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Abstract

In this paper, we study weak S—proximity drawings. All known algorithms that compute
(weak) proximity drawings produce representations whose area increases exponentially with the
number of vertices. Additionally, an exponential lower bound on the area of (weak) proximity
drawings of general graph has been proved. We present the first algorithms that compute
a polynomial area S—proximity drawing of binary and ternary trees. The algorithms run in
linear time.

1 Introduction.

f—proximity drawings [8] have been deeply investigated because of their interesting graphical fea-
tures (see, e.g. [7, 12, 11, 1, 4, 5, 6, 3, 10]). [—proximity was first introduced by Kirkpatrick and
Radke [8, 13] as a generalization of Gabriel prozimity ([7, 12]) and Relative Neighborhood Graph
([14, 15]). A p—proximity drawing is a straight-line drawing where two vertices u and v are adjacent
if and only if the region of the plane defined by the intersection of two disks, whose radii and centers
depend on the parameter 3, does not contain any other vertex except for v and v. This region is
generally referred as S—region of influence or B—proximity region and the formal definition will be
given in the sequel. In particular, a Gabriel drawing is a f—proximity drawing where the proximity
region is the disk having as antipodal points u and v.

In [2], weak B-prozimity drawings were first introduced. A weak [f—proximity drawing relaxes
the requirement of “classical” f-proximity drawings, allowing the $-region of non-adjacent vertices
to be empty.

All known algorithms for (weak) f—proximity drawings produce representations whose area
increases exponentially with the number of vertices, even when binary trees are considered [12,
11, 9, 4]. Additionally, for general graphs an exponential area lower bound exists [10]. Thus, the
problem of constructing proximity drawings of graphs that have small area is considered a very
challenging one by several authors (see [4, 5, 12]).

In this paper we describe a linear time algorithm for drawing binary trees with n vertices which
produces a weak 3-drawing that requires O(n?)-area, for any 0 < 3 < co. Additionally, we extend
the result to ternary trees showing that they admit O(n?)-area weak Gabriel drawing.
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2 Preliminaries and Notation.

A layer L; is an horizontal line containing the points whose y—coordinate is Y;, where Y] is a positive
integer. We assume that for any ¢ > 1, Y;,1 > Y;. A layered drawing in a straight line drawing such
that each vertex is placed on a layer. In this definition we relax the assumption of classical definition
of layered drawing that edges do not connect vertices on the same layer. Moreover, we allow layers
not to be equally spaced. The height, width and the area of a drawing are the height, the width,
and the area of the smallest isothetic rectangle bounding the drawing, respectively. Let a and b be
two points whose distance is d(a,b). We denote with Ra, b, 3] the S-region of influence of a and b.
For any 0 < 8 < 1, R[a, b, ] is the intersection of the two closed disks of radius d(a, b)/(2(3) passing
through both a and b. For any 1 < 8 < 0o, RJa,b, 5] is the intersection of the two closed disks of
radius fd(a,b) and centered at the points (1 — 5/2)a+ (3/2)b and (3/2)a+ (1 — (/2)b. A drawing
of a graph G is a weak [-drawing if for any pair of adjacent vertices a and b, the proximity region
Rla, b, 3] does not contain any other vertex of the drawing. For § = 1, f-drawings are also known

as Gabriel drawings. We denote «(f) = inf{Zabc | ¢ € R|a, b, 3]} = 2arcsin /1/20.

3 The Algorithm.

In this section, we describe the algorithm which produces a O(n?)-area (-proximity drawing of
binary trees. In Sect. 5, we modify the algorithm to produce a polynomial area Gabriel drawing of
ternary trees.

Our algorithm takes two steps: (1) it constructs an hv—drawing A of tree t; (2) it vertically
enlarges A to obtain a weak S-drawing Ag of t.

Drawing A satisfies the following two invariants:

Invariant 1 Vertical edges are one unit long.

Invariant 2 The width is at most n.

Drawing Ag is obtained from A by increasing the distance between consecutive layers.

Step 1

Drawing A can be recursively constructed as shown in Fig. 1. More formally, we denote with
A1 © A, the drawing obtained by combining drawings A; and A, as follows: A; is translated to
the bottom by one unit and A, is translated to the right by as many grid points as the width of
A;. The drawing A is constructed in linear time by algorithm hv-draw in Fig. 2. An example
of hv—drawing is depicted in Fig. 4(b). Notice that, in general, an hv—drawing is not a proximity

drawing.
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Figure 1: The drawing A; & As.




algorithm hv-draw(#)

h < height of ¢

r < root of ¢

if h =1 then
draw r at (1,1)
A « drawing of r

else begin
t1 < smaller immediate subtree of ¢
to < larger immediate subtree of ¢
Aj=hv-draw(t;)
As=hv-draw ()
A=A10A,
end

return (A)

end

Figure 2: Algorithm hv-draw.

Step 2

Let us denote with !  the maximum length of any horizontal edge of A on layer L; (see the

max

example of Fig. 4(b)). Algorithm enlarge in Fig. 3 computes Ag from A by spacing out each
consecutive layers of a value proportional to §(5) = m We denote by ,, vy, x,, and vy,
the z— and y—coordinates of a vertex v in drawing A and Ag, respectively. By applying algorithm

enlarge to the drawing A of Fig. 4(b) with 8 = 2 we obtain the proximity drawing of Fig. 4(c).

algorithm enlarge(A,f)

5(B) + m

Y1 1

for + =1 to h do begin
5:(8) < [5(8) i) + 1
Y < Y1 +0:(B)
for each vertex v on layer L; do

Ty = T3 Yy — Y

end

draw the edges;

return (Ag)

end

Figure 3: Algorithm enlarge.

4 Proof of Correctness.

In this section we prove that, for any 3, algorithm enlarge returns a weak S—drawing of O(n?)-area.
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Figure 4: Binary Trees: an example. (a) The tree given in input. (b) The first step (hv-drawing).
(c) The f—proximity drawing with 3 = 2.

We denote with h and n the height and the number of vertices of the tree, respectively. Moreover,
ny, and ny are the number of nodes of the smaller and larger immediate subtrees. We first need the
following lemma.

Lemma 4.1 For any 1 <i<h, [}, <n/2"

7 'mazx

Proof. The proof proceeds by induction on n. Base Step For n = 1, I, .. = 1. Induction Step
From algorithm hv-draw, from the fact that n; < n/2 and ny < n, we have:
forie=1

ll

max

= max{n,ny/2} < n/2,
and for 2 <i<h

I . =max{n; /27 ny/2'} < n/2".

maxr

Lemma 4.2 For any 0 < 3 < oo, Ag is a weak B—drawing.

Proof. We have to prove that for any edge (a,b), R[a, b, ] does not contain any other vertex. We
distinguish two cases:

Horizontal edges. Let ¢ be any point on layer L;,;. Because of the definition of §;(3), Zach <
a(f). Similarly, since §;(3) < 0;—1(5), then Lacd'b < «(f) for any ¢ on L;_;. Thus, from the
definition of «(/3) it follows that R[a,b, 3] neither intersect L;.; nor L; ;.
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Figure 5: Drawings of ternary trees: first step.

Vertical edges. Let a be on layer L; and b on layer L; ;. From Invariant 1 and considering that
Apg is a layered drawing, Rla,b, 3] intersects a on layer L; and b on L;_;, only.

Lemma 4.3 The area of Ag is at most n*(6(3) +1).

Proof. From the definition of §;(5) and from Lemma 4.1 it follows that the height of A is at

most
h h Z_ h(ns(B
;&(ﬂ) < ; (6(B) e +1) < ; ( Qi(ﬂ) + 1) < né(f3) +n.
Thus from Invariant 1, the area of Ag is at most n?(6(3) +1). O

Hence, from Lemmas 4.2 and 4.3, we can state the following result.

Theorem 4.4 For any 0 < 3 < oo and for any binary tree t with n nodes, an O(n?)-area weak
B—-drawing of t exists.

5 Ternary Trees

In this section we extend the previous result to ternary trees. Unfortunately, this is not a complete
extension as we can manage the class of f—proximity drawings for # < 1, only, which properly
includes Gabriel drawings.

We use a two—steps technique similar to the one above described for binary trees. In particular,
the first step, shown in Fig. 5, is suitably changed, while the second is substantially the same.

Theorem 5.1 Any ternary tree admits O(n?)—area weak Gabriel drawing.

An example of the Gabriel drawing of a ternary tree obtained from our algorithm is shown in
Fig. 6. Tt is easy to see that for 3 > 1 the above construction does not guarantee the proximity
regions of diagonal edges to be empty.
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Figure 6: Ternary trees: an example. (a) The tree given in input. (b) The first step. (¢) The
proximity drawing.

6 Conclusions and Open Problems

In this paper we have shown that binary and ternary trees admit polynomial area G—proximity
and Gabriel drawings, respectively. Moreover, the algorithms we presented both take linear time.
Several problems are open:

1. Prove a lower bound for binary and ternary trees;
2. Try to extend the results to trees of degree greater than three;
3. Investigate other classes of graphs that admit f—drawings (e.g. outerplanar graphs);

4. Consider strong proximity drawings.

Acknowledgments. The authors warmly thanks Prof. Roberto Tamassia and Ing. Giuseppe
Liotta for their suggestions and helpful discussions. The problem tackled in this paper was raised
and a preliminary study was done while the second author was visiting the Center for Computational
Geometry at Brown University.

References

[1] G. Di Battista, W. Lenhart, and G. Liotta. Proximity drawability : a survey. In Proc. Graph
Drawing ’94, Lecture Notes in Computer Science, pages 328-339. Springer Verlag, 1994.

[2] G. Di Battista, G. Liotta, and S.H. Whitesides. The strenght of weak proximity. In F. J. Bran-
denburg, editor, Graph Drawing (Proc. GD ’95), volume 1027 of Lecture Notes in Computer
Science, pages 178-189. Springer—Verlag, 1996.

(3] P. Bose, G. Di Battista, W. Lenhart, and G. Liotta. Proximity constraints and representable
trees. In Proc. Graph Drawing 94, LNCS, pages 340-351. Springer—Verlag, 1994.

6



[4]

9]

[10]

[11]

[12]

[13]

[14]

[15]

P. Bose, W. Lenhart, and G. Liotta. Characterizing proximity trees. Algorithmica, 16:83-110,
1996.

P. Eades and S. Whitesides. The realization problem for euclidean minimum spanning tree is
NP-hard. In Proc. ACM Symp. on Computational Geometry, pages 49-56, 1994.

H. ElGindy, G. Liotta, A. Lubiw, H. Meijer, and S. H. Whitesides. Recognizing rectangle
of influence drawable graphs. In Proc. Graph Drawing ’94, number LNCS, pages 352-363.
Springer—Verlag, 1994.

K. R. Gabriel and R. R. Sokal. A new statistical approach to geographic variation analysis.
Systematic Zoology, 18:259-278, 1969.

D.G. Kirkpatrick and J.D. Radke. A framework for computational morphology. In
G.T.Toussaint, editor, Computational Geometry, pages 217-248, Amsterdam, Netherlands,
1985. North—Holland.

W. Lenhart and G. Liotta. Proximity drawings of outerplanar graphs. In Stephen North,
editor, Graph Drawing (Proc. GD ’96), volume 1190 of Lecture Notes in Computer Science,
pages 286-302, 1997.

G. Liotta, R. Tamassia, J. G. Tollis, and P. Vocca. Area requirement of Gabriel drawings. In
Giancarlo Bongiovanni, Daniel Pierre Bovet, and Giuseppe Di Battista, editors, Proc. CIAC’97,
volume 1203 of Lecture Notes in Computer Science, pages 135—146. Spriger—Verlag, 1997.

A. Lubiw and N. Sleumer. All maximal outerplanar graphs are relative neighborhood graphs.
In Proc. CCCG’93, pages 198-203, 1993.

D. W. Matula and R. R. Sokal. Properties of Gabriel graphs relevant to geographic variation
research and clustering of points in the plane. Geogr. Anal., 12:205-222, 1980.

J.D. Radke. On the shape of a set of points. In G.T. Toussaint, editor, Computational Mor-
phology, pages 105-136, Amsterdam, The Netherlands, 1988. North—Holland.

G.T. Toussaint. The relative neighborhood graph of a finite planar set. Pattern recognition,
12:261-268, 1980.

R. B. Urquhart. Some properties of the planar euclidean relative newighborhood graph. Pattern
recognition Letters, 1:317-332, 1983.



