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Abstract. The minimum range assignment problem consists of assign-
ing transmission ranges to the stations of a multi-hop packet radio net-
work so as to minimize the total power consumption provided that the
transmission range assigned to the stations ensures the strong connec-
tivity of the network (i.e. each station can communicate with any other
station by multi-hop transmission). The complexity of this optimization
problem was studied by Kirousis, Kranakis, Krizanc, and Pelc (1997).
In particular, they proved that, when the stations are located in a 3-
dimensional Euclidean space, the problem is NP-hard and admits a 2-
approximation algorithm. On the other hand, they left the complexity
of the 2-dimensional case as an open problem.
As for the 3-dimensional case, we strengthen their negative result by
showing that the minimum range assignment problem is APX-complete,
so, it does not admit a polynomial-time approximation scheme unless
P = NP.
We also solve the open problem discussed by Kirousis et al by proving
that the 2-dimensional case remains NP-hard.

1 Introduction

A Multi-Hop Packet Radio Network [10] is a set of radio stations located on a
geographical region that are able to communicate by transmitting and receiving
radio signals. A transmission range is assigned to each station s and any other
station t within this range can directly (i.e. by one hop) receive messages from s.
Communication between two stations that are not within their respective ranges
can be achieved by multi-hop transmissions. In general, Multi-Hop Packet Radio
Networks are adopted whenever the construction of more traditional networks
is impossible or, simply, too expensive.

It is reasonably assumed [10] that the power Pt required by a station t to
correctly transmit data to another station s must satisfy the inequality

Pt
d(t; s)�

>  (1)
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where d(t; s) is the distance between t and s, � � 1 is the distance-power gra-
dient, and  � 1 is the transmission-quality parameter. In an ideal environment
(see [10]) � = 2 but it may vary from 1 to 6 depending on the environment
conditions of the place the network is located. In the rest of the paper, we �x
� = 2 and  = 1, however, our results can be easily extended to any �;  > 1.

Combinatorial optimization problems arising from the design of radio net-
works have been the subject of several papers over the last years (see [10] for
a survey). In particular, NP-completeness results and approximation algorithm
for scheduling communication and power range assignment problems in radio
networks have been derived in [2,6, 13, 14].

More recently, Kirousis et al, in [9], investigated the complexity of the Min

Range Assignment problem that consists of minimizing the overall transmis-
sion power assigned to the stations of a radio network, provided that (multi-hop)
communication is guaranteed for any pair of stations (for a formal de�nition see
Section 2). It turns out that the complexity of this problem depends on the num-
ber of dimensions of the space the stations are located on. In the 1-dimensional
case (i.e. when the stations are located along a line) they provide a polynomial-
time algorithm that �nds a range assignment of minimum cost. As for stations
located in the 3-dimensional space, they instead derive a polynomial-time reduc-
tion fromMin Vertex Cover restricted to planar cubic1 graphs thus showing
thatMin Range Assignment is NP-hard. They also provide a polynomial-time
2-approximation algorithm that works for any dimension.

In this paper, we address the question whether the approximation algorithm
given by Kirousis et al for the Min Range Assignment problem in three
dimensions can be signi�cantly improved. More precisely, we ask whether or not
the problem does admit a Polynomial-Time Approximation Scheme (PTAS). We
indeed demonstrate the APX-completeness of this problem thus implying that
it does not admit PTAS unless P = NP (see [12] for a formal de�nition of these
concepts).

The standard method to derive an APX-completeness result for a given opti-
mization problem� is: i) consider a problem�0 which is APX-hard and then ii)
show an approximation-preserving reduction from �0 to � [12]. We emphasize
that Kirousis et al's reduction does not satisfy any of these two requirements. In
fact, as mentioned above, their reduction is fromMin Vertex Cover restricted
to planar cubic graphs which cannot be APX-hard (unless P = NP) since it ad-
mits a PTAS [3]. Furthermore, it is not hard to verify that their reduction is not
approximation-preserving.

In order to achieve our hardness result, we instead consider the Min Ver-

tex Cover problem restricted to cubic graphs which is known to be APX-
complete [11, 1] and then we show an approximation-preserving reduction from
this variant of Min Vertex Cover to Min Range Assignment in three
dimensions. Furthermore, our reduction is \e�cient", we obtain an interest-
ing explicit relationship between the approximability behaviour of Min Ver-

tex Cover and that of the 2-dimensionalMin Range Assignment problem.

1 A graph is cubic when every node has degree 3.
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In fact, we can state that if Min Vertex Cover on cubic graphs is not �-
approximable then Min Range Assignment in three dimensions is not �+4

5
-

approximable.

Kirousis et al's reduction works only in the 3-dimensional case. In fact, the
reduction starts from a planar orthogonal drawing of a (planar) cubic graph
G and replace each edge by a gadget of stations drawn in the 3-dimensional
space that \simulates" the connection between the two adjacent nodes. In order
to preserve pairwise \independence" of the drawing of gadgets, their reduction
strongly uses the third dimension left \free" by the planar drawing of G. The
complexity of the Min Range Assignment problem in two dimensions is thus
left as an open question: Kirousis et al in fact conjectured the NP-hardness of
this restriction.

It turns out that the gadget construction used in our approximation-preserving
reduction for the 3-dimensional case can be suitably adapted in order to derive
a polynomial-time reduction fromMin Vertex Cover on planar cubic graphs
to the 2-dimensionalMin Range Assignment problem thus proving their con-
jecture. The following table summarizes the results obtained in this paper.

Problem version Previous results Our results

1-Dim. Case in P[9] -
2-Dim. Case in APX[9] NP-complete
3-Dim. Case NP-complete, in APX[9] APX-complete

Organization of the Paper. In Section 2, we give the preliminary de�nitions.
For the sake of convenience, we �rst provide the reduction proving the NP-
completeness result for the 2-dimensional case in Section 3. Then, in Section 4, we
show the APX-completeness of Min Range Assignment in the 3-dimensional
case. Finally, some open problems are discussed in Section 5. The proofs of the
technical lemmas will be given in the full version of the paper.

2 Preliminaries

Let S = fs1; : : : ; sng be a set of n points (representing stations) of an Euclidean
space E with distance function d : E2 ! R+, where R+ denotes the set of non
negative reals. A range assignment for S is a function r : S ! R+. The cost
cost(r) of r is de�ned as

cost(r) =
nX
i=1

(r(si))
2 :

Observe that we have set the distance-power gradient � to 2 (see Eq. 1),
however our results can be easily extended to any constant � > 1.

The communication graph of a range assignment r is the directed graph
Gr(S;E) where (si; sj) 2 E if and only if r(si) � d(si; sj). We say that an as-
signment r for S is feasible if the corresponding communication graph is strongly
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connected. Given a set S of n points in an Euclidean space, the Min Range

Assignment problem consists of �nding a feasible range assignment rmin for
S of minimum cost. With 2d Min Range Assignment (respectively, 3d Min

Range Assignment) we denote the Min Range Assignment problem in
which the points are placed on R2 (respectively, on R3).

TheMin Vertex Cover problem is to �nd a subset K of the set of vertices
of V of a graph G(V;E) such that K contains at least one endpoint of any edge
in E and jKj is as small as possible. Min Vertex Cover is known to be NP-
hard even when restricted to planar cubic graphs [7]. Moreover, it is known to be
APX-complete when restricted to cubic graphs [11, 1]. It follows that a constant
� > 1 exists such that Min Vertex Cover restricted to cubic graphs is not
�-approximable unless P = NP.

3 2d Min Range Assignment is NP-hard

We will show a polynomial-time reduction fromMin Vertex Cover restricted
to planar, cubic graphs to 2d Min Range Assignment.

Given a planar, cubic graph G(V;E), it is always possible to derive a planar
orthogonal drawing of G in which each edge is represented by a polyline having
only one bend [15, 8]. We can then replace every edge whose drawing has one
bend with a chain of three edges (we add two new vertices) in such a way that
all edges are represented by straightline segments. The obtained drawing will be
denoted by D(G). It is easy to verify that, if 2h is the number of vertices added
by this operation, then G has a vertex cover of size k if and only if D(G) has
a vertex cover2 of size k + h. As we will see in Subsection 3.2, further vertices
will be added in D(G) still preserving the above relationship between the vertex
covers of G and those of D(G).

Our goal is to replace each edge (and thus both of its vertices) of D(G)
with a gadget of points (stations) in the Euclidean space R2 in order to con-
struct an instance of the 2d Min Range Assignment problem and then show
that this construction is a polynomial-time reduction. In the next subsection
we provide the key properties of these gadgets and the reduction to 2d Min

Range Assignment that relies on such properties. The formal construction of
the 2-dimensional gadgets is instead given in Subsection 3.2.

3.1 The Properties of the 2-Dimensional Gadgets and the
Reduction

The type of gadget used to replace one edge of D(G) depends on the local
\situation" that occurs in the drawing (for example it depends on the degree
of its endpoints). However, we can state the properties that characterize any of
these gadgets.

2 In what follows, we will improperly D(G) to denote both the drawing and the graph
it represents.
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De�nition 1 (Gadget Properties). Let �; �0; � � 0 such that � + � > �0 and
� > 1 (a suitable choice of such parameters will be given later). For any edge
(a; b) the corresponding gadget gab contains the sets of points Xab = fx1; : : : ; xl1g,
Yab = fyab; ybag, Zab = fz1; : : : ; zl2g and Vab = fa; bg, where l1 and l2 depend
on the length of the drawing of (a; b). These sets of points are drawn in R2 so
that the following properties hold:

1. d(a; yab) = d(b; yba) = � + �.
2. Xab is a chain of points drawn so that d(a; x1) = � and d(b; xl1) = �. Fur-

thermore, for any i = 1; : : : ; l1 � 1, d(xi; xi+1) = � and, for any i 6= j,
d(xi; xj) � �.

3. Zab is a chain of points drawn so that d(yab; z1) = d(yba; zl2) = �0. Fur-
thermore, for any i = 1; : : : ; l2 � 1, d(zi; zi+1) = �0 and, for any i 6= j,
d(zi; zj) � �0.

4. For any xi 2 Xab and zj 2 Zab, d(xi; zj) > � + �. Furthermore, for any
i = 1; : : : ; l1, d(xi; yab) � � + � and d(xi; yba) � � + �.

5. Given any two di�erent gadgets gab and gcd, for any v 2 gab n gcd and w 2
gcd n gab, we have that d(v; w) � � and if v =2 Vab [Xab or w =2 Vcd [Xcd

then d(v; w) � ��.

From the above de�nition, it turns out that the gadgets consist of two com-
ponents whose relative distance is � + �: the V X-component consisting of the
\chain" of points in Xab[Vab, and the Y Z-component consisting of the chain of
points in Yab [ Zab.

Let S(G) be the set of points obtained by replacing each edge of D(G) by
one gadget having the properties described above.

Note 1. Let rmin be the range assignment of S(G) in which every point in V X
and in Y Z have range � and �0, respectively (notice that this assignment is not
feasible). The corresponding communication graph consists of m + 1 strongly
connected components, where m is the number of edges: the Y Z-components
of the m gadgets and the union U of all the V X-components of the gadgets. It
thus follows that, in order to achieve a feasible assignment, we must de�ne the
\bridge-point" between U and every Y Z-component.

The above note leads us to de�ne the following canonical (feasible) solutions for
S(G).

De�nition 2 (Canonical Solutions for S(G)). A range assignment r for
S(G) is canonical if, for every gadget gab of S(G), the following properties hold.

1. Either r(yab) = � + � and r(yba) = �0 (so, yab is a radio \bridge" from the
Y Z-component to the V X one) or vice versa.

2. For every v 2 fa; bg, either r(v) = � or r(v) = � + �. Furthermore, there
exists v 2 fa; bg such that r(v) = � + � (so, v is a radio \bridge" from the
V X-component to the Y Z one).

3. For every x 2 Xab, r(x) = �.
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4. For every z 2 Zab, r(z) = �0.

We observe that any canonical assignment is feasible.

Lemma 1. Let us consider the construction S(G) in which �, � and � are three
positive constants such that

�2�2 > (m� 1)[(� + �)2 � �2] + (� + �)2: (2)

Then, for any feasible range assignment r for S(G), there is a canonical range
assignment rc such that cost(rc) � cost(r).

We now assume that S(G) satis�es the hypothesis of Lemma 1.

Lemma 2. Given any planar cubic graph G(V;E), assume that it is possible to
construct the set of points S(G) in the plane in time polynomial in the size of
G. Then Min Vertex Cover is polynomial-time reducible to 2d Min Range

Assignment.

3.2 The Construction of the 2-Dimensional Gadgets

This section is devoted to the construction of the 2-dimensional gadgets that
allow us to obtain the point set S(G) corresponding to a given planar cubic
graph G.

De�nition 3 (Construction of S(G)). Let G(V;E) be a planar cubic graph,
then the set of points S(G) is constructed as follows:

1. Construct a planar orthogonal grid drawing of G with at most one bend per
edge.

2. For any edge represented by a polyline with one bend, add two new vertices
so that any edge is represented with a straight line segment.

3. Starting from the obtained graph D(G), replace its edges with the gadgets
satisfying De�nition 1 and Eq. 2. This step may require further vertices to
be added to D(G) while preserving the relationship between the vertex cover
solutions.

Let us �rst observe that G has a vertex cover of size k if and only if D(G)
has a vertex cover of size k+h, where 2h is the number of new vertices added in
the last two steps. As we will see in the sequel h is polynomially bounded in the
size of G. We can therefore consider the problem of �nding a minimum vertex
cover for D(G).

During the third step of the construction, it is required to preserve Property
5 of De�nition 1, i.e., points from di�erent gadgets are required to be within
distance at least ��. Informally speaking, the main technical problem is drawing
the Z-chains corresponding to incident edges so that the properties of De�ni-
tion 1 hold. To this aim, we adopt a set of suitable construction rules that are
described in the full version of the paper.
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In the sequel the term S(G) will denote the network drawn from D(G) ac-
cording to the construction rules mentioned above. Let Lmin be the minimum
distance between any two V -points in D(G). Then, any two V -points of the
obtained network S(G) have distance not smaller than Lmin.

Lemma 3. Let � = Lmin=6. Then, an � > 0 exists for which the corresponding
network S(G) satis�es Eq. 2, i.e.,

�2�2 > (m � 1)[(� + �)2 � �2] + (� + �)2

where

� =
1 +

p
2

2
:

Combining Lemma 2 with Lemma 3 we obtain the following result.

Theorem 1. 2d Min Range Assignment is NP-hard.

4 3d Min Range Assignment is APX-complete

The APX-completeness of 3d Min Range Assignment is achieved by showing
an approximation-preserving reduction from Min Vertex Cover restricted
to cubic graphs, a restriction of Min Vertex Cover which is known to be
APX-complete [11, 1]. The approximation-preserving reduction follows the same
idea of the reduction shown in the previous section and thus requires a suitable
3-dimensional drawing of a cubic graph.

Theorem 2. [5] There is a polynomial-time algorithm that, given any cubic
graph G(V;E), returns a 3-dimensional orthogonal drawing D(G) of G such
that:

{ Every edge is represented as a polyline with at most three bends.
{ Vertices are represented as points with integer coordinates, thus the minimum

distance Lmin between two vertices is at least 1.
{ The maximum length Lmax of an edge in D(G) is polynomially bounded in
m = jEj.

4.1 The 3-Dimensional Gadgets

In what follows, we assume to have at hand the 3-dimensional, orthogonal draw-
ing D(G) of a cubic graph G that satis�es the properties of Theorem 2. Then
the approximation-preserving reduction replaces each edge of D(G) with a 3-
dimensional gadget of stations having the following properties.

De�nition 4 (Properties of 3-Dimensional Gadgets).
Let l and � be positive constants (a suitable choice of such parameters will

be given later). For any edge (a; b) the corresponding gadget contains the sets
of points Xab = fx1; : : : ; xl1g, Yab = fyab; ybag, Zab = fz1; : : : ; zl2g and Vab =
fa; bg, where l1 and l2 depend on the distance d(a; b) and d(yab; yba), respectively.
The above set of points is drawn in such a way that the following properties hold:
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1. d(a; yab) = d(b; yba) = l.
2. Xab and Zab are two chains of points drawn so that d(a; x1) = d(b; xl) =

� and d(yab; z1) = d(yba; zm) = �, respectively. Furthermore, for any i =
1; : : : ; l � 1, d(xi; xi+1) = � and for any j = 1; : : : ;m� 1 d(zj ; zj+1) = �.

3. For any xi 2 Xab and zj 2 Zab, d(xi; zj) > l. Furthermore d(xi; yab) � l
and d(xi; yba) � l.

4. Given any two di�erent gadgets g1 and g2, for any v 2 g1 and w 2 g2 with
u 6= w of di�erent type (for example, if u is a X-point then w is either a
Y -point or a Z-point), we have that d(v; w) > l. Moreover, the minimum
distance between the Y Z-component3 of g1 and the Y Z-component of g2 is
2l.

5. Given any two non adjacent gadgets g1 and g2, for any v 2 g1 and w 2 g2,
d(v; w) � Lmin=2.

Let l and � two positive reals such that l � Lmin (this assumption guar-
antees Properties 4 and 5 of De�nition 4) and � < l. The construction of the
3-dimensional gadgets can be obtained by adopting the same method of the 2-
dimensional case. The technical di�erences will be discussed in the full version
of the paper.

We emphasize that the 3-dimensional gadgets have two further properties
which will be strongly used to achieve an approximation-preserving reduction
(see Theorem 3).

Lemma 4. 1). The set of V -points of S(G) is the set of vertices of G, i.e. no
new vertices will be added with respect to those of D(G).

2). It is possible to make the overall range cost of both X and Z points of
any gadget arbitrarily small by augmenting the number of equally spaced
stations in these two chains. More formally, if L is the length of the polyline
representing an edge (a; b) in D(G) and k is the number of points in the X
(or Z) component then the overall power needed for the X component is

(k + 2)

�
L

k + 1

�2
(3)

So, by increasing k, we can make the above value smaller than any �xed
positive constant.

4.2 The Approximation-Preserving Reduction

De�nition 5 (Canonical Solutions for S(G).). A range assignment r for
S(G) is canonical if, for every gadget gab of S(G), the following properties hold.

1. Either r(yab) = l and r(yba) = � (so, yab is the radio \bridge" from the
Y Z-component to the V X one) or vice versa.

3 Similarly to the 2-dimensional case, the sets of points Vab [Xab and Yab [ Zab will
be denoted as V X-component and Y Z-component, respectively.
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2. For every v 2 fa; bg, either r(v) = � or r(v) = l. Furthermore, there exists
v 2 fa; bg such that r(v) = l (so, v is a radio \bridge" from the V X-
component to the Y Z one).

3. For every x 2 Xab, r(x) = �.
4. For every z 2 Zab, r(z) = �.

Lemma 5. For any graph G, let us consider the construction S(G) in which l
is a positive real that satis�es the following inequality

l2 <
L2min

m
: (4)

Then, for any feasible range assignment r of S(G), there is a canonical range
assignment rc such that cost(rc) � cost(r).

Informally speaking, the presence of the third dimension in placing the gad-
gets allows to keep a polynomially large gap between the value of l (i.e. the
minimum distance between the V X component and the Y X one of a gadget)
and that of � (i.e. the minimum distance between points in the same chain com-
ponent). This gap yields the signi�cant weight of each bridge-point of type V in
a canonical solution and it will be a key ingredient in proving the next theorem.
Notice also that this gap cannot be smaller than a �xed positive constant in the
2-dimensional reduction shown in the previous section.

Theorem 3. 3d Min Range Assignment is APX-complete.

Proof. The outline of the proof is the following. We assume that we have at
hand a polynomial-time �-approximation algorithm A for 3d Min Range As-

signment. Then, we show a polynomial-time method that transforms A into
a �0-approximation algorithm for Min Vertex Cover on cubic graphs with
�0 � 5� � 4. Since a constant � > 1 exists such that Min Vertex Cover re-
stricted to cubic graphs is not �-approximable unless P = NP [11, 1], the theorem
follows.

Assume that a 3-degree graph G(V;E) is given. Then, from the 3-dimensional
orthogonal drawingD(G) ofG, we construct the radio network S(G) by replacing
each edge in D(G) with one 3-dimensional gadget whose properties are described
in De�nition 4. It is possible to prove (see the full version of the paper) that
these gadgets can be constructed and correctly placed in the 3-dimensional space
in polynomial time. We also assume that the parameter l of S(G) satis�es In-
equality 4. Using the same arguments in the proof of Lemma 2, we can show
that any vertex cover K � V of G yields a canonical assignment rK whose cost
is

cost(rK) = �l2 +ml2 + �K ; (5)

where � = jKj and �K is the overall cost due to all points v that have range �.
Since each gadget of S(G) has at most 4Lmax=� points, it holds that

�K � 4mLmax� : (6)
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On the other hand, from Lemma 5, we can consider only canonical solutions
of S(G). Thus, given a canonical solution rc, we can consider the subset K of
V -points whose range is l. It is easy to verify that K is a vertex cover of G.
Furthermore, the cost of rc can be written as follows

cost(rc) = jKjl2 +ml2 + �K :

Let Kopt be an optimum vertex cover for G, from the above equation we have
that the optimum range assignment cost optr can be written as

optr = jKoptjl2 +ml2 + �Kopt (7)

Since G has maximum degree 3 then jKoptj � m=3; so, the above equation
implies that

optr � 4jKoptjl2 + �Kopt: (8)

Let us now consider a �-approximation algorithm for 3d Min Range Assign-

ment such that given S(G) in input it returns a solution rapx whose cost is
less than � � optr . From Lemma 5, we can assume that rapx is canonical. It thus
follows that the cost cost(rapx) can be written as

cost(rapx) = jKapxjl2 +ml2 + �Kapx :

From Eq.s 7 and 8 we obtain

cost(rapx)

optr
=

cost(rapx) � optr

optr
+ 1 (9)

=
jKapxjl2 +ml2 + �Kapx � jKoptjl2 �ml2 � �Kopt

optr
+ 1 (10)

� jKapxjl2 � jKoptjl2
4jKoptjl2 + �Kopt

+ 1 (11)

Note that we can make �Kopt arbitrarily small (independently from l) by reducing
the parameter � in the construction of S(G): this is in turn obtained by increasing
the number of X and Z points in the gadgets (see Lemma 4).

From Eq. 6, from the fact that Lmax is polynomially bounded in the size of
G and from the fact that l and Lmax are polynomially related, we can ensure
that �Kopt � l2 by adding a polynomial number of points (see again Lemma 4).
So, from Eq. 9 we obtain

cost(rapx)

optr
� jKapxjl2 � jKoptjl2

4jKoptjl2 + �Kopt

+ 1 � jKapxj
5jKoptj +

4

5
:

Finally, it follows that the approximation ratio for Min Vertex Cover is
bounded by

jKapxj
jKoptj �

5cost(rapx)

optr
� 4:

Q:E:D:
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5 Open Problems

The �rst open problem is whether 2d Min Range Assignment is APX-complete
or admits a PTAS. Notice that a possible APX-completeness reduction should be
from a di�erent problem, sinceMin Vertex Cover restricted to planar graphs
is in PTAS. As regard the 3d Min Range Assignment problem it could be
interesting to reduce the large gap between the factor 2 of the approximation
algorithm and the inaproximability bound than can be derived by combining
our reduction with the approximability lower bound of Min Vertex Cover

on cubic graphs. As far as we know, there is no known signi�cant explicit lower
bound for the latter problem (an explicit 1.0029 lower bound for Min Vertex

Cover on degree 5 graphs is given in [4] that { if it could be extended to cubic
graphs and then combined with our reduction { would give a lower bound for
3d Min Range Assignment of 1.00059).

A crucial characteristic of the optimal solutions for the 3d Min Range

Assignment instances given by our reduction is that stations that communicate
directly have relative distance either l or �, where l >> �. It could be interesting
to consider instances in which the above situation does not occur. Notice that
this is the case of the 2d Min Range Assignment instances of our reduction.
Thus, the problem on such restricted instances remains NP-hard. However, it is
an open problem whether a better approximation factor or even a PTAS can be
obtained.

Another interesting aspect concerns the maximum number of hops required
by any two stations to communicate. This corresponds to the diameter h of the
communication graph. Our constructions yield solutions whose communication
graph has unbounded (i.e. linear in the number of stations) diameter. So, the
complexity of Min Range Assignment with bounded diameter remains open
also in the 1-dimensional case. A special case where stations are placed at uniform
distance on a line and either h is constant or h 2 O(logn) has been solved in [9].
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