
Online train disposition: to wait or not to wait? ∗

Luzi Anderegg† Paolo Penna‡ Peter Widmayer†

June 15, 2009

Abstract

We deal with an online problem arising from bus/tram/train disposition problems. In par-

ticular, we look at the case in which the delay is unknown and the vehicle can only wait in a

station so as to minimize the passengers’ waiting time.

We present deterministic polynomial-time optimal algorithms and matching lower bounds

for several problem versions. In addition, all lower bounds also apply to randomized algorithms,

thus implying that using randomization does not help.

1 The setting

While many of the optimization problems encountered in transportation have already been studied in

the early days of operations research [Dantzig and Fulkerson, 1954], [Bertossi, Carraresi, and Gallo,

1987], [Brucker, Hurink, and Rolfes, 1999] and have even stimulated the development of the field,

this is not the case for disposition problems. Disposition (also known as operations control) deals

with the real time reaction against the negative effects of unexpected events. For railways, the goal

is to maintain high service quality in spite of events such as delays due to disturbances. Problems of

this sort have been attacked mostly by computer simulations [Heimburger, Herzenberg, and Wilson,

1999], [Zhu and Schnieder, 2001] (see also [Mansilla, 2001] for a survey). In this paper, we pursue

a different approach: we aim at an understanding of the fundamental algorithmic nature of these

problems. In particular, we will look at worst case analysis of algorithms that must work with

∗A preliminary version of this paper appeared in [Anderegg, Penna, and Widmayer, 2002]
†Institute for Theoretical Computer Science, ETH Zentrum, CH-8092 Zürich, Switzerland, E-mail:

{lastname}@inf.ethz.ch.
‡Dipartimento di Informatica ed Applicazioni “R.M. Capocelli”, Università di Salerno, via S. Allende 2, I-84081

Baronissi (SA), Italy. E-mail: penna@dia.unisa.it.

1

partial information (e.g., we know that a vehicle has been delayed, but we do not exactly know by

how many time units). To this aim, we will show how these questions can be treated as an online

problem [Borodin and El-Yaniv, 1998], [Fiat and Woeginger, 1998]. Then, we will characterize the

performance of algorithms depending on several factors like (i) number of vehicles, (ii) whether the al-

gorithm has some estimation of the delays, (iii) whether it can use randomization, etc. This problem

is closely related to the delay management problem: a schedule and a delay for one or more vehicles

is given and good decisions (e.g., to wait or to depart) for the consecutive trains must be taken. In

contrast to our problem, most delay management studies assume that the exact delay is known to the

algorithm. [Suhl, Biederbick, and Kliewer, 2001] and [Adenso-Dı́az, Gonzáles, and Gonzáles-Torre,

1999] use simulation systems for analyzing the delay management problem. Other authors, such

as [Schöbel, 2001] (see also [Ginkel, 2001] for a survey), formulate an optimization problem in

which the goal is to minimize the total waiting time subject to different constraints (slack times

available at stations and tracks, connections can be dropped, etc.). For the same objective func-

tion, [Gatto, Glaus, Jacob, Peeters, and Widmayer, 2004] described polynomial time algorithms for

special cases, such as a limited number of transfers, or a railway network with a path topology.

In a follow-up paper [Gatto, Jacob, Peeters, and Schöbel, 2005], a more general variant of the de-

lay management problem was shown to be NP-complete both with and without slack times (or

buffer times) in the timetable. More work on the delay management problem has been done in

[Ginkel and Schöbel, 2007], [Cicerone, D’Angelo, Di Stefano, Frigioni, and Navarra, 2008]. The on-

line delay management problem has been addressed further in [Gatto, Jacob, Peeters, and Widmayer,

2007] where the authors again considered also the case of a single line. The main difference be-

tween the model in that paper and the one here is on the delay incurred by the passengers. In

[Gatto, Jacob, Peeters, and Widmayer, 2007], passengers’ delay is exclusively due to the fact that a

train at a station does not wait and thus a connection is missed. In our model, instead, passengers

arrive at the station and we consider how much each of them should wait before their train leaves.

1.1 The disposition problem

Consider the following scenario from high-frequency bus (or tram or train) systems: we are given

a station with r > 0 passengers arriving at each time unit on average (i.e., r is the arrival rate of

passengers at the station). Buses reach the station regularly every t time units if no delay occurs.

Whenever a bus reaches the station, it picks up all waiting passengers (i.e., the seating capacities

2

station

B3 B1

location

t + δ time units
distance travelled in distance travelled in

t time units
B2

Figure 1: The case of three buses.

of the bus are not our concern). We assume that picking up the passengers is instantaneous, i. e.,

requires no time. This implies that the overall passenger waiting time at the station (sum of all

individual waiting times) is r · t2/2 per t time units between any two consecutive buses. Now

consider the case in which one bus is currently at some station and the next bus is delayed by some

amount of δ > 0 time units. Assume the only action we can take is to make a bus wait in a station

(this is sometimes referred to as holding [O’Dell and Wilson, 1999]). The problem now is to decide

how long the bus in the station should wait, if at all.

A convenient way of looking at this problem is to consider a snapshot of only three buses B3,

B2 and B1 as in Figure 1 that are travelling from left to right (we will drop the limitation to three

buses later and consider more buses). Then, from the point of view of the passengers in the station,

making B2 wait for w time units is equivalent to “shift” B2 leftwards by the distance that a bus

travels in w time units. The overall waiting time (denoted as cost) can be computed according to

which bus passengers get in (Figure 2 shows the case w = 0), as

cost = r(t + w)2/2
︸ ︷︷ ︸

B2

+ r(t + δ − w)2/2
︸ ︷︷ ︸

B3

. (1)

Clearly, knowing δ, the best choice (i.e., the choice that minimizes the value in Equation 1) is

w = δ/2. However, for our problem of interest, we only know that B3 is delayed (e. g., because of a

traffic jam), but we do not exactly know δ. In this case, should B2 leave immediately or wait for a

while? In the latter case, how much should it wait for?

1.2 An algorithmic perspective

We view this question as an online problem in which we have to choose a good w without knowing

δ (ideally, w should be good for all possible delays δ). Because the value of t is purely a matter of

scaling time units, we will assume from now on that t = 1. Then, the actual waiting time, denoted

as cost, is r(1 + w)2/2 + r(1 + δ − w)2/2, and the optimum waiting time is r(1 + δ/2)2. For the

3

take bus

B3B2

take bus

time

time

B1 B3

t + δt

B2

number of

bus departures

waiting
passengers
waiting

Figure 2: Passengers waiting time when bus B3 has a delay δ.

competitive ratio, that is, the ratio between the actual and the optimum waiting times, the arrival

rate r cancels, and therefore we assume for simplicity of the presentation from now on that r = 2.

That is, we get the actual waiting time cost(w, δ) = (1 + w)2 + (1 + δ − w)2, and the competitive

ratio within the interval of arrival times from bus B1’s departure to B3’s arrival is

ρ(w, δ) =
cost(w, δ)

opt(δ)
=

(1 + w)2 + (1 + δ − w)2

2(1 + δ/2)2
. (2)

We are interested in online algorithms that minimize the above ratio without knowing δ, that is,

algorithms that decide w in such a way that maxδ≥0 ρ(w, δ) is as small as possible. This is clearly

equivalent to find minw≥0 maxδ≥0 ρ(w, δ). Note that if we choose a waiting time w > 1 and the

adversary chooses not to delay bus B3 then the situation is as if there is no bus B2. The competitive

ratio becomes strictly greater than two. As choosing not to wait gives a competitive ratio of less

than two (compare also Section 2 and the proof of Theorem 5) we only need to consider w in [0, 1]

respectively find minw∈[0,1] maxδ≥0 ρ(w, δ).

We consider two versions of this problem: (a) the unbounded case in which δ can be any positive

integer; (b) the bounded case in which δ ≤ ∆, where ∆ is a positive integer known to the algorithm,

that is, an upper bound on the maximum delay that can occur.

Remark 1 (Competitive measures) Notice that we are adopting the definition of strictly c-

competitive algorithms. However, for our problem(s) this is equivalent to that of c-competitiveness.

Indeed, we have assumed t = 1 only for the sake of simplicity, but we do not consider t constant

(or as a parameter of the problem), since we want to derive algorithms that perform well for any t

4

known to the algorithm. Under this assumption, we can always construct an instance whose cost is

arbitrarily large by increasing t. This allows to apply any lower bound on the strict competitiveness

also to the (weaker) definition of c-competitiveness. On the other hand, if t is a constant of the

problem, then the definition of c-competitiveness is meaningless: the worst solution we can get has

cost at most opt+∆r = opt+O(1). This would imply a 1-competitive algorithm, regardless of what

we do, while the (strictly) competitive ratio tells us whether the strategy is good or not.

1.3 Our contribution

We consider the above mentioned online problem and its natural extension in which a set of n + 2

buses (instead of three) is given: bus B1 already left the station, bus Bn+2 has a delay δ and we

have to decide the waiting time wi for each Bi, for i = 2, . . . , n + 1. This provides a family of

basic disposition problems that capture some fundamental aspects of the real situations. For these

problems, we completely characterize the competitive ratio of both deterministic and randomized

algorithms, depending on n and ∆. In particular, we prove the tight bounds shown in Figure 3.

Problem version Lower bound Upper bound

Unbounded delays n + 1 n + 1

Bounded delays (δ ≤ ∆) 1 + n
(

∆
2+2n+∆

)2

1 + n
(

∆
2+2n+∆

)2

Figure 3: Our results on the competitive ratio of online algorithms. All upper bounds are obtained
via deterministic algorithms, while lower bounds also apply to randomized ones.

Interestingly, all the upper bounds are given via deterministic algorithms, while the lower bounds

also apply to randomized ones. Indeed, we show that the competitive ratio attained by our deter-

ministic algorithms cannot be improved even when considering randomized algorithms against an

oblivious adversary [Borodin and El-Yaniv, 1998], [Fiat and Woeginger, 1998]. In other words, ran-

domization is useless for our disposition problems.

Paper organization. For the sake of clarity, we first present our results for the case n = 1. In

particular, Sections 2 and 3 deal with the unbounded and the bounded case, respectively. We then

extend the results to the case n > 1 in Section 4. Finally, in Section 5 we discuss further extensions

and open questions.

5

2 Unbounded delays

We first observe that two strategies are always possible:

No wait. In this case w = 0 and ρ(w, δ) = 1+(1+δ)2

2(1+δ/2)2 . For δ → ∞, this ratio tends to 2 from below.

Wait “forever”. This means that B2 waits until B3 arrives in the station. Then, ρ(w, δ) = 2.

The above two strategies seem quite inefficient. Indeed, a better choice might be a compromise

of them (i.e. wait, but not too much). Unfortunately, the following result shows that finding such a

compromise is impossible:

Theorem 2 No (randomized) algorithm can be better than 2-competitive in the case of unbounded

delays.

Proof. Every (randomized) algorithm Alg chooses an upper bound W ∈ R+ ∪ {∞} on the waiting

time according to some probability distribution independent of δ (this value is chosen by the adver-

sary and is not known to the algorithm). For every δ, the waiting time is min(W, 1 + δ) because we

never wait more than the time the delayed bus arrives at the station (at that point δ is disclosed

to the algorithm and the optimal decision is to have the bus to leave). In particular W = ∞ cor-

responds to the “wait forever” strategy meaning that, for every δ, the waiting time w is equal to

1 + δ. Observe that the “no wait” strategy (W = 0) strictly dominates the “wait forever” strategy

(W = ∞) because ρ(0, δ) = 1+(1+δ)2

2(1+δ/2)2 = 2+δ2+2δ
2+δ2/2+2δ ≤ 2 = ρ(1 + δ, δ), for every δ ≥ 0 (see Equa-

tion 2). Therefore, for every Alg that chooses W = ∞ (the “wait forever” strategy) with nonzero

probability, there is another algorithm Alg
′ which has the same or a better competitive ratio and

that chooses W = ∞ with probability zero.

We can thus focus on algorithms that choose always a finite upper bound W on the waiting

time according to some probability distribution. This implies that, for any p ∈ (0, 1], there exists

w such that Pr[W ≤ w] ≥ 1 − p. Since ρ(w, δ) is decreasing for w ∈ [0, δ/2] (see Equation 2) we

have that ρ(W, δ) ≥ ρ(w, δ) for all W ≤ w and δ ≥ 2w. Therefore, the competitive ratio is at least

(1 − p) · ρ(w, δ) for every δ ≥ 2w. Since p can be arbitrarily small and since the adversary can

choose δ arbitrarily large to make ρ(w, δ) close to 2 (note that, for any fixed w, ρ(w, ·) tends to 2

for δ → ∞), the lower bound (1− p) · ρ(w, δ) on the competitive ratio can be made arbitrarily close

to 2. Hence the theorem follows.

6

Although the above theorem implies that both strategies above are optimal for large delays, it

is clear that “no wait” is always better than “wait forever”. Moreover, the former performs quite

well whenever δ is small. In the subsequent section we investigate this version of the problem.

3 Bounded delays

In this section we consider the version of the problem in which δ ≤ ∆, where ∆ is a positive

constant known to the algorithm. The purpose of this is twofold: on the one hand we want to study

whether this additional information allows for improved competitive ratios; on the other hand, we

are interested in finding tight bounds that show how fast the competitive ratio tends to 2 as ∆

increases. The “no wait” strategy provides a first upper bound. However, the reader can easily

check that choosing w = ∆/2 gives already an improvement. In the next section we give a tight

bound for deterministic algorithms.

3.1 Deterministic algorithms

Our algorithm Det should choose a good value of w based solely on the information that δ ≤ ∆.

To this aim, we first restrict ourselves to a weaker adversary that chooses only δ = 0 or δ = ∆.

Therefore, our goal will become

min
w

max{ρ(w, 0), ρ(w, ∆)}. (3)

In order to determine the best value for w according to Equation 3, we look for which values of

w the adversary would give us δ = 0, that is ρ(w, 0) ≥ ρ(w, ∆). The latter condition is equivalent

to

(1 + w)2 + (1 − w)2

2
≥

(1 + w)2 + (1 + ∆ − w)2

2(1 + ∆/2)2
,

which corresponds to w ≥ ∆/(4 + ∆) =: w0(∆). Since ρ(w, ∆) is monotonically decreasing in

[0, w0(∆)] and ρ(w, 0) is monotonically increasing in [w0(∆), ∆], we have (see also Figure 4)

min
w

max{ρ(w, 0), ρ(w, ∆)} = ρ(w0(∆), 0) = 1 +

(
∆

4 + ∆

)2

. (4)

The following lemma is used to show that Det performs well also against an adversary choosing

7

any δ ∈ [0, ∆].

Lemma 3 For any w ≥ 0, max0≤δ≤∆ ρ(w, δ) ≤ maxδ∈{0,∆} ρ(w, δ).

Proof. We distinguish the two cases w ≥ w0(∆) and w < w0(∆). For w ≥ w0(∆), we show that

ρ(w, δ) ≤ ρ(w, 0) whereas for w < w0(∆), we show that ρ(w, δ) ≤ ρ(w, ∆). So, let us assume that

w ≥ w0(∆). Then

ρ(w, δ) − ρ(w, 0) = −

(
δ(1 + w)(w(δ + 4) − δ))

(2 + δ)2

)

≤ −

(
δ(1 + w)(w0(∆)(δ + 4) − δ)

(2 + δ)2

)

= −

(
δ(1 + w)(δ(w0(∆) − 1) + 4w0(∆))

(2 + δ)2

)

≤ −

(

δ(1 + w)(∆(∆
∆+4 − 1) + 4 ∆

∆+4)

(2 + δ)2

)

= 0

Hence, in the first case ρ(w, δ) is maximized for δ equal zero.

For the case w < w0(∆), we consider the difference ρ(w, δ) − ρ(w, ∆). Since

d2

dw2
[ρ(w, δ) − ρ(w, ∆)] =

8

(2 + δ)2
−

8

(2 + ∆)2
≥ 0 (for δ ≤ ∆),

the difference is convex between 0 and ∆ with respect to w. Hence over the region w ∈ [0, w0(∆)]

the maximum of ρ(w, δ) − ρ(w, ∆) must be either at w = 0 or at w = w0(∆). But

ρ(0, δ) − ρ(0, ∆) =
4(δ − ∆)(δ + ∆ + δ∆)

(2 + δ)2(2 + ∆)2
≤ 0

and

ρ(w0(∆), δ) − ρ(w0(∆), ∆) =
8δ(δ − ∆)(2 + ∆)

(2 + δ)2(4 + ∆)2
≤ 0.

Hence, in the second case ρ(w, δ) is maximized for δ equal ∆.

Because of the above lemma and the definition of w0(∆), we obtain the following:

Theorem 4 No deterministic algorithm can be strictly better than 1 + w0(∆)2 competitive, where

w0(∆) = ∆/(4 + ∆). Therefore, Det is optimal for any ∆ ≥ 0.

8

1

∆

ρ(w, δ)

w0(∆)

adversary

δ

w

Figure 4: The worst cases for the deterministic algorithm.

As expected, this bound tends to 2 when ∆ goes to infinity (which corresponds to the case of

unbounded delays).

3.2 Lower bound for randomized algorithms

In this section, we show that no randomized algorithm Rand can achieve an expected competitive

ratio smaller than the competitive ratio of the deterministic algorithm Det.

Theorem 5 For any ∆ > 0, no randomized algorithm Rand can be better than Det.

Proof. Suppose w is chosen randomly with corresponding random variable W . Then, for any W , the

adversary chooses δ such that E[ρ(W, δ)] is maximized. Because ρ(w, δ) is a convex function in w

(see Equation 2), we can apply Jensen’s inequality [Jensen, 1906], and reduce the randomized case

to the deterministic one. In particular, Jensen’s inequality implies

max
δ

E[ρ(W, δ)] ≥ max
δ

ρ(E[W], δ).

The latter quantity is the competitive ratio of the deterministic algorithm choosing w = E[W].

Hence, the result is implied by Theorem 4.

4 Many buses

Consider a set of n+2 buses {B1, . . . , Bn+2} such that: (i) B1 already left the station, (ii) Bn+2 has

been delayed by δ, and (iii) the set {B2, . . . , Bn+1} corresponds to the control set of n buses that

9

we can delay in order to minimize the overall waiting time. Let ~w = (w2, w3, . . . , wn+1) represent

such waiting times, i.e., bus Bi is delayed by wi, i = 2, . . . , n + 1. The cost is clearly

cost(~w, δ, n) = (1 + w2)
2

︸ ︷︷ ︸

B2

+

n∑

i=2

(1 + wi+1 − wi)
2

︸ ︷︷ ︸

Bi+1

+ (1 + δ − wn+1)
2

︸ ︷︷ ︸

Bn+2

. (5)

As we do assume that Bi always precedes Bi+1, for i = 1, . . . , n + 1, we restrict ourselves to

those ~w for which wi ≤ wi+1, i = 2, . . . , n. In fact, we next show that without loss of generality it

is enough to consider certain “balanced” waiting times:

Definition 6 (Balanced vector) Let the balanced vector ~u(x) be the vector assigning waiting time

wi = (i − 1)x/n to bus Bi for i = 2, . . . , n + 1.

Observe that for a balanced vector ~u(x) the distance between two any consecutive buses is identical,

namely equal to 1+x/n (except between buses Bn+1 and Bn+2 where it is 1+ δ−x). The following

fact then follows from Equation 5 and Definition 6.

Fact 7 For every ~w that is not balanced it holds that

∀δ : cost(~w, δ, n) > cost(~u(wn+1), δ, n).

Because of the above fact, we have to choose an optimal waiting time for bus Bn+1 to compensate

the delay δ. The buses B2 to Bn are then evenly distributed. That is, we have to set wn+1 = x so

that

max
δ

ρ(~u(x), δ) = max
δ

cost(~u(x), δ)/opt(δ)

is as small as possible. In the sequel, we let

ρ(x, δ, n) := ρ(~u(x), δ) =
n(1 + x/n)2 + (1 + δ − x)2

(n + 1)(1 + δ/(n + 1))2
. (6)

Observe that, for all x > 1, ρ(x, 0, n) ≥ maxδ ρ(0, δ, n). Hence, we will restrict ourselves to

x ∈ [0, 1]. The following result is a simple generalization of Theorem 2.

Theorem 8 For the case of n + 2 buses and unbounded delays, no (randomized) algorithm can be

better than (n + 1)-competitive.

10

4.1 Bounded delays

We first consider an adversary that always picks δ ∈ {0, ∆}, as in the case n = 1. Then, we observe

that ρ(w, 0, n) is equal to ρ(w, ∆, n) for w = n∆/(2 + 2n + ∆) =: w0(∆). Further, ρ(w, ∆, n)

is greater than ρ(w, 0, n) and monotonically decreasing in [0, w0(∆)]. In [w0(∆), ∆], ρ(w, 0, n) is

greater than ρ(w, ∆, n) and monontonically increasing. Therefore, the best deterministic algorithm

Det against the restricted adversary is given by the value w0(∆) with competitive ratio equal to

ρ(w0(∆), 0, n). From Equation 6, it follows that

∀w, ρ(w, 0, n) = 1 + w2/n,

thus implying a competitive ratio of 1 + n
(

∆
2+2n+∆

)2

.

The next lemma shows that the adversary cannot profit from choosing δ in [0, ∆].

Lemma 9 For any w ≥ 0, max0≤δ≤∆ ρ(w, δ, n) ≤ maxδ∈0,∆ ρ(w, δ, n).

Proof. The proof follows the same steps as Lemma 3.

For w ≥ w0(∆):

ρ(w, δ, n) − ρ(w, 0, n) =
δ(n + w)(δn − (δ + 2n + 2)w)

n(δ + n + 1)2

≤
δ(n + w)(δn − (δ + 2n + 2)w0(∆))

n(δ + n + 1)2

=
δ(n + w)(δ(n − w0(∆)) − (2n + 2)w0(∆))

n(δ + n + 1)2

≤
δ(n + w)(∆(n − w0(∆)) − (2n + 2)w0(∆))

n(δ + n + 1)2
= 0

For w < w0(∆): Since for δ ≤ ∆

d2

dw2
[ρ(w, δ, n) − ρ(w, ∆, n)] = (n + 1)

(
2 + 2

n

(δ + n + 1)2
−

2 + 2
n

(∆ + n + 1)2

)

is greater equal zero, the maximum of this difference is either at w = 0 or at w = w0(∆). But

ρ(0, δ, n)− ρ(0, ∆, n) = (n + 1)

(
n(δ − ∆)(nδ + 2∆δ + δ + n∆ + ∆)

(δ + n + 1)2(∆ + n + 1)2

)

≤ 0

11

and

ρ(w0(∆), δ, n) − ρ(w0(∆), ∆, n) =
4δn(n + 1)(δ − ∆)(n + ∆ + 1)

(δ + n + 1)2(2n + ∆ + 2)2
≤ 0.

Lemma 9 together with the definition of w0(∆) implies the following:

Theorem 10 For any n ≥ 1 and for any ∆ > 0, no deterministic online algorithm can have

competitive ratio better than 1 + w0(∆)2/n, where w0(∆) = n∆/(2 + 2n + ∆). Therefore, Det is

optimal.

Similar to Section 3 we can extend this result to any randomized algorithm Rand.

Theorem 11 For any n ≥ 1 and for any ∆ > 0, no randomized algorithm Rand can be better than

Det.

Proof. We first observe that the function ρ(·, δ, n) is convex, that is, for every δ ≥ 0 and for any two

vectors ~w, ~z it holds that

λ · ρ(~w, δ, n) + (1 − λ) · ρ(~z, δ, n) ≥ ρ(λ~w + (1 − λ)~z, δ, n), (7)

for λ ∈ [0, 1]. This follows from Equation 5 and from the fact that the function (1 + x)2 is convex.

In particular, for ~e = (E[W2], . . . , E[Wn+1]) being the expected vector of ~W = (W2, . . . , Wn+1), we

obtain

max
δ

E[ρ(~W , δ)] ≥ max
δ

ρ(~e, δ) (Jensen’s inequality)

≥ max
δ

ρ(~u(en+1), δ) (apply Fact 7 with en+1 = E[Wn+1])

The latter quantity is the competitive ratio of the deterministic algorithm corresponding to the

vector ~u(en+1). Theorem 10 thus implies the desired result.

5 Conclusion

Disposition in a transportation system is critical for customer satisfaction. In this paper we look at

a disposition problem arising in high-frequency bus (or tram or train) systems from an algorithmic

12

point of view. We formulate the problem as an online problem and prove tight bounds on the

competitive ratio of the problem.

This work provides a basis for competitive analysis of disposition in more complex high-frequency

transportation systems. We prove our results for a basic setting which captures some of the main

aspects of more complex situations. In particular, our model focuses on the waiting time experienced

by passengers waiting at a station. Our results characterize the loss of efficiency (w.r.t. the total

waiting time) depending on the amount of resources available (i.e., the number of buses) and on the

amount of information about the delay we have (i.e., an upper bound ∆ on the delay δ).

We have shown that optimal solutions can be obtained from very simple deterministic algorithms

which fix the waiting time of the bus Bn+1 preceding the delayed bus to a value w0(∆) · t, where

t is the time two consecutive buses reach the station if not delayed. The optimal waiting time for

the other buses is always uniquely determined by the waiting time chosen for Bn+1. This simple

strategy outperforms any possible randomized choice of buses waiting times.

As future research, our setting can be extended in several ways to reflect real world aspects. For

instance, several stations with different arrival rates, several bus lines sharing some stations, or other

cost functions can be considered.

Moreover, the formulation as an online problem can be applied to other disposition problems

in transportation systems. In this context, the model should be adapted to the different types of

possible reactions in the case of an unexpected event and the appropriate cost function.

Acknowledgments. The authors wish to thank an anonymous reviewer for suggesting the use of

Jensen’s inequality argument in the analysis of randomized algorithms and for suggesting a simpler

proof of Lemma 3. This work has been partially supported by the Swiss National Science Foundation

under Project no. 200021-107685 (Algorithmic Methods for Delay Management). Most of this work

was done while the second author was working at ETH Zürich.

References

B. Adenso-Dı́az, M.O. Gonzáles, and P. Gonzáles-Torre. On-line timetable re-scheduling in regional

train services. Transportation Research, 33B:287–398, 1999.

13

L. Anderegg, P. Penna, and P. Widmayer. Online train disposition: to wait or not to wait? Proc.

ATMOS 2002, also available in the Electronic Notes in Theoretical Computer Science, 66(6), 2002.

A. Bertossi, P. Carraresi, and G. Gallo. On some matching problems arising in vehicle scheduling

models. Networks, 17:271–281, 1987.

A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge University

Press, 1998.

P. Brucker, J.L. Hurink, and T. Rolfes. Routing of railway carriages: A case study. In Memorandum

No. 1498, Fac. of Mathematical Sciences. Univ. of Twente, Fac. of Math. Sciences, 1999.

S. Cicerone, G. D’Angelo, G. Di Stefano, D. Frigioni, and A. Navarra. Delay management problem:

Complexity results and robust algorithms. In B. Yang, D.-Z. Du, and C. A. Wang, editors,

COCOA, volume 5165 of Lecture Notes in Computer Science, pages 458–468. Springer, 2008.

ISBN 978-3-540-85096-0.

G. Dantzig and D. Fulkerson. Minimizing the number of tankers to meet a fixed schedule. Nav. Res.

Logistics Q., 1:217–222, 1954.

A. Fiat and G. Woeginger, editors. Online Algorithms: The State of the Art. Springer, 1998.

M. Gatto, B. Glaus, R. Jacob, L. Peeters, and P. Widmayer. Railway delay management: Exploring

its algorithmic complexity. In Algorithm Theory - Proceedings SWAT 2004, pages 199–211. Sprin-

ger-Verlag LNCS 3111, 2004.

M. Gatto, R. Jacob, L. Peeters, and A. Schöbel. The computational complexity of delay management.

In D. Kratsch, editor, WG, volume 3787 of Lecture Notes in Computer Science, pages 227–238.

Springer, 2005. ISBN 3-540-31000-2.

M. Gatto, R. Jacob, L. Peeters, and P. Widmayer. Online delay management on a single train

line. In F. Geraets, L. G. Kroon, A. Schöbel, D. Wagner, and C. D. Zaroliagis, editors, ATMOS,

volume 4359 of Lecture Notes in Computer Science, pages 306–320. Springer, 2007. ISBN 978-3-

540-74245-6.

A. Ginkel. Event-activity networks in delay management. Master’s thesis, University of Kaiser-

slautern, 2001.

14

A. Ginkel and A. Schöbel. To Wait or Not to Wait? The Bicriteria Delay Management Problem in

Public Transportation. Transportation Science, 41(4):527, 2007.

D.E. Heimburger, A.J. Herzenberg, and N.H.M. Wilson. Using simple simulation models in oper-

ational analysis of rail transit lines: Case of study of boston’s red line. Transportation Research

Record, 1677:21–30, 1999.

J. L. W. V. Jensen. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta

Mathematica, 30(1):175–193, 1906.

S. Mansilla. Report on disposition of trains. Technical report, ETH Zürich, 2001.

S.W. O’Dell and N.H.M. Wilson. Optimal real-time control strategies for rail transit operations dur-

ing disruptions. Lecture Notes in Economics and Math. Sys., Computer-Aided Transit Scheduling,

pages 299–323, 1999.

A. Schöbel. A model for the delay management problem based on mixed-integer programming. Proc.

ATMOS 2001, also available in the Electronic Notes in Theoretical Computer Science, 50(1):1–10,

2001.

L. Suhl, C. Biederbick, and N. Kliewer. Design of customer-oriented dispatching support for railways.

In Computer-Aided Scheduling of Public Transport, volume 505 of Lecture Notes in Economics and

Mathematical Systems, pages 365–386. Springer-Verlag, 2001.

P. Zhu and E. Schnieder. Determining traffic delays through simulation. Lecture Notes in Economics

and Math. Sys., Computer-Aided Scheduling of Public Transport, pages 387–398, 2001.

15

	The setting
	The disposition problem
	An algorithmic perspective
	Our contribution

	Unbounded delays
	Bounded delays
	Deterministic algorithms
	Lower bound for randomized algorithms

	Many buses
	Bounded delays

	Conclusion

