
Private capacities in mechanism design∗

Vincenzo Auletta Paolo Penna Giuseppe Persiano

June 13, 2009

Abstract

Algorithmic mechanism design considers distributed settings where the participants,
termed agents, cannot be assumed to follow the protocol but rather their own interests.
The protocol can be regarded as an algorithm augmented with a suitable payment rule
and the desired condition is termed truthfulness, meaning that it is never convenient
for an agent to report false information.

Motivated by the applications, we extend the usual one-parameter and multi-
parameter settings by considering agents with private capacities: each agent can mis-
report her cost for “executing” a single unit of work and the maximum amount of work
that each agent can actually execute (i.e., the capacity of the agent). We show that
truthfulness in this setting is equivalent to a simple condition on the underlying algo-
rithm. By applying this result to various problems considered in the literature (e.g.,
makespan minimization on related machines) we show that only some of the existing
approaches to the case “without capacities” can be adapted to the case with private
capacities. This poses new interesting algorithmic challenges.

1 Introduction

Algorithmic mechanism design considers distributed settings where the participants, termed
agents, cannot be assumed to follow the protocol but rather their own interests. The designer
must ensure in advance that it is in the agents’ interest to behave correctly. The protocol
can be regarded as an algorithm augmented with a suitable payment rule and the desired
condition is termed truthfulness, meaning that it is never convenient for an agent to report
false information. We begin with an illustrative example:

Example 1 (scheduling related machines [AT01]) We have two jobs of size, say, 1
and 2 to be scheduled on two machines. Each allocation specifies the amount of work that
is allocated to each machine (the sum of the jobs sizes). Each machine has a type ti which

∗Dipartimento di Informatica ed Applicazioni, Università di Salerno, Italy. Email:{auletta, penna, giu-
per}@dia.unisa.it. Research funded by the European Union through IST FET Integrated Project AEOLUS
(IST-015964).

1

is the time (cost) for processing one unit of work; that is, the type is the inverse of the
machine’s speed. An allocation, x, assigns an amount of work wi(x) to machine i and thus
its completion time (cost) is equal to

wi(x) · ti. (1)

The goal is to compute an allocation that minimizes the “overall” cost

max{w1(x) · t1, w2(x) · t2} (2)

that is the so called makespan. The type of each machine is only known to its owner (agent)
who incurs a cost equal to the completion time of her machine (the quantity in Equation 1).
Each agent may find it convenient to misreport her type so to induce the underlying algorithm
to assign less work to her machine.

This is a typical one-parameter mechanism design problem, meaning that each agent has
a private type representing the cost for executing one unit of work. The goal is to compute a
solution minimizing some “global” cost function which depends on the types of all agents (in
the above example, the quantity in Equation 2). The underlying algorithm is then augmented
with a suitable payment function so that each agent finds it convenient to report her type
truthfully. This important requirement is commonly termed truthfulness of the resulting
mechanism (“algorithm + payments”). Truthful mechanisms guarantee that the underlying
algorithm receives the “correct” input because no agent has a reason to misreport her type.

In this work we introduce and study the natural extension of the one-parameter setting
in which agents have private capacities and thus can “refuse” allocations that assign them
amounts of work above a certain value (see Section 1.1 for the formal model). This setting
is naturally motivated by various applications in which agents are not capable or willing to
execute arbitrary amounts of work:

• A router can forward packets at a certain rate (per-packet cost), but an amount of
traffic exceeding the capacity of the router will “block” the router itself.

• In wireless networks, each node acts as a router and the energy consumption determines
the per-packet-cost of the node. The battery capacity of each node determines the
maximum amount of packets (work) that can be forwarded.

• Agents can produce identical goods at some cost (per unit) and their capacities repre-
sent the maximum amount of goods that each of them can produce.

Truthful mechanisms for the case without capacities need not remain truthful in this new
setting. We show that a simple “monotonicity” condition characterizes truthfulness for the
case of one-parameter agents with private capacities (Theorem 12). This translates into
an algorithmic condition on the underlying algorithm (Corollary 14). We apply this result
to the various problems previously considered in the literature to see which of the existing

2

techniques/results extend to our setting. Roughly, all mechanisms for one-parameter settings
(without capacities) that are based on “lexicographically optimal” algorithms remain truthful
(for the case with capacities) as they satisfy the above monotonicity condition (Section 3.1).
This is not true for other mechanisms because the underlying algorithm is no longer monotone
when capacities are introduced (Section 3.3).

We then move to multidimensional domains which provide a more powerful and general
framework. By considering differend “kind” of work and a capacity for each of them one
can easily model rather complex problems like, for instance, scheduling with restricted as-
signment on unrelated machines (i.e., each machine can execute only certain jobs and the
execution times change arbitrarily from machine to machine). Here we observe that there is
no “simple” monotonicity condition that characterizes truthfulness, even when the problem
without capacities has a domain which does have such simple characterization (Section 4).

Connections with existing work. Algorithmic mechanism design questions have been
raised in the seminal work by Nisan and Ronen [NR01]. Mechanism design is a central topic
in game theory, with the celebrated Vickrey-Clarke-Groves [Vic61, Cla71, Gro73] mecha-
nisms been probably the most general positive result. These mechanisms work for arbitrary
domains, but require the problems’ objective to be the so called (weighted) social welfare:
essentially, to minimize the (weighted) sum of all agents’ costs. Roberts’ theorem [Rob79]
says that these are the only possible truthful mechanisms for domains that allow for arbi-
trary valuations. Therefore, most of the research has been focused on specific (restricted)
domains and to other global cost functions like, for instance, the makespan in scheduling
problems [NR01, AT01, AAS07, MS07, LS08] or other min-max functions.

Rochet’s [Roc87] is able to characterize truthfulness in terms of the so-called “cycle
monotonicity” property. In this paper, we refer to the interpretation of cycle monotonicity
given by Gui et al [GMV04] in terms of graph cycles which gives us a simple way for
computing the payments. However, cycle monotonicity is difficult to interpret and to use.
To our knowledge, the work by Lavi and Swamy [LS08] is the first (and only) one to obtain
truthful mechanisms for certain two-values scheduling domains directly from Rochet’s cycle
monotonicity [Roc87].

Bikhchandani et al [BCL+06] propose the simpler two-cycle monotonicity property (also
known as weak-monotonicity) and showed that it characterizes truthfulness for rather general
domains. We refer to domains for which two-cycle monotonicity characterizes truthfulness as
monotonicity domains. Monotonicity domains turn out to be extremely important because
there the construction of the mechanism (essentially) reduces to ensuring that the algorithm
obeys relatively simple (two-cycle monotonicity) conditions. Saks and Yu [SY05] showed that
every convex domain is a monotonicity domain. Our main result is that also one-parameter
domains with private capacities are monotonicity domains. The resulting characterization
generalizes prior results by Myerson [Mye81] and by Archer and Tardos [AT01] when the set
of possible solutions is finite. We remark that domains obtained by adding private capacities
are not convex and our result for the two-parameter case implies that the characterization
by Saks and Yu [SY05] cannot be used here. Dobzinski et al [DLN08] studied auctions with

3

budget-constrained bidders. Also these domains are different from ours because they put a
bound on the payment capability of the agents, while in our problems bounds are put on the
assignment of the algorithm. Our positive results on min-max objective functions use ideas
by Archer and Tardos [AT01], Andelman et al [AAS07], Mu’alem and Shapira [MS07], and
they extend some results therein to the case with private capacities.

1.1 Agents with private capacities

We are given a finite set of feasible solutions. In the one-parameter setting, every solution
x assigns an amount of work wi(x) to agent i. Agent i has a monetary cost equal to
costi(ti, x) = wi(x) · ti where ti ∈ ℜ

+ is a private number called the type of the agent. This
is the cost per unit of work and the value is known only to agent i. We extend the one-
parameter setting by introducing capacities for the agents. An agent will incur an infinite
cost whenever she gets an amount of work exceeding her capacity ci ∈ ℜ

+, that is

costi(ti, ci, x) =

{

wi(x) · ti if wi(x) ≤ ci

∞ otherwise

Each agent makes a bid consisting of a type-capacity pair bi = (t′i, c
′

i), possibly different from
the true ones. An algorithm A must pick a solution on input the bids b = (b1, . . . , bn) of all
agents, and a suitable payment function P assigns a payment Pi(b) to every agent i. Thus,
the utility of this agent is

utilityi(ti, ci, b) := Pi(b)− costi(ti, ci, A(b)).

Truthtelling is a dominant strategy with respect to both types and capacities if the utility of
each agent is maximized when she reports truthfully her type and capacity, no matter how
we fix the types and the capacities reported by the other agents. Formally, for every i, for
every ti and ci, and for every b as above

utilityi(ti, ci, (ti, ci, b−i)) ≥ utilityi(ti, ci, b)

where (ti, ci, b−i) := (b1, . . . , bi−1, (ti, ci), bi+1, . . . , bn) is the n-vector obtained by replacing
bi = (t′i, c

′

i) with (ti, ci).

Definition 2 An algorithm A is truthful for one-parameter agents with private capacities if
there exists a payment function P such that truthtelling is a dominant strategy with respect
to both types and capacities.

We consider only algorithms that produce an allocation which respects the capacities
(no agent gets more work than her reported capacity). A simple (standard) argument re-
duces truthfulness of A to the truthfulness of the work functions of the single agents (see
Section 1.1.2).

4

Multidimensional settings. In the multidimensional or k-parameter setting each type,
capacity, and work is a vector of length k. Agent i has a type ti = (t1i , . . . , t

k
i), a capacity

ci = (c1
i , . . . , c

k
i), and she is assigned some amount of work wi = (w1

i , . . . , w
k
i). The resulting

cost is
wi · ti =

∑

j

wj
i · t

j
i

provided the j-th amount of work wj
i does not exceed the corresponding capacity cj

i for all
j (wi ≤ ci component-wise). The cost is instead ∞ if some capacity is violated (wi 6≤ ci).

Example 3 (agents with several related machines) Each agent i owns two related ma-
chines whose processing times are t1i and t2i . Every job allocation x assigns an amount of
work w1

i (x) and w2
i (x) to these machines, respectively. The cost for the agent is the sum of

the costs of her machines, that is, w1
i (x) · t1i + w2

i (x) · t2i .

Example 4 (unrelated machines [NR01]) Each machine corresponds to an agent. The
corresponding type is a vector ti = (t1i , . . . , t

k
i), where tji is the processing time of job j on

machine i and k is the number of jobs that need to be scheduled. Each job allocation x
specifies a binary vector wi(x) with wj

i (x) = 1 iff job j is allocated to machine i. The cost for
agent i is the completion time of her machine, that is wi(x) · ti =

∑

j wj
i (x) · tji . The variant

in which machines can execute only certain jobs (restricted assignment) can be modelled with
binary capacity vectors ci: machine i can execute jobs j iff cj

i = 1.

1.1.1 A simple reduction to the single-agent case

In this section we present a simple (standard) reduction that allows us to study truthfulness
for the case of a single agent. The truthfulness of an algorithm A can be reduced to a
condition on what we call below its single agent work functions: That is, the amount of work
that A assigns to a fixed agent i, depending on her reported type and capacity, and having
fixed the types and the capacities of all other agents. Each agent receives an amount of
work and a payment according to some work function f and a suitable payment function p.
Recall that the algorithm (and thus f) will always assign an amount of work that does not
exceed the reported capacity. Hence, infinite costs occur only when the agent misreports her
capacity. In the following definition, we consider t′ and c′ as the type and capacity reported
by the agent, and t and c are the true ones.

Definition 5 A work function f is truthful for a one-parameter agent with private capacity
if there exist a payment function p such that, for every types t and t′ and capacities c and c′,

p(t, c)− f(t, c) · t ≥ p(t′, c′)−

{

f(t′, c′) · t if f(t′, c′) ≤ c
∞ otherwise

For every i and for every fixed sub-vector b−i = (bi, . . . , bi−1, bi+1, . . . , bn), agent i receives
an amount of work

wA
i (t′i, c

′

i, b−i) := wi(A(b1, . . . , bi−1, (t
′

i, c
′

i), bi+1, . . . , bn)

5

where t′i and c′i are the type and the capacity reported by i. Dominant strategies are equiva-
lent to the fact that i’s utility is maximized when she is truthtelling, no matter how we have
fixed i and b−i. Since the utility of i is given by the work function f(·) = wA

i (·, b−i) and by
the payment function p(·) = Pi(·, b−i), we have

Fact 6 An algorithm A is truthful if and only if every single agent work function f(·) =
wA

i (·, b−i) is truthful.

1.1.2 Cycle monotonicity and truthfulness

The material in this section is based on the cycle monotonicity approach by Rochet [Roc87]
and its recent interpretation by Gui et al [GMV04] in terms of graph cycles. Because of
the reduction in the previous subsection, we consider the case of a single agent and its work
function f . We shall see that f is truthful if and only if a suitable weighted graph associated
to f contains no negative cycles [Roc87, GMV04]. The graph in question is defined as
follows. Since the set of feasible solutions is finite, the amount of work that can be allocated
to this agent must belong to some finite set W = {. . . , w, . . . , w′, . . .}. We associate to f
the following complete directed graph over |W | nodes, one for each possible workload. The
length of an edge w → w′ is

δww′ := inf{t · (w′ − w)| t ∈ ℜ+ and there exists c ≥ w′ such that f(t, c) = w}

where inf ∅ =∞. The length of a cycle in this graph is the sum of the lengths of its edges.

Remark 7 Intuitively speaking, we think of w as the work when reporting the “true” type and
capacity (t and c) and w′ being the work when reporting some “false” type and capacity (t′ and
c′). Since every “lie” leading to a work exceeding the true capacity cannot be beneficial, we
need to consider only the case w′ ≤ c. Then the condition for being truthful can be rewritten
as pw +δww′ ≥ pw′, where pw and pw′ are the payments received in the two cases, respectively.
When there is no “lie” that is potentially beneficial for the agent, we set δww′ =∞ which is
mathematically equivalent to the fact that we do not add any constraint between these two
payments.

The length of a cycle in this graph is the sum of the lengths of its edges.

Definition 8 (monotone [Roc87, GMV04]) A function f is monotone if its associated
graph contains no cycle of negative length.

Rochet [Roc87] showed that the above condition characterizes truthfulness. In particular,
the weaker condition that every two-cycle has nonnegative length is always necessary. We
restate the latter (necessary) condition for our setting and Rochet’s theorem below.

Definition 9 (two-cycle monotone) A function f is two-cycle monotone if for every
(t, c) and (t′, c′) it holds that

(t− t′) · (w′ − w) ≥ 0 or c ≥ w′ or c′ ≥ w

where w = f(t, c) and w′ = f(t′, c′).

6

Theorem 10 ([Roc87]) Every truthful function must be two-cycle monotone. Every mono-
tone function is truthful.

While the above result has been originally stated for finite valuations/costs, it can be
easily extended to our setting (where “unfeasible” solutions are modelled by means of infinite
costs) using the arguments in [GMV04] (see Appendix A.1 for the proof).

Remark 11 The above result applies also to the multidimensional case.

2 Characterizations for one-parameter agents

We show that two-cycle monotonicity characterizes truthfulness for one-parameter agents
with private capacities. In particular, this necessary condition is also sufficient:

Theorem 12 A function is truthful for one-parameter agents with private capacities if and
only if it is two-cycle monotone.

Proof. Since two-cycle monotonicity is a necessary condition (see Theorem 10), we only
need to show that it is also sufficient. We prove that every two-cycle monotone function,
for one-parameter agents with private capacities, is monotone (and thus truthful because of
Theorem 10).

We consider only cycles whose edges have finite length (because otherwise the total length
is obviously non-negative). We show that for any cycle with at least three edges, there exists
another cycle with fewer edges and whose length is not larger. This fact, combined with the
two-cycle monotonicity, implies that there is no cycle of negative length.

Given an arbitrary cycle of three or more edges, we consider the node with maximal work
ŵ in the cycle. We thus have three consecutive edges in the path, say w → ŵ → w′ with

ŵ > w and ŵ > w′.

If nodes w and w′ coincide, then the path w → ŵ → w′ is actually a two-cycle. The
two-cycle monotonicity says that δwŵ + δŵw ≥ 0. If we remove these two edges we obtain a
cycle with fewer edges and whose length is not larger compared to the original cycle.

Otherwise, we show that a shorter cycle can be obtained by replacing the path w → ŵ →
w′ with edge w → w′. Towards this end, we show that

δww′ ≤ δwŵ + δŵw′. (3)

For every ǫ > 0 and for every w(1) and w(2) such that δw(1)w(2) < ∞, there exist t(1) and
c(1) ≥ w(2) such that w(1) = f(t(1), c(1)) and

t(1) · (w(2) − w(1)) = δw(1)w(2) + ǫ∗

7

for some ǫ∗ satisfying 0 ≤ ǫ∗ ≤ ǫ. In particular, since δwŵ and δŵw′ are both different from
∞, we can find t, c ≥ ŵ and t̂, ĉ ≥ w′ such that

t · (ŵ − w) + t̂ · (w′ − ŵ) = δwŵ + δŵw′ + ǫ∗

where ǫ∗ satisfies 0 ≤ ǫ∗ ≤ ǫ. Observe that ĉ ≥ ŵ > w and thus the two-cycle monotonicity

(t− t̂)(ŵ − w) ≥ 0

implies t̂ ≤ t. This and ŵ > w′ imply that

t · (ŵ − w) + t̂ · (w′ − ŵ) ≥ t · (w′ − w).

Since c ≥ ŵ > w′, we have
δww′ ≤ t · (w′ − w).

By putting things together we obtain

δww′ ≤ δwŵ + δŵw′ + ǫ

for every ǫ > 0. This implies Equation 3. Hence, by replacing the two edges w → ŵ → w′

with edge w → w′ we obtain a cycle with fewer edges and whose length is not larger than
the length of the original cycle. 2

The two-cycle monotonicity condition can be expressed in a more convenient form:

Fact 13 A function f is two-cycle monotone if and only if for every (t, c) and (t′, c′) with
t′ > t it holds that w′ ≤ w or w′ > c, where w = f(t, c) and w′ = f(t′, c′).

We thus obtain a simple algorithmic condition:

Corollary 14 An algorithm A is truthful for one-parameter agents with private capacities
if and only if every work function is two-cycle monotone. That is, for every i and for every
b−i the following holds. For any two capacities ci, and c′i, and for any two types ti and t′i
with t′i > ti, it holds that

wA
i ((t′i, c

′

i), b−i) ≤ wA
i ((ti, ci), b−i) or wA

i ((t′i, c
′

i), b−i) > ci.

For fixed capacities, this condition boils down to the usual monotonicity of one-parameter
agents [AT01].

3 Applications to min-max problems

In this section we apply the characterization result on one-parameter agents with capacities
to several optimization problems. We show that exact solutions are possible for min-max
objectives (e.g., makespan) and that some (though not all) known techniques for obtaining
approximation mechanisms for scheduling can be adapted to the case with private capacities.

8

3.1 Exact mechanisms are possible

Theorem 15 Every min-max problem for one-parameter agents (with private capacities)
admits an exact truthful mechanism.

Proof. We show that the optimal lexicographically minimal algorithm is monotone. We
prove the theorem for the case of two agents since the proof can be generalized to any number
of agents in a straightforward manner. Fix and agent i, and a type t̄ and capacity c̄ for the
other agent. Also let wother and w′

other denote the work assigned to the other agent when
agent i gets assigned work w and w′, respectively (these two values are defined below).

By contradiction, assume that the function associated to this agent is not monotone.
By virtue of Theorem 10 and from Fact 13 this means that t′ > t, w′ > w, and c ≥ w′.
The latter inequality says that w′ is feasible for capacity c and thus the optimality of the
algorithm implies

max{w · t, wother · t̄} ≤ max{w′ · t, w′

other · t̄}. (4)

Similarly, we have c′ ≥ w′ because w′ must be feasible for c′. Thus w′ > w implies that w is
feasible for c′ and the optimality of the algorithm yields

max{w′ · t′, w′

other · t̄} ≤ max{w · t′, wother · t̄}. (5)

We consider two cases:

1. (w · t′ > wother · t̄.) Since w′ > w, we have max{w′ · t′, w′

other · t̄} ≥ w′ · t′ > w · t′ =
max{w · t′, wother · t̄}, thus contradicting Inequality (5).

2. (w · t′ ≤ wother · t̄.) Since t < t′, we have w′ · t ≤ w′ · t′ thus implying that we can chain
the inequality in (4) with the one in (5). This and w · t ≤ w · t′ ≤ wother · t̄ imply that

max{w · t, wother · t̄} = max{w · t′, wother · t̄}.

Hence, both the inequalities in (4) and (5) hold with ‘=’. This will contradict the
fact that the algorithm picks the lexicographically minimal solution. On input t and
c assigning work w′ is feasible and gives the same cost as assigning work w. Since
the algorithm picks w, instead of w′, we have that w precedes lexicographically w′.
Similarly, on input t′ and c′, the work w is also feasible and has the same cost as w′.
This implies that w′ precedes lexicographically w, which is a contradiction.

We conclude that each function associated to some agent must be monotone. 2

3.2 Makespan on related machines in polynomial time

Andelman et al [AAS07] have obtained a truthful polynomial-time approximation scheme for
a constant number of machines. Their idea is that one precomputes, in polynomial-time, a
set of allocations and then obtains (1+ǫ)-approximation by picking the best solution out of a
precomputed set. We can use the very same idea and pick the solution in a lexicographically
minimal fashion as we did to prove Theorem 15 and obtain the following:

9

Corollary 16 There exists a polynomial-time (1+ ǫ)-approximation truthful mechanism for
scheduling selfish machines with private capacities, for any constant number of machines and
any ǫ > 0.

Proof. All we need to show is that we can also compute the payments in polynomial time.
Using the characterization by Gui et al [GMV04] the payments can be computed as the
shortest path in the graph defined in Section 1.1.2 (for each agent we fix the bids of the
others and consider the resulting graph). Notice that the graph has size polynomial because
we have precomputed a polynomial number of feasible solutions [AAS07]. The length of each
edge corresponds to some breakpoint in which the work assigned to the machine (agent) under
consideration reduces from w to some w′ < w. The breakpoint is the value α for which

max(α · w, M(w)) = max(α · w′, M(w′))

where M(z) is the minimum makespan, over all solutions assigning work z to the machine
under consideration and ignoring the completion time of this machine (i.e., the makespan
with respect to the other machines). 2

3.3 Limitations of the greedy algorithm

We show that the monotone 3-approximation algorithm by Kovacs [Kov05] cannot be ex-
tended in the “natural” way to the case with private capacities. This algorithm is the greedy
LPT algorithm which processes jobs in decreasing order of their sizes; the current job is
assigned to the machine resulting in the smallest completion time (ties are broken in a fixed
order).

The modified version of the greedy algorithm simply assigns a job under consideration to
the “best” machine among those for which adding this job does not exceed the corresponding
capacity. It turns out that this modified greedy algorithm is not monotone, for the case with
private capacities, even if we restrict to speeds (processing times) that are power of any
constant γ > 1. (Kovacs [Kov05] proved the monotonicity for γ = 2 and obtained a 3-
approximation by simply rounding the speeds.)

Theorem 17 The modified greedy algorithm is not truthful, even for fixed capacities and
when restricting to speeds that are power of any γ > 1.

Proof. There are three jobs of size 10, 6, and 5, and two machines both having capacity
11. The processing time of the second machine is γ > 1. We show that the work function
corresponding to the first machine is not two-cycle monotone (the theorem then follows from
Corollary 14).

When the first machine has processing time t1 = 1, the algorithm produces the allocation
in Figure 1(left) because after the first job is allocated to the fastest machine, the other two
jobs must go to the other machine because of the capacity. Now observe that when the
first machine has processing time t′1 = γ2 > t1, the algorithm simply “swaps” the previous

10

6

5

1010
6

5

γγ2processing times γ1

capacities

Figure 1: The proof of Theorem 17.

∞

capacities:

work:
1

0 -3

2

(0, 2) (1, 1) (0, 0)

w w′ w′′

types: t′ = (1, 2) t′′ = (1, 1)
c = (∞,∞) c′ = (∞,∞) c′′ = (0,∞)

-2

t = (1, 1)

Figure 2: Proof of Theorem 18.

allocation and assigns jobs as shown in Figure 1(right). It is easy to see that this violates
the (two-cycle monotonicity) condition of Corollary 14 because

10 = wA
1 ((1, 11), (γ, 11)) < wA

1 ((γ2, 11), (γ, 11)) = 11 = c1 = c′1.

This concludes the proof. 2

4 Multidimensional domains

In this section we show that two-cycle monotonicity does not characterize truthful mecha-
nisms for the multidimensional case. We prove the result even for the case of two-parameter
domains where each agent gets two amounts of different kind of work.

Theorem 18 Two-cycle monotonicity does not characterize truthfulness for two-parameter
agents with private capacities.

Proof. We show that there exists a function over a domain with three elements such that
the associated graph is like in Figure 2 (for the moment ignore the numbers associated to
the nodes). Thus the function is two-cycle monotone but not monotone (there exists a cycle
with three edges and negative length).

Each node corresponds to some work which is given in output for the type and the
capacity shown above this node: for example, w = (0, 2) = f(t, c) where t = (1, 1) and
c = (∞,∞).

11

Observe that edge w′ ← w′′ has length ∞ because work w′

1 = 1 exceeds the capacity
c′′1 = 0. The length of every other edge wa → wb is given by the formula

δwawb = ta · (wb − wa) = ta1 · (w
b
1 − wa

1) + ta2 · (w
b
2 − wa

2).

It is easy to check that the length of each edge is the one shown in Figure 2. This example
can be easily extended to a convex domain (details in Appendix A.3). 2

Acknowledgements. We wish to thank Riccardo Silvestri and Carmine Ventre for useful
comments on an earlier version of this work. We are also grateful to an anonymous referee
for a careful reading of the paper and for several suggestions.

References

[AAS07] Nir Andelman, Yossi Azar, and Motti Sorani. Truthful Approximation Mecha-
nisms for Scheduling Selfish Related Machines. Theory of Computing Systems,
40(4):423–436, 2007.

[AT01] Aaron Archer and Éva Tardos. Truthful mechanisms for one-parameter agents. In
Proc. of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS),
pages 482–491, 2001.

[BCL+06] Sushil Bikhchandani, Shurojit Chatterji, Ron Lavi, Ahuva Mu’alem, Noam Nisan,
and Arunava Sen. Weak monotonicity characterizes deterministic dominant strat-
egy implementation. Econometrica, 74(4):1109–1132, 2006.

[Cla71] Edward H. Clarke. Multipart Pricing of Public Goods. Public Choice, pages
17–33, 1971.

[DLN08] Shahar Dobzinski, Ron Lavi, and Noam Nisan. Multi-unit auctions with budget
limits. In FOCS, pages 260–269. IEEE Computer Society, 2008.

[GMV04] Hongwei Gui, Rudolf Muller, and Rakesh V. Vohra. Dominant strategy mecha-
nisms with multidimensional types. Discussion Papers 1392, Northwestern Uni-
versity, Center for Mathematical Studies in Economics and Management Science,
July 2004.

[Gro73] Theodore Groves. Incentive in Teams. Econometrica, 41:617–631, 1973.

[Kov05] Annamária Kovács. Fast monotone 3-approximation algorithm for scheduling
related machines. In Gerth Stølting Brodal and Stefano Leonardi, editors, ESA,
volume 3669 of Lecture Notes in Computer Science, pages 616–627. Springer,
2005.

12

[LS08] Ron Lavi and Chaitanya Swamy. Truthful mechanism design for multidimensional
scheduling via cycle monotonicity. Games and Economic Behavior, 2008. In press,
doi:10.1016/j.geb.2008.08.001.

[MS07] Ahuva Mu’alem and Michael Schapira. Setting lower bounds on truthfulness. In
Proc. of annual ACM symposium on discrete algorithms (SODA), pages 1143–
1152, 2007.

[Mye81] Roger B. Myerson. Optimal auction design. Mathematics of Operations Research,
6:58–73, 1981.

[NR01] Noam Nisan and Amir Ronen. Algorithmic Mechanism Design. Games and Eco-
nomic Behavior, 35:166–196, 2001. Extended abstract in the Proc. of the 31st
Annual ACM Symposium on Theory of Computing (STOC), pages 129–140, 1999.

[Rob79] Kevin Roberts. The characterization of implementable choice rules. Aggregation
and Revelation of Preferences, pages 321–348, 1979.

[Roc87] Jean-Charles Rochet. A necessary and sufficient condition for rationalizability in
a quasi-linear context. Journal of Mathematical Economics, 16(2):191–200, 1987.

[SY05] Michael Saks and Lan Yu. Weak monotonicity suffices for truthfulness on convex
domains. In Proceedings of the 6th ACM conference on Electronic commerce (EC),
pages 286–293, New York, NY, USA, 2005. ACM.

[Vic61] William Vickrey. Counterspeculation, Auctions and Competitive Sealed Tenders.
Journal of Finance, pages 8–37, 1961.

13

A Postponed proofs

A.1 Proof of Theorem 10

Proof. Suppose by contradiction that a truthful f is not two-cycle monotone. That is,
there exist w and w′ such that

(t− t′)(w′ − w) < 0

where w = f(t, c) and w′ = f(t′, c′) for some c ≥ w′ and c′ ≥ w. Consider the case in which
the true type and capacity are t and c, respectively. Since c ≥ w′ = f(t′, c′), the agent report
a type t′ and a capacity c′. Then, truthfulness implies that

pw − w · t ≥ pw′ − w′ · t. (6)

Similarly, by considering the case in which the true type and capacity are t′ and c′, because
of c′ ≥ w and because of truthfulness we obtain

pw′ − w′ · t′ ≥ pw − w · t′. (7)

By summing up these two inequalities we get

(t− t′)(w′ − w) ≥ 0

thus contradicting the fact that f is not two-cycle monotone.
Since the function is monotone, the associated graph contains no negative cycles. We can

thus define the payments p = {pw}w∈W by means of shortest-path distances: Fix arbitrarily
a node w0 in the graph, and let each pw be the length of the shortest path from node w to
node w0. Because of the triangle inequality, for every w, w′ ∈W we have

pw′ − pw ≤ δww′.

Now observe that, for every t, c, t′, and c′ such that c ≥ w′ = f(t′, c′)

δww′ ≤ t · (w′ − w)

where w = f(t, c). Hence
pw − w · t ≥ pw′ − w′ · t

meaning that (f, p) is a truthful mechanism. 2

A.2 Proof of Fact 13

For any (t, c) and (t′, c′), let w = f(t, c) and w′ = f(t′, c′). Since the algorithm respects
the capacities, if w′ > w then c′ ≥ w′ > w. Therefore, the following two conditions are
equivalent:

w′ ≤ w or w′ > c (8)

w′ ≤ w or w′ > c or w > c′ (9)

14

∞

2

capacities: (∞,∞) (∞,∞) (0,∞)

work: (0,0)(1,1)(0,2)

0 -3

0

types: (1,1) (1, (1, 2]) (1, [1, 2])

w w′

w′′

-2

Figure 3: Proof of Theorem 18 for convex domains with private capacities.

Observe that the two-cycle monotonicity condition in Definition 9 can be rewritten as follows:
For all (t, c) and (t′, c′) with t′ > t it holds that

w′ − w ≤ 0 or c ≥ w′ or c′ ≥ w

that is (9). Fact 13 is an immediate consequence of the equivalence between (8) and (9).

A.3 Proof of Theorem 18 for convex domains

We extend the types domain of the graph in Figure 2 to a convex domain so that we
obtain (roughly) the same graph. So, the underlying function is two-cycle monotone but not
monotone. The types domain is now defined as

D := {1} × [1, 2]

meaning that we consider all t = (t1, t2) with t1 = 1 and t2 ∈ [1, 2]. The types domain is
clearly convex since, for any t and t′ in the domain, their convex combination

λt + (1− λ)t′ = (1, λt2 + (1− λ)t′2)

is also an element of the domain.
The function is specified by the graph in Figure 3, where the labels attached to the

nodes specify a range of values for the types and the corresponding work: for example, work
w′ = (1, 1) is given in output for capacities c′ = (∞,∞) and for all t′ = (t′1, t

′

2) such that
t′1 = 1 and t′2 ∈ (1, 2].

Now we show that the length of the edges is indeed as shown in Figure 3:

δww′ = inf{t · (w′ − w)| t ∈ D and there exists c ≥ w′ such that f(t, c) = w}

= (1, 1) · (w′ − w) = (1, 1) · (1,−1) = 0

δw′w′′ = inf{t′ · (w′′ − w′)| t′ ∈ D and there exists c′ ≥ w′′ such that f(t′, c′) = w′}

= inf{t′ · (−1,−1)| t′1 = 1 and t′2 ∈ (1, 2]} = −3

δw′′w = inf{t′′ · (w − w′′)| t′′ ∈ D and there exists c′′ ≥ w such that f(t′′, c′′) = w′′}

= inf{t′′ · (0, 2)| t′′1 = 1 and t′′2 ∈ [1, 2]} = 2

δww′′ = inf{t · (w′′ − w)| t ∈ D and there exists c ≥ w′′ such that f(t, c) = w}

15

2

capacities: (∞,∞) (∞,∞) (0,∞)

work: (0,0)(1,1)(0,2)

0 -3

0 3

any

types: (1,1) (1, (1, 2]) (1, [1, 2]) (1, (2,∞))OR

w w′

w′′

-2

Figure 4: An extension of Theorem 18 to unbounded convex domains with private capacities.

= (1, 1) · (w′′ − w) = (1, 1) · (0,−2) = −2

δw′′w′ = inf{t′′ · (w′ − w′′)| t′′ ∈ D and there exists c′′ ≥ w′ such that f(t′′, c′′) = w′′}

= inf ∅ =∞

δw′w = inf{t′ · (w − w′)| t′ ∈ D and there exists c′ ≥ w such that f(t′, c′) = w′}

= inf{t′ · (−1, 1)| t′1 = 1 and t′2 ∈ (1, 2]} = 0

where for δw′′w′ we use the fact that, if f(t′′, c′′) = w′′, then c′′ = (0,∞) and thus c′′ 6≥ w′ =
(1, 1).

Now we further extend the result by allowing the second parameter to be arbitrarily
large. We thus consider the following unbounded types domain

D∞ := {1} ∪ [1,∞)

and extend the example as shown in Figure 4: The only difference is that work w′′ = (0, 0)
is also given in output whenever t2 ≥ 2 and for all possible capacities. Hence, only the edges
whose first endpoint is w′′ can have a different length, compared to Figure 3. For them, we
have

δw′′w = inf{t′′ · (w − w′′)| t′′ ∈ D∞ and there exists c′′ ≥ w such that f(t′′, c′′) = w′′}

= inf{t′′ · (0, 2)| t′′1 = 1 and t′′2 ≥ 1} = 2

δw′′w′ = inf{t′′ · (w′ − w′′)| t′′ ∈ D∞ and there exists c′′ ≥ w′ such that f(t′′, c′′) = w′′}

= inf{t′′ · (1, 1)| t′ ∈ D∞ such that f(t′′, c′′) = w′′ for c′′ = (∞,∞)}

= inf{t′′ · (1, 1)| t′′1 = 1 for some t′′2 ≥ 2} = 3

where for δw′′w′ we use the fact that, if c′′ ≥ w′ and f(t′′, c′′) = w′′, then it must be c′′ =
(∞,∞).

B What happens when greedy is monotone for fixed

capacities

We show that the only obstacle to an extension of the approach by Kovacs [Kov05] is the
fact that the greedy LPT approximation algorithm is not monotone for fixed capacities.

16

Essentially, the monotonicity for fixed capacities of the modified greedy implies truthfulness
with capacities of the approach by Kovacs [Kov05]. This is important because, for certain
job instances, the algorithm is in fact monotone.

Theorem 19 If the modified greedy algorithm is monotone for fixed capacities and speeds
that are power of two, then it is also monotone for the case with (arbitrary) capacities and
speeds that are power of two.

Proof. By contradiction, suppose that the function associated to some agent in not mono-
tone. That is, there exist t′ > t, w′ > w, and c ≥ w′. We consider

w̃ := f(t′, c)

that is the work assigned to the agent on input type t′ and capacity c. We show that w̃ ≥ w′

and conclude, by the monotonicity for fixed capacities, that w = f(t, c) ≥ f(t′, c) = w′.
We show a stronger fact, that is, the algorithm must produce the same allocation on

input type t and capacity c′ as on input type t′ and capacity c (types are different but the
capacity is the same). We distinguish to cases:

1. c′ > c. If a job under consideration is not allocated to this agent because it exceeds
capacity c′, then the same happens for capacity c. The job is then allocated to another
machine which is the same in both cases. If the job is allocated to this agent on input
capacity c′, then the current work after allocating the job is at most w′ and thus it is
feasible also for capacity c ≥ w′. So, the algorithm makes the same allocation on input
capacity c.

2. c′ < c. If w̃ ≥ w′ then we are done. Otherwise, for w̃ < w′, we show that the allocation
on input c is the same as that on input c′. If a job is not allocated because of capacity
c, then the same happens because c > c′. If instead the job is allocated to the agent,
then the resulting work is at most w̃ and thus at most c′ ≥ w′ > w̃.

2

Kovacs [Kov05] proved that the algorithm is 3/2 approximated for speeds that are power
of two, and thus 3 approximations can be obtained by rounding the speeds.

Corollary 20 There exists a polynomial-time 3-approximation mechanism for scheduling
selfish machines with private capacities which is truthful whenever the set of jobs is such that
the modified greedy algorithm is monotone for fixed capacities.

Proof. The very same argument used in the proof of the theorem above works also for the
modified version of greedy LPT in which speeds are rounded to the closest power of two.
Indeed, the rounding preserves the monotonicity (for fixed capacities). 2

17

	Introduction
	Agents with private capacities
	A simple reduction to the single-agent case
	Cycle monotonicity and truthfulness

	Characterizations for one-parameter agents
	Applications to min-max problems
	Exact mechanisms are possible
	Makespan on related machines in polynomial time
	Limitations of the greedy algorithm

	Multidimensional domains
	Postponed proofs
	Proof of Theorem 10
	Proof of Fact 13
	Proof of Theorem 18 for convex domains

	What happens when greedy is monotone for fixed capacities

