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Introduction to Mechanism
Design

1.1 Dominant strategies and Nash equilibria

In the previous lectures we have seen examples of games that admit several
Nash equilibria. Moreover, some of these equilibria correspond to solutions that
are far off the optimal ones. In particular, we have seen that

• For the “football or shopping” game,

(2,1) (0, 0)
(0, 0) (1,2)

we could not predict the “behavior” of the agents. Indeed, it is not clear
how the agents1 can reach one of the two equilibria (shown in bold in
the table of the payoffs) and which one of the two. Notice that, the best
strategy for player 1 (i.e., the row) depends on the chosen strategy of
player 2 (i.e., the chosen column), and vice versa. Intuitively, the two
players should agree on some joint strategy.

• For the n links game, there exists a Nash equilibrium whose cost is Ω( log n
log log n )

times the optimum.2 Since we cannot predict which of the Nash equilibria
is reached (if so), then it may be the case that the worst one is reached,
thus a non-optimal configuration.

It is not clear whether a Nash equilibrium can be reached, even for those
games that have only one such an equilibrium: the “matching pennies” game

(1,−1) (−1, 1)
(−1, 1) (1,−1)

1In the sequel we use the terms ‘agent’ and ‘player’ interchangeably.
2The proof of this lower bound is based on a generalization of the lower bound 3/2 for two

identical machines. Consider n identical machines, n identical jobs and, for each job/agent, a
job chooses one machine with uniform distribution.
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Here, the unique equilibrium is reached when player 1 (resp., player 2) chooses
a row (resp., column) with probability 1/2. However, how can the two players
“agree” on this unique probability distribution? (consider the situation in which
the game goes through several rounds and, at each round, one of the two players
is allowed to change her/his probability distribution).

These two facts seem to denote the “weakness” of Nash equilibria. On one
hand, there is no “preferred” Nash equilibrium (actually, it is not clear how such
a configuration can be reached). On the other hand, even if we are guaranteed
that a Nash equilibrium is reached, it may be a “very bad” one (i.e., the worst
one, which for the m links game is non-optimal).

Let us now consider another example of a game with a unique Nash equilib-
rium: the “two prisoners’ dilemma”

(3, 3) (1, 5)
(5, 1) (2,2)

Besides the fact that (2, 2) is the unique equilibrium, there is a very important
property in this game:

• Even though the payoff of player 1 depends on the strategy of the other
player (i.e., the column), no matter what this strategy is like, for player
1 it is always better to choose the second row (recall that player 1 cannot
choose the column). In other words, player 1 does not need to know what
the other player is doing to maximize his/her payoff!

• Similarly, no matter which strategy (row) player 1 selects, for player 2 it
is always better to choose the second column. Again, player 2 does not
need to know what the other player is doing to maximize his/her payoff!

Intuitively, both players have a “universally” optimal strategy which guar-
antees that, no other strategy would increase his/her payoff. Consider a payoff
table of the form

(v1(1, 1), v2(1, 1)) (v1(1, 2), v2(1, 2))
(v1(2,1),v2(2,1)) (v1(2, 2), v2(2, 2))

such that
∀j ∈ {1, 2}, v1(2, j) ≥ v1(1, j)

(i.e., for player 1, row 2 is never worse than row 1)
and

∀i ∈ {1, 2}, v2(i, 1) ≥ v2(i, 2)

(i.e., for player 2, column 1 is never worse than column 2)
In this case, player 1 (resp., player 2) has no reason to choose a strategy different
from row 2 (respectively, column 1).

In general, we say that there exists a dominant strategy for players i if this
strategy maximizes his/her payoff, for all possible strategies adopted by the
other agents. Notice that, this is a property of the table of payoff, so an agent
can actually verify whether such a strategy exists!
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1.2 Payments inducing dominant strategies

We would like to reward each agent in such a way that

• every agent has a dominant strategy

• the dominant strategy is the “desired one”

We better explain the above two goals with an example. Consider the n
links network in which each link is owned by a selfish agent i, i = 1, 2, . . . n.
Each link i is owned by an agent AGi that knows the speed of that link, that is,
the time ti that a packet needs to traverse the link (i.e., ti = 1/speed link i).
This is a private information, in the sense that AGi is the only one to know ti
(in particular, we do not know the value ti). More importantly, since ti is the
time link i must be used in order to perform the transmission, ti represents a
cost for agent AGi if his/her link is selected.
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GOAL: We want to send one piece of traffic from s to t using the fastest of the
n links, that is, the link minimizing ti.

It seems necessary that, somehow, we obtain all correct values from the
agents. It is then natural to ask the following:

QUESTION: Can we guarantee that each agent reports his/her speed cor-
rectly?

Observe that this is impossible in general: a malicious agent may always lie
attempting to making us fail in our task! However selfish agents do not behave
in this way: they simply try to maximize their own payoff or utility. This means
that they lie only if there is a reason for that (namely, they get some benefit
out of this). We then better address the following question:

QUESTION: Can we guarantee that no agent i has an incentive in lying about
his/her link speed, i.e., in reporting a value si 6= ti?

We next consider several payments and see whether they provide a positive
answer to the above question or not.
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No payments. What happens if we do not provide any payment to the
agents? The utility ui of agent AGi can be defined as the loss due to cost
incurred by the agent, if his/her link is chosen:

ui =
{

−ti if link i is chosen,
0 otherwise.

Consider the following example:
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In this case, if agent AG1 owning the link requiring 5 times unit would
report a value s1 > 10 then his/her utility would be 0 (the other link would
be selected), while reporting t1 = 5 would give u1 = −5 (i.e., the cost he/she
incurs when being selected).

Pay a fixed amount. We fix a value P and reward the agent reporting the
largest speed an amount equal to P (i.e., this value is chosen in advance and
independently of the agents declarations).

The following examples show that, doing so, we risk to overpay or underpay
the agents:

��� ������ ���
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t2 > t1 t2 < P

t1 > P t1 < t2

we underpay the agent(s) we overpay both agents

On the left, we are underpaying AG1, so he/she would be better reporting
s1 > t2, since the corresponding utility would be 0 against u1(t1) = P − t1 < 0
when telling the truth. This is essentially the same problem as in the case of no
payments. If, instead, we fix a value P which is sufficiently large to guarantee
that P ≥ t1, then we risk to pay too much: since we do not know the values
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ti all we can do is to be sure that P > maxi ti (assume we know the speed of
the slowest existing link). Above on the right we have such an example: we are
overpaying both agents, when selected; so AG2 could report s2 < t1 < t2 and
obtain a positive utility equal to u2(s2) = P − t2 > 0 = u2(t2) (notice that the
cost is always computed with respect to the true values).

Pay Pi = si. We choose the link with minimal reported si and pay to AGi an
amount Pi = si. Not surprisingly, this payments originate speculation. Consider
the following example:
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If agent AG1 reports a value s1 such that t1 = 5 < s1 < t2 = 7, then her/his
link is still selected and he/she gets a better payment: P (t1) = 5 < P (s1).
Therefore, also the utility would be better when reporting such an s1: u1(t1) =
5 − 5 < u1(s1) = s1 − t1. So, AG1 is clearly tempted to get as close to t2 = 7
as possible!

This would not be harmful if each agent would know the true/reported values
of every other agent in advance:3 in this case, AG1 may compute the minimum
si < t2 and report this value. If this happens, then we are still selecting the
fastest link. However, this assumption is unreasonable: recall that ti is a private
information and AG1 does not really know t2. Also, communication between
the agents cannot be assumed to be truthful (i.e., they may lie one to the other
as well) or even possible.

So, all an agent AGi knows is the following:

• If her/his link is the fastest one, according to the reported values si, then
he/she could get something more by reporting s1 just below the minimum
sj , with j 6= i.

• If her/his link is not the fastest one, according to the reported values si,
then the best is to report si = ti (if he/she tries to be selected, the he/she
would receive some payment Pi ≤ minj 6=i{sj} < ti)

It is evident that agents are tempted to overbid (underbidding never pays
off!): if AGi is able to guess a “not too high” value si > ti, then he/she might
improve his/her utility. Suppose that all agents think that si = ti + a would be

3We consider a game in which every agent/player reports a value simultaneously with all
other agents. This kind of games are usually termed revelation games.
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a good choice, for some a > 0. In the example above, AG2 would then declare
s2 = 7+a. Now, observe that the best value for AG1 is no longer s1 < t2 = 7: if
AG1 reports a value s1 < s2 = 7+ a, then she/he will be selected and rewarded
an amount “close to” 7 + a. So, AG1 might think that, since AG2 will overbid
by a factor a, then it is better for him/her to overbid by a factor 2a. But also
AG2 may reasoning in the same way, thus leading AG2 to overbid by a factor
3a, and so forth...When will an agent stop doing this? Will all agents stop at
the same value k · a? Will all agents start with the same a > 0? This seems to
be very unlikely!

Essentially what is not desirable in these payments is the fact that agents
know that telling the truth is not the best strategy for them, but the best strat-
egy depends on the other agents strategies (i.e., reported values). This makes
the behavior of the agents “unpredictable”: they may only guess a number try-
ing to improve the utility. It then may be the case that, in the above example,
AG2 overbids by a factor a = 1/2 and agent AG1 overbids by a factor 6a = 3.
In this case, we would fail since we would select the slowest link!

1.2.1 Vickrey-Clarke-Groves (VCG) payments

Though the payments considered above do not work, they have some good
features:

• The “fixed P” is good since the amount of money agent AGi receives does
not depend on si. So, there is no incentive to overbid. overbid trying to
increase his/her utility when selected.

• The payment “Pi = si” guarantees that we do not underpay an agent
if he/she reports the true value (so he/she will not try to be excluded
from the solution). Moreover, there is no incentive to underbid, since this
always lead to a non-positive utility (in the above example, if AG2 reports
s2 ≤ 5, then she/he gets u2 = s2 − 7 ≤ −2)

As mentioned above, the problem with the payments “Pi = si” is the fact
that the highest payment that an agent AGi can get depends on the other
values sjs. One of the ideas of the VCG4 payments is to compute this value
and provide this (maximal) amount of money to the agent AGi anyway.

Consider the following approach. Based on s1, s2, . . . , sn, do the following:

1. Choose the cheapest link i corresponding the cheapest value si;

2. Reward AGi an amount equal to the 2nd best/cheapest link, i.e, Pi =
minj 6=i{sj}.

Intuitively, this approach possesses both positive features of payments “fixed P”
and “Pi = si”: the payment Pi does not depend on si, and there is no incentive

4The name VCG is doe to the three fundamental works by Vickrey [3], Clarke [1] and
Groves [2] on this area. These work contain all the main ideas we are going to discuss in this
lecture.
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to underbid since the rewarding is fixed to be the cost of the 2nd cheapest
link. Indeed, if an agent AGj , owning a link of non-minimal cost, underbids
pretending to be the cheapest one, then the payment he/she receives is no larger
than his/her true cost tj :
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if AG2 reports s2 ≤ 5, the he/she would receive P2 = 7 and his/her link would
be selected, thus a utility u2 = 7 − 7 = 0; however, 0 is also the utility that
he/she would obtain reporting s2 = t2 = 7, thus no reason to lie!

Also, the agent AGi owning the truly cheapest link has no reason o underbid
since her/his link would remain the cheapest and the payment does not depend
on his/her declared value si < ti. In the example above, if AG1 reports s1 = 4,
her/his link is still selected and the payment remains P1 = 7.

Finally, the most interesting feature of this payment scheme is the fact that
it fixes the problem of the payment “Pi = si”: now overbidding does not pay
off! If, in the example above, AG1 reports s1 > t1 = 5, then there are two
possibilities:

1. link 1 is selected: AG1 receives P1 = 7, no matter what he/she declared.

2. link 1 is not selected: he/she receives no payment, thus a utility u1 = 0.

It is clear that, overbidding does not increase the payment that he/she re-
ceives. However, if AG1 overbids a too high value, he/she risks to loose the
opportunity of being chosen (and having a positive utility u1 = 7− 5).

It is now natural to ask the following question: if an agent AGj lies, is
there an incentive for another agent AGi to lie as well? Consider the following
example:
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According to the reported values, AG1 is not owning the cheapest link. Does
AG1 have an incentive to lie? Observe that, the payment is fixed to be 4 (i.e.,
the 2nd cheapest reported cost). So, if AG1 tries to be selected (i.e., reports
s1 < 3.1) then he/she will obtain u1 = 4 − 5 < 0.

More in general, the payment scheme described above guarantees the follow-
ing two properties:

1. If we select link i, then ti ≤ minj 6=i{sj} = Pi;

2. If we do not select link i, then ti ≥ minj 6=i{sj} = Pi.

Since the value Pi does not depend on si, the two items above state that (i)
if link i is the best, according to the reported values of the other agents, then
there is an incentive for AG1 in being selected (thus reporting si = ti) since, in
this case, the utility is positive; (ii) if link i is not the cheapest, according to the
reported values of the other agents, then there is no incentive in being selected
since this results in a non positive utility.

Formally, let Pi(s1, s2, . . . , si−1, si, si+1, . . . , sn) denote the payment that
each agent AGi receives when the reported values are s = (s1, s2, . . . , sn), with
si being the value reported by AGi. For every value x, let us define (x, s−i) :=
(s1, s2, . . . , si−1, x, si+1, . . . , sn). The utility of AGi when he/she reports si and
the other agents reported values are s−i = (s1, s2, . . . , si−1, si+1, . . . , sn) is then
equal to

ui(si, s−i) = Pi(si, s−i) +
{

−ti if link i is selected,
0 otherwise.

Recall that our goal is to guarantee that “truth-telling” is a dominant strat-
egy for all agents, i.e., it is always the case that an agent cannot improve his/her
utility by misreporting his/her true value ti. This is actually what the above
payments guarantee:

Theorem 1 For all i, i = 1, 2, . . . , n, it holds that

∀s−i∀si ui(ti, s−i) ≥ ui(si, s−i).

Proof. Exercise 16. 2

In game-theoretic setting the strategy si = ti is termed dominant for this
game: for all possible strategy that the other agents choose, strategy si yields
the maximum payoff that AGi can obtain in this situation.

1.2.2 The shortest path problem

Consider now the following natural extension of the problem considered above:
the nodes s and d are any two given nodes of a directed weighted graph; each
edge i is owned by an agent and the corresponding weight is defined as in the
previous problem. Assume also that every agent owns exactly one edge. 5 Here
is an example:

5We make this assumption only for the sake of presentation/semplicity. However, this is
not really necessary (see Exercise 20).
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A first attempt: using the same payments for the n links problem

Consider a straightforward application of the payments for the n links problem
to the example with three edges above: we select the cheapest path from s to d
and we pay, to each agent owning a selected edge, the cost of the 2nd cheapest
path. Let us see what happens in the following instance (numbers represent the
true costs/weights):
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Let AG1, AG2 and AG3 own the edge of cost 6, 5 and 10, respectively. If all
agents are truth telling, then AG1 and AG2 have utility equal to 0 (we would
select edge (s, d) and pay AG3 only). However, if AG1 reports a value s1 ≤ 4,
then he/she would obtain something better: the payment would be 10 (now the
2nd best path is the edge (s, d)) and AG1 would be selected and receive that
payment, thus a utility of 10 − 5 > 0.

What is the problem here? It seems that we are paying too much, since
a non-optimal edge is incentivated to get into the chosen path by lowering its
cost.

n links revised: pay the “maximum speculation”

We briefly review the payments for the n parallel links, i.e., a special case of the
shortest path problem. Consider the following instance:

Let us now see what would happen with payments “Pi = si”. In particular,
how much could AG1, owning the link of cost 5, speculate? In order to receive
some payment, he/she needs to be selected, thus implying that he/she must
report some value s1 ≤ 7. This will also be the payment that, in this case,
he/she will receive. So, 7 is the maximum he/she could: this is exactly the cost
of the 2nd cheapest link!

This seems to see another idea contained in the payments using the 2nd

cheapest link: pay the maximum amount that an agent could speculate if we
were using the payments “Pi = si”. Let us apply this idea to the following
instance:
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Assume all agents report the truth values, thus selecting the upper path.
How much could get the agent AG1 by lying about her cost, if P1 = s1? It must
be s1 + 5 ≤ 10 (otherwise, we would select the other path). So, the payment P1

should be equal to 10− 5. What does this value represent? The value 10 is the
cost of the 2nd cheapest path, while 5 is the cost of the chosen path (i.e., the
cheapest one) without counting edge of AG1.

VCG payments for the shortest path problem

Let us define SP (G, w) the cost of the shortest path from s to d when the weight
of edge i is equal to wi, w = (w1, w2, . . . , wn). Also let SP (G−i, w) denote the
shortest path from s to d without using edge i. We then define the payment
function of agent i as

Pi(G, (si, s−i)) := SP (G−i, (si, s−i))− (SP (G, (si, s−i)) − si). (1.1)

Observe that the quantity SP (G, (si, s−i)) − si corresponds to the cost of
the shortest path, according to weights (si, s−i), without counting si. Here is
a pictorial explanation of the idea behind these payments for the shortest path
problem:

2nd best solution best solution best solution
(without edge i) (with edge i of cost ti) (with edge i of cost si)

SP (G−i, s)

SP (G, (ti, s−i))
ti?

6

Pi(si, s−i)
ui(ti, s−i)

SP (G, s) − si
?

6si

�

Observe that, the utility of an agent i whose edge is selected is equal to

Pi(ti, s−i) − ti = SP (G−i, (si, s−i)) − (SP (G, (si, s−i))− si) − ti (1.2)
= SP (G−i, (si, s−i)) − (SP (G, (ti, s−i)). (1.3)
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(The second equality es graphically shown above and easy to prove by consid-
ering the definition of SP (·).)
So, if agent i reports ti, then he/she gets a non-negative utility. Moreover, if
he/she reports a higher value si > ti, such that edge i is still in the shortest path,
then his/her payment does not change, thus also the utility does not change.
Moreover, if si is “too high”, so that the other solution becomes better, then the
utility of agent i becomes 0 (the edge would not be selected anymore). Finally,
lowering the reported cost to some si < ti does not change the payment nor the
utility (the edge would be selected as well and payed the same amount).

The above considerations show that, if the shortest path with edge costs
(ti, s−i), then AGi has no incentive in reporting si 6= ti. The next picture
shows why the same holds when i is not in a shortest path for the weights
(ti, s−i):

best solution including best solution ifbest solution
edge i of cost ti edge i had cost siwithout edge i

?

6si

X

X − ti

ti

?

6

Pi(si, s−i)

?

6

SP (G, (si, s−i))− si

SP (G−i, s)

In this case, if AGi reports si < ti so that his/her edge would be selected,
then the payment he/she would get would not cover his/her cost ti. Thus a
non-positive utility, which cannot be better than reporting ti and being not
selected.

Using these arguments it is easy to show that the above payment functions
guarantee that no agent owning an edge can improve his/her utility by misre-
porting his/her edge cost to the mechanism that selects the shortest path and
pays the selected edges according to the payment functions in Eq. 1.1.

1.3 The VCG Theorem

The shortest path problem contains all ingredients to show the full power of
VCG payments. Indeed, we did not use any particular property of the shortest
path in order to prove that the payment functions in Eq. 1.1 work for this
problem. In this section we formally define a class of optimization problem
and a generalization of these payment functions such that, every problem in
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this class admits a so called truthful mechanism, that is, an algorithm A and a
payment function P = (P1, P2, . . . , Pn) such that their combination M = (A,P )
incentivates the agents to report their true values tis.

1.3.1 A general setting

We consider optimization problems defined as fourtuples (I,m, sol, goal), where:

1. I is the set of instances of the problem;

2. sol(·) is a function mapping every instance I ∈ I into a set sol(I) of feasible
solutions;

3. m(·) is the measure or optimization function mapping every X ∈ sol(I)
into a non-negative real number m(X, I);

4. goal ∈ {min,max}; the goal is to find an X∗ ∈ sol(I) such that m(X∗, I) =
opt(I) := goalX∈sol(I)m(X, I). If goal = min (respectively, goal = max)
then Π is a minimization (respectively, maximization) problem.

We the consider a set of selfish agents that privately hold part of the input.
In particular, for every I ∈ I, we have that I = (t, σ), where

1. t = (t1, t2, . . . , tn) is the private input, and ti is the type of agent AGi

(e.g., the cost of his/her edge);

2. σ is the public part of the input which is public knowledge (e.g., the nodes
and the edges of a graph, in the case of the shortest path problem).

We consider agents that can report a value si in a set Si, with ti ∈ Si.
We also assume that the set of feasible solutions sol(I) does not depend on the
agents type t. For every solution X ∈ sol(I), every agent AGi has a valuation
function vi(X, ti): the function vi(·, ·) is also public knowledge, but the type ti
is not. The value vi(X, ti) represents a benefit (when positive) or a cost (when
negative) for AGi when a solution X is implemented (e.g., when a certain path
containing his/her edge is selected). In our shortest path problem, the valuation
functions are naturally defined as

vi(X, ti) =
{

−ti if X contains link i,
0 otherwise.

Definition 2 (mechanism) A mechanism for a problem Π = (I,m, sol, goal)
is a pair M = (A,P ) where, given an instance I = (t, σ), (i) A is an algo-
rithm computing a solution A(s, σ) ∈ sol(I) and (ii) each agent AGi receives an
amount of money equal to Pi(si, s−i), with P = (P1, P2, . . . , Pn). In this case,
the utility of AGi is equal to ui(si, s−i) := vi(A(si, s−i), ti) + Pi(si, s−i).
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Definition 3 (truthful mechanism) A mechanism M = (A,P ) for a prob-
lem Π = (I,m, sol, goal) is truthful if, for every agent AGi, i = 1, 2, . . . , n, the
strategy si = ti is dominant, that is,

∀s−i∀si ui(ti, s−i) ≥ ui(ti, s−i),

where ui(si, s−i) = vi(A(si, s−i), ti) + Pi(si, s−i).

Remark 4 Observe that, if M is truthful, then we can assume that all agents
will report their true type ti. Therefore, algorithm A is provided with the correct
input. So, if A is an exact (resp., c-approximate) algorithm for Π (without selfish
agents), then the mechanism A guarantees that an exact (resp., c-approximate)
solution.

1.3.2 One more intuition on the shortest path problem:
the agents “want to help” the algorithm

Let us step back to the shortest path problem for a second. Consider the utility
function of agent AGi when reporting si. With some abuse of notation, we let
SP ((G, w′)|w′′) denote the cost of the shortest path for the instance (G, w′)
evaluated w.r.t. the instance (G, w′′). By simply replacing ti with si in Eq. 1.3
we obtain:

ui(si, s−i) := Pi(ti, s−i) − ti = SP (G−i, (si, s−i)) + (1.4)
− (SP (G, (si, s−i)) − si) − ti (1.5)
= SP (G−i, (si, s−i))︸ ︷︷ ︸

independent of si

−SP ((G, (si, s−i)︸ ︷︷ ︸
provided

input

)| (ti, s−i)︸ ︷︷ ︸
“correct”

input

). (1.6)

A few more words are needed. Clearly, the first quantity in Eq. 1.6 does not
depend on si (by definition, edge i is not in the solution). Let us ask ourselves the
following: how can AGi maximize her/his utility? The only way is to minimize
the quantity SP ((G(ti, s−i))| (ti, s−i)), which we subtract. This quantity is
defined as follows: a solution X = A(G, (si, s−i)) is obtained by running a
shortest path algorithm A on input (si, s−i), and then the cost of X is computed
w.r.t. the instance (G, (ti, s−i)). Since A finds a path of minimal cost when
provided with the “correct ” input (ti, s−i), the best that AGi can do is to
report si = ti so to “help” algorithm A in its job. So, the maximum value of
ui(·, s−i) is achieved for si = ti.

This is yet another proof that the mechanism for the shortest path is truthful.
There are two fundamental ingredients that we have used in the “proof”:

1. In Eq. 1.5 we can “combine” the cost of a solution with the terms ‘−si’
and ‘ti’: adding ‘ti − si’ to the cost of a solution yields the cost of the
same solution on input (ti, s−i);
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2. We are using an algorithm A for the shortest path problem which returns
a minimum-cost path when provided with the correct input. This is also
fundamental for the mechanism in order to be truthful (see Exercise 17).

The first property yields a class of optimization functions for which the
same idea works: the commonly termed utilitarian problems (see next section).
The second property determines, for the class of utilitarian problems, which
algorithms A can be turned into a truthful mechanism M = (A,P ): the optimal
ones!

1.3.3 Truthful VCG mechanisms for Utilitarian Problems

As for the shortest path problem, utilitarian problems have the objective func-
tion which is the sum of all agents costs/valuations:

Definition 5 (utilitarian problem) A minimization (resp., maximization)
problem Π = (I,m, sol, goal) is utilitarian if, for every instance I = (t, σ) and
for any X ∈ sol(I), it holds that

m(X, (t, σ)) = −
n∑

i=1

vi(X, ti)

(resp., m(X, (t, σ)) =
∑n

i=1 vi(X, ti)).

Clearly, maximization utilitarian problems can be transformed into mini-
mization ones and vice versa.

Example 6 (minimum spanning tree) Consider the minimum spanning tree
problem involving selfish agents owning one edge of a weighted graph each. The
valuation function is defined analogously to the shortest path problem. It is easy
to see that also this problem is a utilitarian optimization one.

Definition 7 (VCG mechanism) Let A∗ be an optimal algorithm for a min-
imization utilitarian problem Π = (I,m, sol, goal). Let

m(X, (σ, s−i)) := −
n∑

j 6=i

vj(X, sj)

and let
PV CG

i (si, s−i) := hi(s−i) −m(A∗(σ, s), (σ, s−i)), (1.7)

where hi(·) is any function independent of si. Then the resulting mechanism
M = (A∗, PV CG) is called VCG mechanism for Π.

Theorem 8 (VCG theorem) Any VCG mechanism for M = (A∗, PV CG) a
minimization utilitarian problem is truthful.

The proof goes through a number of relatively easy steps/observations (see
Exercise 18).
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Observation 9 If Π = (I,m, sol, goal) is a minimization utilitarian problem,
then

m(X, (σ, s−i)) − vi(X, ti) = m(X, (σ, (ti, s−i))).

Lemma 10 Let M = (A∗, PV CG) be a VCG mechanism for a minimization
utilitarian problem Π = (I,m, sol, goal). Then, the utility function of agent AGi

is equal to

ui(si, s−i) = hi(s−i) − m(A∗(σ, (si, s−i)), (σ, (ti, s−i))).

Observation 11 If A∗ is an optimal algorithm for a minimization utilitarian
problem Π = (I,m, sol, goal), then the quantity

m(A∗(σ, (si, s−i)), (σ, (ti, s−i)))

is minimized for si = ti.

Now proving Theorem 8 is an easy quite simple (see Exercise 19).

1.3.4 Voluntary participation

The mechanism presented in Sect. 1.2.2 is a VCG mechanism in which hi(s−i)
is the cost of the 2nd best shortest path. If we look at the picture at pag. 10, we
realize that this choice has a good feature: we always cover the costs of a truthful
agent, that is, ui(ti, s−i) ≥ 0. This property is called voluntary participation.

Intuitively, we can achieve voluntary participation using VCG mechanisms
whenever there exists an “alternative solution” X−i that does not “involve”
AGi.

Definition 12 Let sol(σ−i) denote the set of solutions X−i ∈ sol(σ) such that,
for every ti, vi(X−i, ti) = 0.

Theorem 13 Let Π = (I,m, sol, goal) be a minimization utilitarian problem
M = (A∗, PV CG) such that, for every I = (σ, t) and for every i = 1, 2, . . . , n,
sol(σ−i) 6= ∅. Let M be the VCG mechanism for Π obtained by setting, in Def. 7,
hi(s−i) = min

X∈sol(σ−i)
{m(X, (σ, s−i)}. Then, M satisfies the voluntary par-

ticipation constraint.

Proof. Exercise 21. 2
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Exercises

Exercise 14 Show that, for the n links problem, if we pay the cost of the 3rd

cheapest link (instead of the 2nd one), then there is an instance for which some
agent can improve her/his utility by reporting a false cost.

Exercise 15 Consider the following payment for the n links problem. We pay
to the selected link i a quantity which is the average between the best (i.e., the
cost ti of the selected link) and the 2nd best link:

Pi =
ti + minj 6=i{tj}

2

Show that, in this case, there is an instance for which some agent can improve
her/his utility by reporting a false cost.

Exercise 16 Give a proof from scratch of Theorem 1 , i.e., without making use
of Theorem 8.

Exercise 17 Consider the mechanism for the shortest path problem and replace
the algorithm A computing a shortest path with an algorithm A′ which computes
a 2nd shortest path. Let SP ′(·) be defined as SP (·) with the only difference that
we now consider the cost of the 2nd shortest path. Let us define payments P ′

i (·)
by replacing, in Eq. 1.1, SP (·) by SP ′(·). Is the mechanism M ′ = (A′, P ′)
truthful?

Exercise 18 Prove Observation 9, Lemma 10 and Observation 11.

Exercise 19 Prove Theorem 8. Also, define the payment functions for a utili-
tarian maximization problem.

Exercise 20 Using Theorem 8, show that the shortest path problem admits a
truthful mechanism also when an agent owns more than one edge. Also, define
the payment functions for this case.

Exercise 21 Prove Theorem 13.
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