from above by some constant. The mechanism satisfies the
voluntary participation condition.

Proof. Fix any ε > 0 and consider 0 < ε′, ε′′ < ε such that (1 + ε′) · (1 + ε′′) = (1 + ε). By
using the algorithm of Figure 3 in [AAS] we compute a suitable subset S ′ of feasible allocations.
This is done on top of an FPTAS (with measure guarantee w.r.t. ε′) for the makespan (e.g., the
one in [HS]). The set S ′ is computed in time polynomial in the input size and in 1/ε′ and satisfies
the following: the best solution out of S ′ has a makespan which is a (1 + ε′)-approximation of the
optimum in S (see Theorems 5.1 and 5.2 in [AAS]). Therefore, since S ′ has size polynomial in the
input size and in 1/ε′ (and thus size polynomial in 1/ε), there exists an FPTAS weakly utilitarian
algorithm which finds an optimal solution for the weakly utilitarian cost function

cost+(x, t) = max
i

ti(x) + ε′′ ·
∑

i ti(x)

n
.

(This is the weakly utilitarian cost function (5) with ε′′ in place of ε.) As observed above this is a
(1 + ε′′)-approximation of the solution with minimal makespan in S ′ (see (9) above). This solution
is thus a (1 + ε′) · (1 + ε′′)-approximation of the optimum in S. Corollary 12 implies then the
existence of an FPTAS collusion-resistant mechanism with verification. 2

C.3 Weighted sum of jobs completion times

Archer and Tardos [AT1] for the case of related machines also considered the problem of minimizing
the weighted sum of all jobs’ completion times. That is, for given wj ∈ R

+, the objective is to
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minimize the cost function ∑

j

wj · Cj(x, t) (10)

where Cj(x, t) is the completion time of job j according to the schedule x and the machines’ types t.
They provided that no truthful mechanism without verification can have an approximation better
than 2/

√
3 for two or more related machines [AT1]. In contrast, we can obtain (1+ε)-approximation

mechanisms using the same idea of min-max problems.

Theorem 18 The problem of minimizing the weighted sum of all jobs completion times admits,
for every ε > 0, a collusion-resistant (1+ ε)-approximation with verification, if machines execution
times are bounded from above by some constant. The mechanism satisfies the voluntary participation
condition.

Proof. Consider the following weakly utilitarian cost function:

∑

j

wj · Cj(x, t) + εwmin

∑

i

ti(x), (11)

with wmin = minj wj . Observe that, since Cj(x, t) is the completion time of job j, and ti(x) is the
completion time of machine i, we have ti(x) =

∑

j∈xi Cj(x, t) with xi being the set of jobs that x
assigns to machine i. Therefore

wmin

∑

i

ti(x) ≤
∑

j

wjCj(x, t)

thus implying the two inequalities required to prove the (1 + ε)-approximation

∑

j

wjCj(x, t)

︸ ︷︷ ︸

cost

≤
∑

j

wjCj(x, t) + εwmin

∑

i

ti(x)

︸ ︷︷ ︸

cost+

≤ (1 + ε) ·
∑

j

wjCj(x, t)

︸ ︷︷ ︸

cost

. (12)

The theorem thus follows from Theorem 9. 2

By using the weakly utilitarian cost function defined above for the weighted sum scheduling we
obtain a PTAS for any constant number of machines as described in the main part of the paper.
This is shown in the next theorem.

Theorem 19 The weighted sum of all jobs completion times admits a collusion-resistant PTAS
mechanism with verification for any fixed number of machines, if machines execution times are
bounded from above by some constant. The mechanism satisfies the voluntary participation condi-
tion.

Proof. Fix any ε > 0 and consider 0 < ε′, ε′′ < ε such that (1 + ε′) · (1 + ε′′) = (1 + ε).
We call the algorithm of Figure 3 in [AAS] AAS. We define the step 2(a) of the algorithm AAS
as the PTAS (with measure guarantee w.r.t. ε′) for the weighted sum scheduling in [CK]. Then
by means of the algorithm AAS we compute in polynomial-time a suitable subset S ′ of feasible
allocations. The set S ′ is such that the best solution in it has a weighted completion time which is
a (1 + ε′)-approximation of the optimum in S. Indeed, by defining the step 3 of AAS with respect
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to the measure (10), proofs of Theorems 5.1 and 5.2 in [AAS] hold mutatis mutandis in this case.
Therefore, since S ′ has polynomial-size, there exists a PTAS weakly utilitarian algorithm which
finds an optimal solution for the weakly utilitarian cost function

∑

j

wj · Cj(x, t) + ε′′wmin

∑

i

ti(x), with wmin = min
j

wj.

(This is the weakly utilitarian cost function (11) above with ε′′ in place of ε.) As observed above
this is a (1+ε′′)-approximation of the solution with minimal makespan in S ′ (see (12) above). This
solution is thus a (1 + ε′) · (1 + ε′′)-approximation of the optimum in S. Corollary 12 implies the
existence of a PTAS collusion-resistant mechanism with verification. 2

C.4 Inter-domain routing

We are given an undirected graph G = (N,L) where each node represents an Autonomous System
(AS) of which the Internet is comprised. The set of nodes N consists of a destination node d and n
source nodes. The set of edges L is the set of links between nodes in N . The intensity of the traffic
(number of packets) originating from source i for destination d is denoted by τi. Let neighbours(i)
be the set of nodes in N linked to i. Each source node is a selfish agent having a private cost
function that specifies the per-packet cost cost per packeti(j) incurred by this node for carrying
traffic to node j ∈ neighbours(i). This cost models the load imposed to the AS internal routing
for sending a packet to an adjacent AS.

The goal is to assign all source nodes routes to d and, since nodes are not allowed to transfer
traffic to two adjacent nodes, the route allocation should form a confluent tree to the destination d.
The set of solutions S is then the set of all trees of G rooted at d. Each tree x in S represents the
fact that a node i routes traffic to its parent parenti(x). Therefore, in addition to its own traffic,
node i must route the traffic generated at all nodes below it in the tree x, for a total of

traffici(x) = τi +
∑

k is below i in x

τk

packets to be forwarded to node parenti(x). Hence the cost for agent i given a solution x is equal
to

ti(x) = cost per packeti(parenti(x)) · traffici(x).

Note that this problem is not one-parameter since the agent has to declare a per-packet cost for
each of her neighbors.6 The per-packet cost is determined by a number of parameters “internal”
to the AS and it is essentially the latency experienced by a packet. This latency can be observed
and thus verification is possible in this scenario.

Lowest total cost (utilitarian inter-domain routing). The Lowest Total Cost problem con-
sists in finding the tree minimizing the total cost of routing all packets [FPSS], that is, the cost
function ∑

i∈N

ti(x).

6Observe that in our setting nodes should declare a cumulative cost ti(). However, in this case it suffices that
agent i declare the cost function cost per packeti() as it defines the cumulative cost we need.
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This can be done efficiently by minimizing, for every i ∈ N , the cost of the path between i and d.
This algorithm is a polynomial-time (weakly) utilitarian algorithm and thus Corollary 12 implies
the following:

Corollary 20 The lowest total cost problem in inter-domain routing admits an exact polynomial-
time collusion-resistant mechanism with verification, whenever nodes costs are bounded from above
by some constant. The mechanism satisfies the voluntary participation condition.

Workload minimization (min-max inter-domain routing) In a different version we seek
routing trees in which the workload imposed on the busiest node is minimized, that is, the cost
function

max
i∈N

ti(x)

is minimized. We refer to this problem as Workload Minimization in inter-domain routing. This
problem has been defined in [MS] where the authors showed a lower bound of about 1.618 for
truthful mechanisms without verification, later improved to 2 [Gam]. Since this is a min-max
problem from Corollary 13 we immediately obtain the following:

Corollary 21 The workload minimization problem in inter-domain routing admits a collusion-
resistant (1 + ε)-approximation mechanism with verification, for every ε > 0, if nodes costs are
bounded from above by some constant. The mechanism satisfies the voluntary participation condi-
tion.

D The Nisan-Ronen model of verification

In this section we compare two different models of mechanisms with verification: the original model
defined in [NR] that we call the full monitoring model and the model we consider here (studied in
[ADPP, ADP+, Ven]) that we call the non-limited model.

Mechanisms with verification have been introduced in [NR] in the context of scheduling unre-
lated machines. If a task allocation x is chosen, then an agent i can execute her task(s) in any
amount of time ei(x) which cannot be smaller than true amount of time ti(x) required by her true
type. The main limitation of their model is that it assumes the cost for an agent being always her
execution time

ei(x)

and not the actual time ti(x) she spent on her task(s). In other words, it is like a worker, who did
her job in one hour, feels like being working the whole day because this is what she said to her boss
(or equivalently that a boss fully monitors the her worker takes the declared time to do the job).
In the model considered here, instead, the worker feels like being working for one hour as the rest
of the time she did nothing or she used her time for her own.

Another difference is that in the fully monitoring model of [NR] the mechanism makes no ties
between the declaration bi (declarations are just used to compute the output) and the execution
time, only observes ei() (that as noticed can only be greater than the actual execution time) and
awards payments that depend on both bi and ei(). This implies that in principle in the fully
monitoring model an agent being caught is paid by the mechanism. While in the non-limited
model we impose a payment of 0 for an agent caught lying by the mechanism. Below, we show that

21



this more general aspect of the fully monitoring model does not give extra power with respect to the
non-limited one. It is also crucial for constructions to work in the model of [NR] that the mechanism
observes the execution time of every single job (see below their definition of Compensation-and-
Bonus mechanisms). This assumption is unneeded in the the non-limited model.

Note that the non-limited model is more general than the one in [NR]. Indeed, in the next
section we show that if a mechanism with verification works in our model, then it also works in the
model in [NR], while the converse is not true in general.

D.1 Comparing the two models

To see that every truthful mechanism in our non-limited model is also truthful in the fully moni-
toring model, observe that truthfulness in their model means that

pi((ti,b−i), e) − ti(x) ≥ pi(b, e) − max{ti(x′), ei(x
′)}

where pi((ti,b−i), e) and pi(b, e) is the money received by i when truthtelling and when reporting
arbitrary type bi, respectively; solution x is computed on the true type, while solution x′ is computed
when reporting bi. Indeed, while the agent is being caught lying when reporting bi, that is ti(x

′) >
ei(x

′), then her cost will be the true execution time ti(x
′) (results cannot be given by i before than

actual execution time). On the contrary when her lie is not detected by the mechanism, in the fully
monitoring model, the cost suffered by the agent is the declared execution time ei(x

′).
On the other hand truthfulness in our model means that

pi(t) − ti(x) ≥
{

pi(b) − ti(x
′) if i is not caught

0 − ti(x
′) otherwise

(13)

where t is a shorthand for (ti,b−i) and where, as above, solution x is computed on the true type,
while solution x′ is computed when reporting bi.

Therefore, given a truthful mechanism in the non-limited model we can set

pi(b, e) :=

{
pi(b) if i is not caught lying
0 otherwise

and thus, if i is not caught lying, given that the execution time must satisfy ei(x
′) ≥ ti(x

′), (13)
implies

pi((ti,b−i), e) − ti(x) ≥ pi(b, e) − ei(x
′)

that is truthfulness in the fully monitoring model when i is not caught lying. If however i is caught
lying then (13) implies

pi((ti,b−i), e) − ti(x) ≥ pi(b, e) − ti(x
′)

that is truthfulness in the fully monitoring model when i is caught lying. The same argument
applies also to collusion-resistant mechanisms: instead of a single agent, we consider an arbitrary
coalition. This shows the following.

Fact 22 Every truthful (resp. collusion-resistant) mechanism with verification in the non-limited
model is truthful (resp. collusion-resistant) in the model of [NR].
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In the sequel, we show that Compensation-and-Bonus mechanisms in [NR] are not truthful in
the non-limited model.

To introduce these mechanisms, we use the following notation. Every solution x is a task
allocation which assigns a subset xi of tasks to machine i. Given a vector b = (b1, . . . , bn), we
sometimes write bj

i to denote the declaration for job j on machine i according to bi. The so called
Compensation-and-Bonus mechanisms outputs an optimal schedule and provide agent i a payment

pi(b, e) := compi(b, e) + bonusi(b, e)

with compi() being the following compensation function

compi(b, e) :=
∑

j∈xi,x=A(b)

ej
i = ei(A(b)),

and bonusi() being a suitable bonus function. The key property (which does not hold in the non-
limited model) is that, being the agent’s cost equal to ei(A(b)), the utility of an agent in the model
of [NR] is always equal to her bonus:

pi(b, e) − ei(A(b)) = bonusi(b, e).

To show that this mechanism is not truthful in the non-limited model, we first give the necessary
details about the bonus function. The corrected time vector is obtained by correcting the reported
execution times in bj

i into the execution times ej
i . Note that this is possible only for those i and j

such that the computed solution x assigns j to machine i. Formally

corrj
i (x,b, e) :=

{

ej
i if j ∈ xi

bj
i if j ∈ xl and l 6= i

and the bonus function is as follows:

bonusi(b, e) := −cost(A(b), corr(A(b),b, e))

where corr denotes the corrected time vector. Now observe that the corrected time vector corr is
identical to the bid vector b whenever e = b, that is, each agent i executes a task j in time ej

i = bj
i .

In this case, since corr = b, the bonus function is equal to

bonusi(b, e) = −cost(A(b),b). (14)

To see that the mechanism is not truthful, we consider the instance with two tasks and two
machines whose true types are as follows. The first task takes time 1 on both machines, while
the second task takes time 2 both machines. Suppose without loss of generality, that the optimal
algorithm assigns the first task to the first machine, and the second task to the second machine.
That is, we are in the following case

t =

(
1 2
1 2

)

with framed boxes representing the allocation of the optimal algorithm. Since in the truthtelling
scenario the execution times are equal to the true types then by (14) the utility in the non-limited
model of agent 1 is

p1(t, t) − ti(A(t)) = bonus1(t, t) = −cost(A(t), t) = −2.
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Now observe that agent 1 can get a better utility by declaring b1 = (2, 3). The optimal algorithm
assigns task as before

b =

(
2 3
1 2

)

.

Moreover, since in the non-limited model we have that

bi(A(b)) = ei(A(b))

and as only one job is assigned to the first machine we have that agent 1 executes her assigned task
in time e1

1 = b1
1 = 2. This makes the corrected time vector identical to the bid vector b (the other

agent is truthtelling and executes her task accordingly). Then by (14) the utility of agent 1 in the
non-limited model becomes

p1(b, e) − t1(A(b)) = comp1(b, e) + bonus1(b, e) − t1(A(b))

= e1(A(b)) − cost(A(b),b) − t1(A(b))

= b1
1 − max{b1

1, b
2
2} − t11

= 2 − 2 − 1 = −1.

This shows the following.

Fact 23 The Compensation-and-Bonus mechanism [NR] is not truthful in the non-limited model.
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